# HG changeset patch # User nipkow # Date 1547651933 -3600 # Node ID 14a8cac10eac7d220bcee68b185b298cec61741f # Parent 82bb6225588ba603cfc698432fb1fc4256cef194 redundant lemma diff -r 82bb6225588b -r 14a8cac10eac src/HOL/Analysis/Cartesian_Euclidean_Space.thy --- a/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Wed Jan 16 15:53:12 2019 +0100 +++ b/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Wed Jan 16 16:18:53 2019 +0100 @@ -952,10 +952,6 @@ apply (simp add: forall_3) done -lemma bounded_linear_component_cart[intro]: "bounded_linear (\x::real^'n. x $ k)" - apply (rule bounded_linear_intro[where K=1]) - using component_le_norm_cart[of _ k] unfolding real_norm_def by auto - lemma interval_split_cart: "{a..b::real^'n} \ {x. x$k \ c} = {a .. (\ i. if i = k then min (b$k) c else b$i)}" "cbox a b \ {x. x$k \ c} = {(\ i. if i = k then max (a$k) c else a$i) .. b}" @@ -967,6 +963,5 @@ lemmas cartesian_euclidean_space_uniform_limit_intros[uniform_limit_intros] = bounded_linear.uniform_limit[OF blinfun.bounded_linear_right] bounded_linear.uniform_limit[OF bounded_linear_vec_nth] - bounded_linear.uniform_limit[OF bounded_linear_component_cart] end diff -r 82bb6225588b -r 14a8cac10eac src/HOL/Analysis/Finite_Cartesian_Product.thy --- a/src/HOL/Analysis/Finite_Cartesian_Product.thy Wed Jan 16 15:53:12 2019 +0100 +++ b/src/HOL/Analysis/Finite_Cartesian_Product.thy Wed Jan 16 16:18:53 2019 +0100 @@ -626,7 +626,7 @@ lemma%unimportant norm_le_l1_cart: "norm x \ sum(\i. \x$i\) UNIV" by (simp add: norm_vec_def L2_set_le_sum) -lemma%unimportant bounded_linear_vec_nth: "bounded_linear (\x. x $ i)" +lemma%unimportant bounded_linear_vec_nth[intro]: "bounded_linear (\x. x $ i)" apply standard apply (rule vector_add_component) apply (rule vector_scaleR_component) diff -r 82bb6225588b -r 14a8cac10eac src/HOL/Analysis/Henstock_Kurzweil_Integration.thy --- a/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy Wed Jan 16 15:53:12 2019 +0100 +++ b/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy Wed Jan 16 16:18:53 2019 +0100 @@ -7489,7 +7489,7 @@ fixes f :: "'n::euclidean_space \ real^'m" assumes "f integrable_on s" shows "integral s (\x. f x $ k) = integral s f $ k" - using integral_linear[OF assms(1) bounded_linear_component_cart,unfolded o_def] . + using integral_linear[OF assms(1) bounded_linear_vec_nth,unfolded o_def] . lemma content_closed_interval: fixes a :: "'a::ordered_euclidean_space"