# HG changeset patch # User nipkow # Date 1234214137 -3600 # Node ID 55ddff2ed906ecc56a0ed41d586eb2049a1a5e3d # Parent a7c164e228e1d808bbbeb8ac86e99e2c3e3f5dc2# Parent 14d9891c917b15bbd025f4d40d6d7443bfa3a7e6 merged diff -r 14d9891c917b -r 55ddff2ed906 src/HOL/Decision_Procs/Dense_Linear_Order.thy --- a/src/HOL/Decision_Procs/Dense_Linear_Order.thy Mon Feb 09 22:14:33 2009 +0100 +++ b/src/HOL/Decision_Procs/Dense_Linear_Order.thy Mon Feb 09 22:15:37 2009 +0100 @@ -875,5 +875,58 @@ end *} +lemma upper_bound_finite_set: + assumes fS: "finite S" + shows "\(a::'a::linorder). \x \ S. f x \ a" +proof(induct rule: finite_induct[OF fS]) + case 1 thus ?case by simp +next + case (2 x F) + from "2.hyps" obtain a where a:"\x \F. f x \ a" by blast + let ?a = "max a (f x)" + have m: "a \ ?a" "f x \ ?a" by simp_all + {fix y assume y: "y \ insert x F" + {assume "y = x" hence "f y \ ?a" using m by simp} + moreover + {assume yF: "y\ F" from a[rule_format, OF yF] m have "f y \ ?a" by (simp add: max_def)} + ultimately have "f y \ ?a" using y by blast} + then show ?case by blast +qed + +lemma lower_bound_finite_set: + assumes fS: "finite S" + shows "\(a::'a::linorder). \x \ S. f x \ a" +proof(induct rule: finite_induct[OF fS]) + case 1 thus ?case by simp +next + case (2 x F) + from "2.hyps" obtain a where a:"\x \F. f x \ a" by blast + let ?a = "min a (f x)" + have m: "a \ ?a" "f x \ ?a" by simp_all + {fix y assume y: "y \ insert x F" + {assume "y = x" hence "f y \ ?a" using m by simp} + moreover + {assume yF: "y\ F" from a[rule_format, OF yF] m have "f y \ ?a" by (simp add: min_def)} + ultimately have "f y \ ?a" using y by blast} + then show ?case by blast +qed + +lemma bound_finite_set: assumes f: "finite S" + shows "\a. \x \S. (f x:: 'a::linorder) \ a" +proof- + let ?F = "f ` S" + from f have fF: "finite ?F" by simp + let ?a = "Max ?F" + {assume "S = {}" hence ?thesis by blast} + moreover + {assume Se: "S \ {}" hence Fe: "?F \ {}" by simp + {fix x assume x: "x \ S" + hence th0: "f x \ ?F" by simp + hence "f x \ ?a" using Max_ge[OF fF th0] ..} + hence ?thesis by blast} +ultimately show ?thesis by blast +qed + + end diff -r 14d9891c917b -r 55ddff2ed906 src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Mon Feb 09 22:14:33 2009 +0100 +++ b/src/HOL/IsaMakefile Mon Feb 09 22:15:37 2009 +0100 @@ -314,8 +314,10 @@ $(LOG)/HOL-Library.gz: $(OUT)/HOL Library/SetsAndFunctions.thy \ Library/Abstract_Rat.thy \ Library/BigO.thy Library/ContNotDenum.thy Library/Efficient_Nat.thy \ + Library/Euclidean_Space.thy Library/Glbs.thy Library/normarith.ML \ Library/Executable_Set.thy Library/Infinite_Set.thy \ - Library/FuncSet.thy \ + Library/FuncSet.thy Library/Permutations.thy Library/Determinants.thy\ + Library/Finite_Cartesian_Product.thy \ Library/Library.thy Library/List_Prefix.thy Library/State_Monad.thy \ Library/Multiset.thy Library/Permutation.thy \ Library/Primes.thy Library/Pocklington.thy Library/Quotient.thy \ diff -r 14d9891c917b -r 55ddff2ed906 src/HOL/Library/Determinants.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Determinants.thy Mon Feb 09 22:15:37 2009 +0100 @@ -0,0 +1,1151 @@ +(* Title: Determinants + ID: $Id: + Author: Amine Chaieb, University of Cambridge +*) + +header {* Traces, Determinant of square matrices and some properties *} + +theory Determinants + imports Euclidean_Space Permutations +begin + +subsection{* First some facts about products*} +lemma setprod_insert_eq: "finite A \ setprod f (insert a A) = (if a \ A then setprod f A else f a * setprod f A)" +apply clarsimp +by(subgoal_tac "insert a A = A", auto) + +lemma setprod_add_split: + assumes mn: "(m::nat) <= n + 1" + shows "setprod f {m.. n+p} = setprod f {m .. n} * setprod f {n+1..n+p}" +proof- + let ?A = "{m .. n+p}" + let ?B = "{m .. n}" + let ?C = "{n+1..n+p}" + from mn have un: "?B \ ?C = ?A" by auto + from mn have dj: "?B \ ?C = {}" by auto + have f: "finite ?B" "finite ?C" by simp_all + from setprod_Un_disjoint[OF f dj, of f, unfolded un] show ?thesis . +qed + + +lemma setprod_offset: "setprod f {(m::nat) + p .. n + p} = setprod (\i. f (i + p)) {m..n}" +apply (rule setprod_reindex_cong[where f="op + p"]) +apply (auto simp add: image_iff Bex_def inj_on_def) +apply arith +apply (rule ext) +apply (simp add: add_commute) +done + +lemma setprod_singleton: "setprod f {x} = f x" by simp + +lemma setprod_singleton_nat_seg: "setprod f {n..n} = f (n::'a::order)" by simp + +lemma setprod_numseg: "setprod f {m..0} = (if m=0 then f 0 else 1)" + "setprod f {m .. Suc n} = (if m \ Suc n then f (Suc n) * setprod f {m..n} + else setprod f {m..n})" + by (auto simp add: atLeastAtMostSuc_conv) + +lemma setprod_le: assumes fS: "finite S" and fg: "\x\S. f x \ 0 \ f x \ (g x :: 'a::ordered_idom)" + shows "setprod f S \ setprod g S" +using fS fg +apply(induct S) +apply simp +apply auto +apply (rule mult_mono) +apply (auto intro: setprod_nonneg) +done + + (* FIXME: In Finite_Set there is a useless further assumption *) +lemma setprod_inversef: "finite A ==> setprod (inverse \ f) A = (inverse (setprod f A) :: 'a:: {division_by_zero, field})" + apply (erule finite_induct) + apply (simp) + apply simp + done + +lemma setprod_le_1: assumes fS: "finite S" and f: "\x\S. f x \ 0 \ f x \ (1::'a::ordered_idom)" + shows "setprod f S \ 1" +using setprod_le[OF fS f] unfolding setprod_1 . + +subsection{* Trace *} + +definition trace :: "'a::semiring_1^'n^'n \ 'a" where + "trace A = setsum (\i. ((A$i)$i)) {1..dimindex(UNIV::'n set)}" + +lemma trace_0: "trace(mat 0) = 0" + by (simp add: trace_def mat_def Cart_lambda_beta setsum_0) + +lemma trace_I: "trace(mat 1 :: 'a::semiring_1^'n^'n) = of_nat(dimindex(UNIV::'n set))" + by (simp add: trace_def mat_def Cart_lambda_beta) + +lemma trace_add: "trace ((A::'a::comm_semiring_1^'n^'n) + B) = trace A + trace B" + by (simp add: trace_def setsum_addf Cart_lambda_beta vector_component) + +lemma trace_sub: "trace ((A::'a::comm_ring_1^'n^'n) - B) = trace A - trace B" + by (simp add: trace_def setsum_subtractf Cart_lambda_beta vector_component) + +lemma trace_mul_sym:"trace ((A::'a::comm_semiring_1^'n^'n) ** B) = trace (B**A)" + apply (simp add: trace_def matrix_matrix_mult_def Cart_lambda_beta) + apply (subst setsum_commute) + by (simp add: mult_commute) + +(* ------------------------------------------------------------------------- *) +(* Definition of determinant. *) +(* ------------------------------------------------------------------------- *) + +definition det:: "'a::comm_ring_1^'n^'n \ 'a" where + "det A = setsum (\p. of_int (sign p) * setprod (\i. A$i$p i) {1 .. dimindex(UNIV :: 'n set)}) {p. p permutes {1 .. dimindex(UNIV :: 'n set)}}" + +(* ------------------------------------------------------------------------- *) +(* A few general lemmas we need below. *) +(* ------------------------------------------------------------------------- *) + +lemma Cart_lambda_beta_perm: assumes p: "p permutes {1..dimindex(UNIV::'n set)}" + and i: "i \ {1..dimindex(UNIV::'n set)}" + shows "Cart_nth (Cart_lambda g ::'a^'n) (p i) = g(p i)" + using permutes_in_image[OF p] i + by (simp add: Cart_lambda_beta permutes_in_image[OF p]) + +lemma setprod_permute: + assumes p: "p permutes S" + shows "setprod f S = setprod (f o p) S" +proof- + {assume "\ finite S" hence ?thesis by simp} + moreover + {assume fS: "finite S" + then have ?thesis + apply (simp add: setprod_def) + apply (rule ab_semigroup_mult.fold_image_permute) + apply (auto simp add: p) + apply unfold_locales + done} + ultimately show ?thesis by blast +qed + +lemma setproduct_permute_nat_interval: "p permutes {m::nat .. n} ==> setprod f {m..n} = setprod (f o p) {m..n}" + by (auto intro: setprod_permute) + +(* ------------------------------------------------------------------------- *) +(* Basic determinant properties. *) +(* ------------------------------------------------------------------------- *) + +lemma det_transp: "det (transp A) = det (A::'a::comm_ring_1 ^'n^'n)" +proof- + let ?di = "\A i j. A$i$j" + let ?U = "{1 .. dimindex (UNIV :: 'n set)}" + have fU: "finite ?U" by blast + {fix p assume p: "p \ {p. p permutes ?U}" + from p have pU: "p permutes ?U" by blast + have sth: "sign (inv p) = sign p" + by (metis sign_inverse fU p mem_def Collect_def permutation_permutes) + from permutes_inj[OF pU] + have pi: "inj_on p ?U" by (blast intro: subset_inj_on) + from permutes_image[OF pU] + have "setprod (\i. ?di (transp A) i (inv p i)) ?U = setprod (\i. ?di (transp A) i (inv p i)) (p ` ?U)" by simp + also have "\ = setprod ((\i. ?di (transp A) i (inv p i)) o p) ?U" + unfolding setprod_reindex[OF pi] .. + also have "\ = setprod (\i. ?di A i (p i)) ?U" + proof- + {fix i assume i: "i \ ?U" + from i permutes_inv_o[OF pU] permutes_in_image[OF pU] + have "((\i. ?di (transp A) i (inv p i)) o p) i = ?di A i (p i)" + unfolding transp_def by (simp add: Cart_lambda_beta expand_fun_eq)} + then show "setprod ((\i. ?di (transp A) i (inv p i)) o p) ?U = setprod (\i. ?di A i (p i)) ?U" by (auto intro: setprod_cong) + qed + finally have "of_int (sign (inv p)) * (setprod (\i. ?di (transp A) i (inv p i)) ?U) = of_int (sign p) * (setprod (\i. ?di A i (p i)) ?U)" using sth + by simp} + then show ?thesis unfolding det_def apply (subst setsum_permutations_inverse) + apply (rule setsum_cong2) by blast +qed + +lemma det_lowerdiagonal: + fixes A :: "'a::comm_ring_1^'n^'n" + assumes ld: "\i j. i \ {1 .. dimindex (UNIV:: 'n set)} \ j \ {1 .. dimindex(UNIV:: 'n set)} \ i < j \ A$i$j = 0" + shows "det A = setprod (\i. A$i$i) {1..dimindex(UNIV:: 'n set)}" +proof- + let ?U = "{1..dimindex(UNIV:: 'n set)}" + let ?PU = "{p. p permutes ?U}" + let ?pp = "\p. of_int (sign p) * setprod (\i. A$i$p i) {1 .. dimindex(UNIV :: 'n set)}" + have fU: "finite ?U" by blast + from finite_permutations[OF fU] have fPU: "finite ?PU" . + have id0: "{id} \ ?PU" by (auto simp add: permutes_id) + {fix p assume p: "p \ ?PU -{id}" + from p have pU: "p permutes ?U" and pid: "p \ id" by blast+ + from permutes_natset_le[OF pU] pid obtain i where + i: "i \ ?U" "p i > i" by (metis not_le) + from permutes_in_image[OF pU] i(1) have piU: "p i \ ?U" by blast + from ld[OF i(1) piU i(2)] i(1) have ex:"\i \ ?U. A$i$p i = 0" by blast + from setprod_zero[OF fU ex] have "?pp p = 0" by simp} + then have p0: "\p \ ?PU -{id}. ?pp p = 0" by blast + from setsum_superset[OF fPU id0 p0] show ?thesis + unfolding det_def by (simp add: sign_id) +qed + +lemma det_upperdiagonal: + fixes A :: "'a::comm_ring_1^'n^'n" + assumes ld: "\i j. i \ {1 .. dimindex (UNIV:: 'n set)} \ j \ {1 .. dimindex(UNIV:: 'n set)} \ i > j \ A$i$j = 0" + shows "det A = setprod (\i. A$i$i) {1..dimindex(UNIV:: 'n set)}" +proof- + let ?U = "{1..dimindex(UNIV:: 'n set)}" + let ?PU = "{p. p permutes ?U}" + let ?pp = "(\p. of_int (sign p) * setprod (\i. A$i$p i) {1 .. dimindex(UNIV :: 'n set)})" + have fU: "finite ?U" by blast + from finite_permutations[OF fU] have fPU: "finite ?PU" . + have id0: "{id} \ ?PU" by (auto simp add: permutes_id) + {fix p assume p: "p \ ?PU -{id}" + from p have pU: "p permutes ?U" and pid: "p \ id" by blast+ + from permutes_natset_ge[OF pU] pid obtain i where + i: "i \ ?U" "p i < i" by (metis not_le) + from permutes_in_image[OF pU] i(1) have piU: "p i \ ?U" by blast + from ld[OF i(1) piU i(2)] i(1) have ex:"\i \ ?U. A$i$p i = 0" by blast + from setprod_zero[OF fU ex] have "?pp p = 0" by simp} + then have p0: "\p \ ?PU -{id}. ?pp p = 0" by blast + from setsum_superset[OF fPU id0 p0] show ?thesis + unfolding det_def by (simp add: sign_id) +qed + +lemma det_I: "det (mat 1 :: 'a::comm_ring_1^'n^'n) = 1" +proof- + let ?A = "mat 1 :: 'a::comm_ring_1^'n^'n" + let ?U = "{1 .. dimindex (UNIV :: 'n set)}" + let ?f = "\i j. ?A$i$j" + {fix i assume i: "i \ ?U" + have "?f i i = 1" using i by (vector mat_def)} + hence th: "setprod (\i. ?f i i) ?U = setprod (\x. 1) ?U" + by (auto intro: setprod_cong) + {fix i j assume i: "i \ ?U" and j: "j \ ?U" and ij: "i < j" + have "?f i j = 0" using i j ij by (vector mat_def) } + then have "det ?A = setprod (\i. ?f i i) ?U" using det_lowerdiagonal + by blast + also have "\ = 1" unfolding th setprod_1 .. + finally show ?thesis . +qed + +lemma det_0: "det (mat 0 :: 'a::comm_ring_1^'n^'n) = 0" +proof- + let ?A = "mat 0 :: 'a::comm_ring_1^'n^'n" + let ?U = "{1 .. dimindex (UNIV :: 'n set)}" + let ?f = "\i j. ?A$i$j" + have th:"setprod (\i. ?f i i) ?U = 0" + apply (rule setprod_zero) + apply simp + apply (rule bexI[where x=1]) + using dimindex_ge_1[of "UNIV :: 'n set"] + by (simp_all add: mat_def Cart_lambda_beta) + {fix i j assume i: "i \ ?U" and j: "j \ ?U" and ij: "i < j" + have "?f i j = 0" using i j ij by (vector mat_def) } + then have "det ?A = setprod (\i. ?f i i) ?U" using det_lowerdiagonal + by blast + also have "\ = 0" unfolding th .. + finally show ?thesis . +qed + +lemma det_permute_rows: + fixes A :: "'a::comm_ring_1^'n^'n" + assumes p: "p permutes {1 .. dimindex (UNIV :: 'n set)}" + shows "det(\ i. A$p i :: 'a^'n^'n) = of_int (sign p) * det A" + apply (simp add: det_def setsum_right_distrib mult_assoc[symmetric] del: One_nat_def) + apply (subst sum_permutations_compose_right[OF p]) +proof(rule setsum_cong2) + let ?U = "{1 .. dimindex (UNIV :: 'n set)}" + let ?PU = "{p. p permutes ?U}" + let ?Ap = "(\ i. A$p i :: 'a^'n^'n)" + fix q assume qPU: "q \ ?PU" + have fU: "finite ?U" by blast + from qPU have q: "q permutes ?U" by blast + from p q have pp: "permutation p" and qp: "permutation q" + by (metis fU permutation_permutes)+ + from permutes_inv[OF p] have ip: "inv p permutes ?U" . + {fix i assume i: "i \ ?U" + from Cart_lambda_beta[rule_format, OF i, of "\i. A$ p i"] + have "?Ap$i$ (q o p) i = A $ p i $ (q o p) i " by simp} + hence "setprod (\i. ?Ap$i$ (q o p) i) ?U = setprod (\i. A$p i$(q o p) i) ?U" + by (auto intro: setprod_cong) + also have "\ = setprod ((\i. A$p i$(q o p) i) o inv p) ?U" + by (simp only: setprod_permute[OF ip, symmetric]) + also have "\ = setprod (\i. A $ (p o inv p) i $ (q o (p o inv p)) i) ?U" + by (simp only: o_def) + also have "\ = setprod (\i. A$i$q i) ?U" by (simp only: o_def permutes_inverses[OF p]) + finally have thp: "setprod (\i. ?Ap$i$ (q o p) i) ?U = setprod (\i. A$i$q i) ?U" + by blast + show "of_int (sign (q o p)) * setprod (\i. ?Ap$i$ (q o p) i) ?U = of_int (sign p) * of_int (sign q) * setprod (\i. A$i$q i) ?U" + by (simp only: thp sign_compose[OF qp pp] mult_commute of_int_mult) +qed + +lemma det_permute_columns: + fixes A :: "'a::comm_ring_1^'n^'n" + assumes p: "p permutes {1 .. dimindex (UNIV :: 'n set)}" + shows "det(\ i j. A$i$ p j :: 'a^'n^'n) = of_int (sign p) * det A" +proof- + let ?Ap = "\ i j. A$i$ p j :: 'a^'n^'n" + let ?At = "transp A" + have "of_int (sign p) * det A = det (transp (\ i. transp A $ p i))" + unfolding det_permute_rows[OF p, of ?At] det_transp .. + moreover + have "?Ap = transp (\ i. transp A $ p i)" + by (simp add: transp_def Cart_eq Cart_lambda_beta Cart_lambda_beta_perm[OF p]) + ultimately show ?thesis by simp +qed + +lemma det_identical_rows: + fixes A :: "'a::ordered_idom^'n^'n" + assumes i: "i\{1 .. dimindex (UNIV :: 'n set)}" + and j: "j\{1 .. dimindex (UNIV :: 'n set)}" + and ij: "i \ j" + and r: "row i A = row j A" + shows "det A = 0" +proof- + have tha: "\(a::'a) b. a = b ==> b = - a ==> a = 0" + by simp + have th1: "of_int (-1) = - 1" by (metis of_int_1 of_int_minus number_of_Min) + let ?p = "Fun.swap i j id" + let ?A = "\ i. A $ ?p i" + from r have "A = ?A" by (simp add: Cart_eq Cart_lambda_beta Cart_lambda_beta_perm[OF permutes_swap_id[OF i j]] row_def swap_def) + hence "det A = det ?A" by simp + moreover have "det A = - det ?A" + by (simp add: det_permute_rows[OF permutes_swap_id[OF i j]] sign_swap_id ij th1) + ultimately show "det A = 0" by (metis tha) +qed + +lemma det_identical_columns: + fixes A :: "'a::ordered_idom^'n^'n" + assumes i: "i\{1 .. dimindex (UNIV :: 'n set)}" + and j: "j\{1 .. dimindex (UNIV :: 'n set)}" + and ij: "i \ j" + and r: "column i A = column j A" + shows "det A = 0" +apply (subst det_transp[symmetric]) +apply (rule det_identical_rows[OF i j ij]) +by (metis row_transp i j r) + +lemma det_zero_row: + fixes A :: "'a::{idom, ring_char_0}^'n^'n" + assumes i: "i\{1 .. dimindex (UNIV :: 'n set)}" + and r: "row i A = 0" + shows "det A = 0" +using i r +apply (simp add: row_def det_def Cart_lambda_beta Cart_eq vector_component del: One_nat_def) +apply (rule setsum_0') +apply (clarsimp simp add: sign_nz simp del: One_nat_def) +apply (rule setprod_zero) +apply simp +apply (rule bexI[where x=i]) +apply (erule_tac x="a i" in ballE) +apply (subgoal_tac "(0\'a ^ 'n) $ a i = 0") +apply simp +apply (rule zero_index) +apply (drule permutes_in_image[of _ _ i]) +apply simp +apply (drule permutes_in_image[of _ _ i]) +apply simp +apply simp +done + +lemma det_zero_column: + fixes A :: "'a::{idom,ring_char_0}^'n^'n" + assumes i: "i\{1 .. dimindex (UNIV :: 'n set)}" + and r: "column i A = 0" + shows "det A = 0" + apply (subst det_transp[symmetric]) + apply (rule det_zero_row[OF i]) + by (metis row_transp r i) + +lemma setsum_lambda_beta[simp]: "setsum (\i. ((\ i. g i) :: 'a::{comm_monoid_add}^'n) $ i ) {1 .. dimindex (UNIV :: 'n set)} = setsum g {1 .. dimindex (UNIV :: 'n set)}" + by (simp add: Cart_lambda_beta) + +lemma setprod_lambda_beta[simp]: "setprod (\i. ((\ i. g i) :: 'a::{comm_monoid_mult}^'n) $ i ) {1 .. dimindex (UNIV :: 'n set)} = setprod g {1 .. dimindex (UNIV :: 'n set)}" + apply (rule setprod_cong) + apply simp + apply (simp add: Cart_lambda_beta') + done + +lemma setprod_lambda_beta2[simp]: "setprod (\i. ((\ i. g i) :: 'a::{comm_monoid_mult}^'n^'n) $ i$ f i ) {1 .. dimindex (UNIV :: 'n set)} = setprod (\i. g i $ f i) {1 .. dimindex (UNIV :: 'n set)}" +proof(rule setprod_cong[OF refl]) + let ?U = "{1 .. dimindex (UNIV :: 'n set)}" + fix i assume i: "i \ ?U" + from Cart_lambda_beta'[OF i, of g] have + "((\ i. g i) :: 'a^'n^'n) $ i = g i" . + hence "((\ i. g i) :: 'a^'n^'n) $ i $ f i = g i $ f i" by simp + then + show "((\ i. g i):: 'a^'n^'n) $ i $ f i = g i $ f i" . +qed + +lemma det_row_add: + assumes k: "k \ {1 .. dimindex (UNIV :: 'n set)}" + shows "det((\ i. if i = k then a i + b i else c i)::'a::comm_ring_1^'n^'n) = + det((\ i. if i = k then a i else c i)::'a::comm_ring_1^'n^'n) + + det((\ i. if i = k then b i else c i)::'a::comm_ring_1^'n^'n)" +unfolding det_def setprod_lambda_beta2 setsum_addf[symmetric] +proof (rule setsum_cong2) + let ?U = "{1 .. dimindex (UNIV :: 'n set)}" + let ?pU = "{p. p permutes ?U}" + let ?f = "(\i. if i = k then a i + b i else c i)::nat \ 'a::comm_ring_1^'n" + let ?g = "(\ i. if i = k then a i else c i)::nat \ 'a::comm_ring_1^'n" + let ?h = "(\ i. if i = k then b i else c i)::nat \ 'a::comm_ring_1^'n" + fix p assume p: "p \ ?pU" + let ?Uk = "?U - {k}" + from p have pU: "p permutes ?U" by blast + from k have pkU: "p k \ ?U" by (simp only: permutes_in_image[OF pU]) + note pin[simp] = permutes_in_image[OF pU] + have kU: "?U = insert k ?Uk" using k by blast + {fix j assume j: "j \ ?Uk" + from j have "?f j $ p j = ?g j $ p j" and "?f j $ p j= ?h j $ p j" + by simp_all} + then have th1: "setprod (\i. ?f i $ p i) ?Uk = setprod (\i. ?g i $ p i) ?Uk" + and th2: "setprod (\i. ?f i $ p i) ?Uk = setprod (\i. ?h i $ p i) ?Uk" + apply - + apply (rule setprod_cong, simp_all)+ + done + have th3: "finite ?Uk" "k \ ?Uk" using k by auto + have "setprod (\i. ?f i $ p i) ?U = setprod (\i. ?f i $ p i) (insert k ?Uk)" + unfolding kU[symmetric] .. + also have "\ = ?f k $ p k * setprod (\i. ?f i $ p i) ?Uk" + apply (rule setprod_insert) + apply simp + using k by blast + also have "\ = (a k $ p k * setprod (\i. ?f i $ p i) ?Uk) + (b k$ p k * setprod (\i. ?f i $ p i) ?Uk)" using pkU by (simp add: ring_simps vector_component) + also have "\ = (a k $ p k * setprod (\i. ?g i $ p i) ?Uk) + (b k$ p k * setprod (\i. ?h i $ p i) ?Uk)" by (metis th1 th2) + also have "\ = setprod (\i. ?g i $ p i) (insert k ?Uk) + setprod (\i. ?h i $ p i) (insert k ?Uk)" + unfolding setprod_insert[OF th3] by simp + finally have "setprod (\i. ?f i $ p i) ?U = setprod (\i. ?g i $ p i) ?U + setprod (\i. ?h i $ p i) ?U" unfolding kU[symmetric] . + then show "of_int (sign p) * setprod (\i. ?f i $ p i) ?U = of_int (sign p) * setprod (\i. ?g i $ p i) ?U + of_int (sign p) * setprod (\i. ?h i $ p i) ?U" + by (simp add: ring_simps) +qed + +lemma det_row_mul: + assumes k: "k \ {1 .. dimindex (UNIV :: 'n set)}" + shows "det((\ i. if i = k then c *s a i else b i)::'a::comm_ring_1^'n^'n) = + c* det((\ i. if i = k then a i else b i)::'a::comm_ring_1^'n^'n)" + +unfolding det_def setprod_lambda_beta2 setsum_right_distrib +proof (rule setsum_cong2) + let ?U = "{1 .. dimindex (UNIV :: 'n set)}" + let ?pU = "{p. p permutes ?U}" + let ?f = "(\i. if i = k then c*s a i else b i)::nat \ 'a::comm_ring_1^'n" + let ?g = "(\ i. if i = k then a i else b i)::nat \ 'a::comm_ring_1^'n" + fix p assume p: "p \ ?pU" + let ?Uk = "?U - {k}" + from p have pU: "p permutes ?U" by blast + from k have pkU: "p k \ ?U" by (simp only: permutes_in_image[OF pU]) + note pin[simp] = permutes_in_image[OF pU] + have kU: "?U = insert k ?Uk" using k by blast + {fix j assume j: "j \ ?Uk" + from j have "?f j $ p j = ?g j $ p j" by simp} + then have th1: "setprod (\i. ?f i $ p i) ?Uk = setprod (\i. ?g i $ p i) ?Uk" + apply - + apply (rule setprod_cong, simp_all) + done + have th3: "finite ?Uk" "k \ ?Uk" using k by auto + have "setprod (\i. ?f i $ p i) ?U = setprod (\i. ?f i $ p i) (insert k ?Uk)" + unfolding kU[symmetric] .. + also have "\ = ?f k $ p k * setprod (\i. ?f i $ p i) ?Uk" + apply (rule setprod_insert) + apply simp + using k by blast + also have "\ = (c*s a k) $ p k * setprod (\i. ?f i $ p i) ?Uk" using pkU by (simp add: ring_simps vector_component) + also have "\ = c* (a k $ p k * setprod (\i. ?g i $ p i) ?Uk)" + unfolding th1 using pkU by (simp add: vector_component mult_ac) + also have "\ = c* (setprod (\i. ?g i $ p i) (insert k ?Uk))" + unfolding setprod_insert[OF th3] by simp + finally have "setprod (\i. ?f i $ p i) ?U = c* (setprod (\i. ?g i $ p i) ?U)" unfolding kU[symmetric] . + then show "of_int (sign p) * setprod (\i. ?f i $ p i) ?U = c * (of_int (sign p) * setprod (\i. ?g i $ p i) ?U)" + by (simp add: ring_simps) +qed + +lemma det_row_0: + assumes k: "k \ {1 .. dimindex (UNIV :: 'n set)}" + shows "det((\ i. if i = k then 0 else b i)::'a::comm_ring_1^'n^'n) = 0" +using det_row_mul[OF k, of 0 "\i. 1" b] +apply (simp) + unfolding vector_smult_lzero . + +lemma det_row_operation: + fixes A :: "'a::ordered_idom^'n^'n" + assumes i: "i \ {1 .. dimindex(UNIV :: 'n set)}" + and j: "j \ {1 .. dimindex(UNIV :: 'n set)}" + and ij: "i \ j" + shows "det (\ k. if k = i then row i A + c *s row j A else row k A) = det A" +proof- + let ?Z = "(\ k. if k = i then row j A else row k A) :: 'a ^'n^'n" + have th: "row i ?Z = row j ?Z" using i j by (vector row_def) + have th2: "((\ k. if k = i then row i A else row k A) :: 'a^'n^'n) = A" + using i j by (vector row_def) + show ?thesis + unfolding det_row_add [OF i] det_row_mul[OF i] det_identical_rows[OF i j ij th] th2 + by simp +qed + +lemma det_row_span: + fixes A :: "'a:: ordered_idom^'n^'n" + assumes i: "i \ {1 .. dimindex(UNIV :: 'n set)}" + and x: "x \ span {row j A |j. j\ {1 .. dimindex(UNIV :: 'n set)} \ j\ i}" + shows "det (\ k. if k = i then row i A + x else row k A) = det A" +proof- + let ?U = "{1 .. dimindex(UNIV :: 'n set)}" + let ?S = "{row j A |j. j\ ?U \ j\ i}" + let ?d = "\x. det (\ k. if k = i then x else row k A)" + let ?P = "\x. ?d (row i A + x) = det A" + {fix k + + have "(if k = i then row i A + 0 else row k A) = row k A" by simp} + then have P0: "?P 0" + apply - + apply (rule cong[of det, OF refl]) + using i by (vector row_def) + moreover + {fix c z y assume zS: "z \ ?S" and Py: "?P y" + from zS obtain j where j: "z = row j A" "j \ ?U" "i \ j" by blast + let ?w = "row i A + y" + have th0: "row i A + (c*s z + y) = ?w + c*s z" by vector + have thz: "?d z = 0" + apply (rule det_identical_rows[OF i j(2,3)]) + using i j by (vector row_def) + have "?d (row i A + (c*s z + y)) = ?d (?w + c*s z)" unfolding th0 .. + then have "?P (c*s z + y)" unfolding thz Py det_row_mul[OF i] det_row_add[OF i] + by simp } + + ultimately show ?thesis + apply - + apply (rule span_induct_alt[of ?P ?S, OF P0]) + apply blast + apply (rule x) + done +qed + +(* ------------------------------------------------------------------------- *) +(* May as well do this, though it's a bit unsatisfactory since it ignores *) +(* exact duplicates by considering the rows/columns as a set. *) +(* ------------------------------------------------------------------------- *) + +lemma det_dependent_rows: + fixes A:: "'a::ordered_idom^'n^'n" + assumes d: "dependent (rows A)" + shows "det A = 0" +proof- + let ?U = "{1 .. dimindex (UNIV :: 'n set)}" + from d obtain i where i: "i \ ?U" "row i A \ span (rows A - {row i A})" + unfolding dependent_def rows_def by blast + {fix j k assume j: "j \?U" and k: "k \ ?U" and jk: "j \ k" + and c: "row j A = row k A" + from det_identical_rows[OF j k jk c] have ?thesis .} + moreover + {assume H: "\ i j. i\ ?U \ j \ ?U \ i \ j \ row i A \ row j A" + have th0: "- row i A \ span {row j A|j. j \ ?U \ j \ i}" + apply (rule span_neg) + apply (rule set_rev_mp) + apply (rule i(2)) + apply (rule span_mono) + using H i by (auto simp add: rows_def) + from det_row_span[OF i(1) th0] + have "det A = det (\ k. if k = i then 0 *s 1 else row k A)" + unfolding right_minus vector_smult_lzero .. + with det_row_mul[OF i(1), of "0::'a" "\i. 1"] + have "det A = 0" by simp} + ultimately show ?thesis by blast +qed + +lemma det_dependent_columns: assumes d: "dependent(columns (A::'a::ordered_idom^'n^'n))" shows "det A = 0" +by (metis d det_dependent_rows rows_transp det_transp) + +(* ------------------------------------------------------------------------- *) +(* Multilinearity and the multiplication formula. *) +(* ------------------------------------------------------------------------- *) + +lemma Cart_lambda_cong: "(\x. x \ {1 .. dimindex (UNIV :: 'n set)} \ f x = g x) \ (Cart_lambda f::'a^'n) = (Cart_lambda g :: 'a^'n)" + apply (rule iffD1[OF Cart_lambda_unique]) by vector + +lemma det_linear_row_setsum: + assumes fS: "finite S" and k: "k \ {1 .. dimindex (UNIV :: 'n set)}" + shows "det ((\ i. if i = k then setsum (a i) S else c i)::'a::comm_ring_1^'n^'n) = setsum (\j. det ((\ i. if i = k then a i j else c i)::'a^'n^'n)) S" + using k +proof(induct rule: finite_induct[OF fS]) + case 1 thus ?case apply simp unfolding setsum_empty det_row_0[OF k] .. +next + case (2 x F) + then show ?case by (simp add: det_row_add cong del: if_weak_cong) +qed + +lemma finite_bounded_functions: + assumes fS: "finite S" + shows "finite {f. (\i \ {1.. (k::nat)}. f i \ S) \ (\i. i \ {1 .. k} \ f i = i)}" +proof(induct k) + case 0 + have th: "{f. \i. f i = i} = {id}" by (auto intro: ext) + show ?case by (auto simp add: th) +next + case (Suc k) + let ?f = "\(y::nat,g) i. if i = Suc k then y else g i" + let ?S = "?f ` (S \ {f. (\i\{1..k}. f i \ S) \ (\i. i \ {1..k} \ f i = i)})" + have "?S = {f. (\i\{1.. Suc k}. f i \ S) \ (\i. i \ {1.. Suc k} \ f i = i)}" + apply (auto simp add: image_iff) + apply (rule_tac x="x (Suc k)" in bexI) + apply (rule_tac x = "\i. if i = Suc k then i else x i" in exI) + apply (auto intro: ext) + done + with finite_imageI[OF finite_cartesian_product[OF fS Suc.hyps(1)], of ?f] + show ?case by metis +qed + + +lemma eq_id_iff[simp]: "(\x. f x = x) = (f = id)" by (auto intro: ext) + +lemma det_linear_rows_setsum_lemma: + assumes fS: "finite S" and k: "k \ dimindex (UNIV :: 'n set)" + shows "det((\ i. if i <= k then setsum (a i) S else c i):: 'a::comm_ring_1^'n^'n) = + setsum (\f. det((\ i. if i <= k then a i (f i) else c i)::'a^'n^'n)) + {f. (\i \ {1 .. k}. f i \ S) \ (\i. i \ {1..k} \ f i = i)}" +using k +proof(induct k arbitrary: a c) + case 0 + have th0: "\x y. (\ i. if i <= 0 then x i else y i) = (\ i. y i)" by vector + from "0.prems" show ?case unfolding th0 by simp +next + case (Suc k a c) + let ?F = "\k. {f. (\i \ {1 .. k}. f i \ S) \ (\i. i \ {1..k} \ f i = i)}" + let ?h = "\(y::nat,g) i. if i = Suc k then y else g i" + let ?k = "\h. (h(Suc k),(\i. if i = Suc k then i else h i))" + let ?s = "\ k a c f. det((\ i. if i <= k then a i (f i) else c i)::'a^'n^'n)" + let ?c = "\i. if i = Suc k then a i j else c i" + from Suc.prems have Sk: "Suc k \ {1 .. dimindex (UNIV :: 'n set)}" by simp + from Suc.prems have k': "k \ dimindex (UNIV :: 'n set)" by arith + have thif: "\a b c d. (if b \ a then c else d) = (if a then c else if b then c else d)" by simp + have thif2: "\a b c d e. (if a then b else if c then d else e) = + (if c then (if a then b else d) else (if a then b else e))" by simp + have "det (\ i. if i \ Suc k then setsum (a i) S else c i) = + det (\ i. if i = Suc k then setsum (a i) S + else if i \ k then setsum (a i) S else c i)" + unfolding le_Suc_eq thif .. + also have "\ = (\j\S. det (\ i. if i \ k then setsum (a i) S + else if i = Suc k then a i j else c i))" + unfolding det_linear_row_setsum[OF fS Sk] + apply (subst thif2) + by (simp cong del: if_weak_cong cong add: if_cong) + finally have tha: + "det (\ i. if i \ Suc k then setsum (a i) S else c i) = + (\(j, f)\S \ ?F k. det (\ i. if i \ k then a i (f i) + else if i = Suc k then a i j + else c i))" + unfolding Suc.hyps[OF k'] unfolding setsum_cartesian_product by blast + show ?case unfolding tha + apply(rule setsum_eq_general_reverses[where h= "?h" and k= "?k"], + blast intro: finite_cartesian_product fS finite_bounded_functions[OF fS], + blast intro: finite_cartesian_product fS finite_bounded_functions[OF fS], auto intro: ext) + apply (rule cong[OF refl[of det]]) + by vector +qed + +lemma det_linear_rows_setsum: + assumes fS: "finite S" + shows "det (\ i. setsum (a i) S) = setsum (\f. det (\ i. a i (f i) :: 'a::comm_ring_1 ^ 'n^'n)) {f. (\i \ {1 .. dimindex (UNIV :: 'n set)}. f i \ S) \ (\i. i \ {1.. dimindex (UNIV :: 'n set)} \ f i = i)}" +proof- + have th0: "\x y. ((\ i. if i <= dimindex(UNIV:: 'n set) then x i else y i) :: 'a^'n^'n) = (\ i. x i)" by vector + + from det_linear_rows_setsum_lemma[OF fS, of "dimindex (UNIV :: 'n set)" a, unfolded th0, OF order_refl] show ?thesis by blast +qed + +lemma matrix_mul_setsum_alt: + fixes A B :: "'a::comm_ring_1^'n^'n" + shows "A ** B = (\ i. setsum (\k. A$i$k *s B $ k) {1 .. dimindex (UNIV :: 'n set)})" + by (vector matrix_matrix_mult_def setsum_component) + +lemma det_rows_mul: + "det((\ i. c i *s a i)::'a::comm_ring_1^'n^'n) = + setprod (\i. c i) {1..dimindex(UNIV:: 'n set)} * det((\ i. a i)::'a^'n^'n)" +proof (simp add: det_def Cart_lambda_beta' setsum_right_distrib vector_component cong add: setprod_cong del: One_nat_def, rule setsum_cong2) + let ?U = "{1 .. dimindex(UNIV :: 'n set)}" + let ?PU = "{p. p permutes ?U}" + fix p assume pU: "p \ ?PU" + let ?s = "of_int (sign p)" + from pU have p: "p permutes ?U" by blast + have "setprod (\i. (c i *s a i) $ p i) ?U = setprod (\i. c i * a i $ p i) ?U" + apply (rule setprod_cong, blast) + by (auto simp only: permutes_in_image[OF p] intro: vector_smult_component) + also have "\ = setprod c ?U * setprod (\i. a i $ p i) ?U" + unfolding setprod_timesf .. + finally show "?s * (\xa\?U. (c xa *s a xa) $ p xa) = + setprod c ?U * (?s* (\xa\?U. a xa $ p xa))" by (simp add: ring_simps) +qed + +lemma det_mul: + fixes A B :: "'a::ordered_idom^'n^'n" + shows "det (A ** B) = det A * det B" +proof- + let ?U = "{1 .. dimindex (UNIV :: 'n set)}" + let ?F = "{f. (\i\ ?U. f i \ ?U) \ (\i. i \ ?U \ f i = i)}" + let ?PU = "{p. p permutes ?U}" + have fU: "finite ?U" by simp + have fF: "finite ?F" using finite_bounded_functions[OF fU] . + {fix p assume p: "p permutes ?U" + + have "p \ ?F" unfolding mem_Collect_eq permutes_in_image[OF p] + using p[unfolded permutes_def] by simp} + then have PUF: "?PU \ ?F" by blast + {fix f assume fPU: "f \ ?F - ?PU" + have fUU: "f ` ?U \ ?U" using fPU by auto + from fPU have f: "\i \ ?U. f i \ ?U" + "\i. i \ ?U \ f i = i" "\(\y. \!x. f x = y)" unfolding permutes_def + by auto + + let ?A = "(\ i. A$i$f i *s B$f i) :: 'a^'n^'n" + let ?B = "(\ i. B$f i) :: 'a^'n^'n" + {assume fni: "\ inj_on f ?U" + then obtain i j where ij: "i \ ?U" "j \ ?U" "f i = f j" "i \ j" + unfolding inj_on_def by blast + from ij + have rth: "row i ?B = row j ?B" by (vector row_def) + from det_identical_rows[OF ij(1,2,4) rth] + have "det (\ i. A$i$f i *s B$f i) = 0" + unfolding det_rows_mul by simp} + moreover + {assume fi: "inj_on f ?U" + from f fi have fith: "\i j. f i = f j \ i = j" + unfolding inj_on_def + apply (case_tac "i \ ?U") + apply (case_tac "j \ ?U") by metis+ + note fs = fi[unfolded surjective_iff_injective_gen[OF fU fU refl fUU, symmetric]] + + {fix y + from fs f have "\x. f x = y" by (cases "y \ ?U") blast+ + then obtain x where x: "f x = y" by blast + {fix z assume z: "f z = y" from fith x z have "z = x" by metis} + with x have "\!x. f x = y" by blast} + with f(3) have "det (\ i. A$i$f i *s B$f i) = 0" by blast} + ultimately have "det (\ i. A$i$f i *s B$f i) = 0" by blast} + hence zth: "\ f\ ?F - ?PU. det (\ i. A$i$f i *s B$f i) = 0" by simp + {fix p assume pU: "p \ ?PU" + from pU have p: "p permutes ?U" by blast + let ?s = "\p. of_int (sign p)" + let ?f = "\q. ?s p * (\i\ ?U. A $ i $ p i) * + (?s q * (\i\ ?U. B $ i $ q i))" + have "(setsum (\q. ?s q * + (\i\ ?U. (\ i. A $ i $ p i *s B $ p i :: 'a^'n^'n) $ i $ q i)) ?PU) = + (setsum (\q. ?s p * (\i\ ?U. A $ i $ p i) * + (?s q * (\i\ ?U. B $ i $ q i))) ?PU)" + unfolding sum_permutations_compose_right[OF permutes_inv[OF p], of ?f] + proof(rule setsum_cong2) + fix q assume qU: "q \ ?PU" + hence q: "q permutes ?U" by blast + from p q have pp: "permutation p" and pq: "permutation q" + unfolding permutation_permutes by auto + have th00: "of_int (sign p) * of_int (sign p) = (1::'a)" + "\a. of_int (sign p) * (of_int (sign p) * a) = a" + unfolding mult_assoc[symmetric] unfolding of_int_mult[symmetric] + by (simp_all add: sign_idempotent) + have ths: "?s q = ?s p * ?s (q o inv p)" + using pp pq permutation_inverse[OF pp] sign_inverse[OF pp] + by (simp add: th00 mult_ac sign_idempotent sign_compose) + have th001: "setprod (\i. B$i$ q (inv p i)) ?U = setprod ((\i. B$i$ q (inv p i)) o p) ?U" + by (rule setprod_permute[OF p]) + have thp: "setprod (\i. (\ i. A$i$p i *s B$p i :: 'a^'n^'n) $i $ q i) ?U = setprod (\i. A$i$p i) ?U * setprod (\i. B$i$ q (inv p i)) ?U" + unfolding th001 setprod_timesf[symmetric] o_def permutes_inverses[OF p] + apply (rule setprod_cong[OF refl]) + using permutes_in_image[OF q] by vector + show "?s q * setprod (\i. (((\ i. A$i$p i *s B$p i) :: 'a^'n^'n)$i$q i)) ?U = ?s p * (setprod (\i. A$i$p i) ?U) * (?s (q o inv p) * setprod (\i. B$i$(q o inv p) i) ?U)" + using ths thp pp pq permutation_inverse[OF pp] sign_inverse[OF pp] + by (simp add: sign_nz th00 ring_simps sign_idempotent sign_compose) + qed + } + then have th2: "setsum (\f. det (\ i. A$i$f i *s B$f i)) ?PU = det A * det B" + unfolding det_def setsum_product + by (rule setsum_cong2) + have "det (A**B) = setsum (\f. det (\ i. A $ i $ f i *s B $ f i)) ?F" + unfolding matrix_mul_setsum_alt det_linear_rows_setsum[OF fU] .. + also have "\ = setsum (\f. det (\ i. A$i$f i *s B$f i)) ?PU" + unfolding setsum_superset[OF fF PUF zth, symmetric] + unfolding det_rows_mul .. + finally show ?thesis unfolding th2 . +qed + +(* ------------------------------------------------------------------------- *) +(* Relation to invertibility. *) +(* ------------------------------------------------------------------------- *) + +lemma invertible_left_inverse: + fixes A :: "real^'n^'n" + shows "invertible A \ (\(B::real^'n^'n). B** A = mat 1)" + by (metis invertible_def matrix_left_right_inverse) + +lemma invertible_righ_inverse: + fixes A :: "real^'n^'n" + shows "invertible A \ (\(B::real^'n^'n). A** B = mat 1)" + by (metis invertible_def matrix_left_right_inverse) + +lemma invertible_det_nz: + fixes A::"real ^'n^'n" + shows "invertible A \ det A \ 0" +proof- + {assume "invertible A" + then obtain B :: "real ^'n^'n" where B: "A ** B = mat 1" + unfolding invertible_righ_inverse by blast + hence "det (A ** B) = det (mat 1 :: real ^'n^'n)" by simp + hence "det A \ 0" + apply (simp add: det_mul det_I) by algebra } + moreover + {assume H: "\ invertible A" + let ?U = "{1 .. dimindex(UNIV :: 'n set)}" + have fU: "finite ?U" by simp + from H obtain c i where c: "setsum (\i. c i *s row i A) ?U = 0" + and iU: "i \ ?U" and ci: "c i \ 0" + unfolding invertible_righ_inverse + unfolding matrix_right_invertible_independent_rows by blast + have stupid: "\(a::real^'n) b. a + b = 0 \ -a = b" + apply (drule_tac f="op + (- a)" in cong[OF refl]) + apply (simp only: ab_left_minus add_assoc[symmetric]) + apply simp + done + from c ci + have thr0: "- row i A = setsum (\j. (1/ c i) *s c j *s row j A) (?U - {i})" + unfolding setsum_diff1'[OF fU iU] setsum_cmul + apply (simp add: field_simps) + apply (rule vector_mul_lcancel_imp[OF ci]) + apply (auto simp add: vector_smult_assoc vector_smult_rneg field_simps) + unfolding stupid .. + have thr: "- row i A \ span {row j A| j. j\ ?U \ j \ i}" + unfolding thr0 + apply (rule span_setsum) + apply simp + apply (rule ballI) + apply (rule span_mul)+ + apply (rule span_superset) + apply auto + done + let ?B = "(\ k. if k = i then 0 else row k A) :: real ^'n^'n" + have thrb: "row i ?B = 0" using iU by (vector row_def) + have "det A = 0" + unfolding det_row_span[OF iU thr, symmetric] right_minus + unfolding det_zero_row[OF iU thrb] ..} + ultimately show ?thesis by blast +qed + +(* ------------------------------------------------------------------------- *) +(* Cramer's rule. *) +(* ------------------------------------------------------------------------- *) + +lemma cramer_lemma_transp: + fixes A:: "'a::ordered_idom^'n^'n" and x :: "'a ^'n" + assumes k: "k \ {1 .. dimindex(UNIV ::'n set)}" + shows "det ((\ i. if i = k then setsum (\i. x$i *s row i A) {1 .. dimindex(UNIV::'n set)} + else row i A)::'a^'n^'n) = x$k * det A" + (is "?lhs = ?rhs") +proof- + let ?U = "{1 .. dimindex (UNIV :: 'n set)}" + let ?Uk = "?U - {k}" + have U: "?U = insert k ?Uk" using k by blast + have fUk: "finite ?Uk" by simp + have kUk: "k \ ?Uk" by simp + have th00: "\k s. x$k *s row k A + s = (x$k - 1) *s row k A + row k A + s" + by (vector ring_simps) + have th001: "\f k . (\x. if x = k then f k else f x) = f" by (auto intro: ext) + have "(\ i. row i A) = A" by (vector row_def) + then have thd1: "det (\ i. row i A) = det A" by simp + have thd0: "det (\ i. if i = k then row k A + (\i \ ?Uk. x $ i *s row i A) else row i A) = det A" + apply (rule det_row_span[OF k]) + apply (rule span_setsum[OF fUk]) + apply (rule ballI) + apply (rule span_mul) + apply (rule span_superset) + apply auto + done + show "?lhs = x$k * det A" + apply (subst U) + unfolding setsum_insert[OF fUk kUk] + apply (subst th00) + unfolding add_assoc + apply (subst det_row_add[OF k]) + unfolding thd0 + unfolding det_row_mul[OF k] + unfolding th001[of k "\i. row i A"] + unfolding thd1 by (simp add: ring_simps) +qed + +lemma cramer_lemma: + fixes A :: "'a::ordered_idom ^'n^'n" + assumes k: "k \ {1 .. dimindex (UNIV :: 'n set)}" (is " _ \ ?U") + shows "det((\ i j. if j = k then (A *v x)$i else A$i$j):: 'a^'n^'n) = x$k * det A" +proof- + have stupid: "\c. setsum (\i. c i *s row i (transp A)) ?U = setsum (\i. c i *s column i A) ?U" + by (auto simp add: row_transp intro: setsum_cong2) + show ?thesis + unfolding matrix_mult_vsum + unfolding cramer_lemma_transp[OF k, of x "transp A", unfolded det_transp, symmetric] + unfolding stupid[of "\i. x$i"] + apply (subst det_transp[symmetric]) + apply (rule cong[OF refl[of det]]) by (vector transp_def column_def row_def) +qed + +lemma cramer: + fixes A ::"real^'n^'n" + assumes d0: "det A \ 0" + shows "A *v x = b \ x = (\ k. det(\ i j. if j=k then b$i else A$i$j :: real^'n^'n) / det A)" +proof- + from d0 obtain B where B: "A ** B = mat 1" "B ** A = mat 1" + unfolding invertible_det_nz[symmetric] invertible_def by blast + have "(A ** B) *v b = b" by (simp add: B matrix_vector_mul_lid) + hence "A *v (B *v b) = b" by (simp add: matrix_vector_mul_assoc) + then have xe: "\x. A*v x = b" by blast + {fix x assume x: "A *v x = b" + have "x = (\ k. det(\ i j. if j=k then b$i else A$i$j :: real^'n^'n) / det A)" + unfolding x[symmetric] + using d0 by (simp add: Cart_eq Cart_lambda_beta' cramer_lemma field_simps)} + with xe show ?thesis by auto +qed + +(* ------------------------------------------------------------------------- *) +(* Orthogonality of a transformation and matrix. *) +(* ------------------------------------------------------------------------- *) + +definition "orthogonal_transformation f \ linear f \ (\v w. f v \ f w = v \ w)" + +lemma orthogonal_transformation: "orthogonal_transformation f \ linear f \ (\(v::real ^'n). norm (f v) = norm v)" + unfolding orthogonal_transformation_def + apply auto + apply (erule_tac x=v in allE)+ + apply (simp add: real_vector_norm_def) + by (simp add: dot_norm linear_add[symmetric]) + +definition "orthogonal_matrix (Q::'a::semiring_1^'n^'n) \ transp Q ** Q = mat 1 \ Q ** transp Q = mat 1" + +lemma orthogonal_matrix: "orthogonal_matrix (Q:: real ^'n^'n) \ transp Q ** Q = mat 1" + by (metis matrix_left_right_inverse orthogonal_matrix_def) + +lemma orthogonal_matrix_id: "orthogonal_matrix (mat 1)" + by (simp add: orthogonal_matrix_def transp_mat matrix_mul_lid) + +lemma orthogonal_matrix_mul: + fixes A :: "real ^'n^'n" + assumes oA : "orthogonal_matrix A" + and oB: "orthogonal_matrix B" + shows "orthogonal_matrix(A ** B)" + using oA oB + unfolding orthogonal_matrix matrix_transp_mul + apply (subst matrix_mul_assoc) + apply (subst matrix_mul_assoc[symmetric]) + by (simp add: matrix_mul_rid) + +lemma orthogonal_transformation_matrix: + fixes f:: "real^'n \ real^'n" + shows "orthogonal_transformation f \ linear f \ orthogonal_matrix(matrix f)" + (is "?lhs \ ?rhs") +proof- + let ?mf = "matrix f" + let ?ot = "orthogonal_transformation f" + let ?U = "{1 .. dimindex (UNIV :: 'n set)}" + have fU: "finite ?U" by simp + let ?m1 = "mat 1 :: real ^'n^'n" + {assume ot: ?ot + from ot have lf: "linear f" and fd: "\v w. f v \ f w = v \ w" + unfolding orthogonal_transformation_def orthogonal_matrix by blast+ + {fix i j assume i: "i \ ?U" and j: "j \ ?U" + let ?A = "transp ?mf ** ?mf" + have th0: "\b (x::'a::comm_ring_1). (if b then 1 else 0)*x = (if b then x else 0)" + "\b (x::'a::comm_ring_1). x*(if b then 1 else 0) = (if b then x else 0)" + by simp_all + from fd[rule_format, of "basis i" "basis j", unfolded matrix_works[OF lf, symmetric] dot_matrix_vector_mul] i j + have "?A$i$j = ?m1 $ i $ j" + by (simp add: Cart_lambda_beta' dot_def matrix_matrix_mult_def columnvector_def rowvector_def basis_def th0 setsum_delta[OF fU] mat_def del: One_nat_def)} + hence "orthogonal_matrix ?mf" unfolding orthogonal_matrix by vector + with lf have ?rhs by blast} + moreover + {assume lf: "linear f" and om: "orthogonal_matrix ?mf" + from lf om have ?lhs + unfolding orthogonal_matrix_def norm_eq orthogonal_transformation + unfolding matrix_works[OF lf, symmetric] + apply (subst dot_matrix_vector_mul) + by (simp add: dot_matrix_product matrix_mul_lid del: One_nat_def)} + ultimately show ?thesis by blast +qed + +lemma det_orthogonal_matrix: + fixes Q:: "'a::ordered_idom^'n^'n" + assumes oQ: "orthogonal_matrix Q" + shows "det Q = 1 \ det Q = - 1" +proof- + + have th: "\x::'a. x = 1 \ x = - 1 \ x*x = 1" (is "\x::'a. ?ths x") + proof- + fix x:: 'a + have th0: "x*x - 1 = (x - 1)*(x + 1)" by (simp add: ring_simps) + have th1: "\(x::'a) y. x = - y \ x + y = 0" + apply (subst eq_iff_diff_eq_0) by simp + have "x*x = 1 \ x*x - 1 = 0" by simp + also have "\ \ x = 1 \ x = - 1" unfolding th0 th1 by simp + finally show "?ths x" .. + qed + from oQ have "Q ** transp Q = mat 1" by (metis orthogonal_matrix_def) + hence "det (Q ** transp Q) = det (mat 1:: 'a^'n^'n)" by simp + hence "det Q * det Q = 1" by (simp add: det_mul det_I det_transp) + then show ?thesis unfolding th . +qed + +(* ------------------------------------------------------------------------- *) +(* Linearity of scaling, and hence isometry, that preserves origin. *) +(* ------------------------------------------------------------------------- *) +lemma scaling_linear: + fixes f :: "real ^'n \ real ^'n" + assumes f0: "f 0 = 0" and fd: "\x y. dist (f x) (f y) = c * dist x y" + shows "linear f" +proof- + {fix v w + {fix x note fd[rule_format, of x 0, unfolded dist_def f0 diff_0_right] } + note th0 = this + have "f v \ f w = c^2 * (v \ w)" + unfolding dot_norm_neg dist_def[symmetric] + unfolding th0 fd[rule_format] by (simp add: power2_eq_square field_simps)} + note fc = this + show ?thesis unfolding linear_def vector_eq + by (simp add: dot_lmult dot_ladd dot_rmult dot_radd fc ring_simps) +qed + +lemma isometry_linear: + "f (0:: real^'n) = (0:: real^'n) \ \x y. dist(f x) (f y) = dist x y + \ linear f" +by (rule scaling_linear[where c=1]) simp_all + +(* ------------------------------------------------------------------------- *) +(* Hence another formulation of orthogonal transformation. *) +(* ------------------------------------------------------------------------- *) + +lemma orthogonal_transformation_isometry: + "orthogonal_transformation f \ f(0::real^'n) = (0::real^'n) \ (\x y. dist(f x) (f y) = dist x y)" + unfolding orthogonal_transformation + apply (rule iffI) + apply clarify + apply (clarsimp simp add: linear_0 linear_sub[symmetric] dist_def) + apply (rule conjI) + apply (rule isometry_linear) + apply simp + apply simp + apply clarify + apply (erule_tac x=v in allE) + apply (erule_tac x=0 in allE) + by (simp add: dist_def) + +(* ------------------------------------------------------------------------- *) +(* Can extend an isometry from unit sphere. *) +(* ------------------------------------------------------------------------- *) + +lemma isometry_sphere_extend: + fixes f:: "real ^'n \ real ^'n" + assumes f1: "\x. norm x = 1 \ norm (f x) = 1" + and fd1: "\ x y. norm x = 1 \ norm y = 1 \ dist (f x) (f y) = dist x y" + shows "\g. orthogonal_transformation g \ (\x. norm x = 1 \ g x = f x)" +proof- + {fix x y x' y' x0 y0 x0' y0' :: "real ^'n" + assume H: "x = norm x *s x0" "y = norm y *s y0" + "x' = norm x *s x0'" "y' = norm y *s y0'" + "norm x0 = 1" "norm x0' = 1" "norm y0 = 1" "norm y0' = 1" + "norm(x0' - y0') = norm(x0 - y0)" + + have "norm(x' - y') = norm(x - y)" + apply (subst H(1)) + apply (subst H(2)) + apply (subst H(3)) + apply (subst H(4)) + using H(5-9) + apply (simp add: norm_eq norm_eq_1) + apply (simp add: dot_lsub dot_rsub dot_lmult dot_rmult) + apply (simp add: ring_simps) + by (simp only: right_distrib[symmetric])} + note th0 = this + let ?g = "\x. if x = 0 then 0 else norm x *s f (inverse (norm x) *s x)" + {fix x:: "real ^'n" assume nx: "norm x = 1" + have "?g x = f x" using nx by (simp add: norm_eq_0[symmetric])} + hence thfg: "\x. norm x = 1 \ ?g x = f x" by blast + have g0: "?g 0 = 0" by simp + {fix x y :: "real ^'n" + {assume "x = 0" "y = 0" + then have "dist (?g x) (?g y) = dist x y" by simp } + moreover + {assume "x = 0" "y \ 0" + then have "dist (?g x) (?g y) = dist x y" + apply (simp add: dist_def norm_neg norm_mul norm_eq_0) + apply (rule f1[rule_format]) + by(simp add: norm_mul norm_eq_0 field_simps)} + moreover + {assume "x \ 0" "y = 0" + then have "dist (?g x) (?g y) = dist x y" + apply (simp add: dist_def norm_neg norm_mul norm_eq_0) + apply (rule f1[rule_format]) + by(simp add: norm_mul norm_eq_0 field_simps)} + moreover + {assume z: "x \ 0" "y \ 0" + have th00: "x = norm x *s inverse (norm x) *s x" "y = norm y *s inverse (norm y) *s y" "norm x *s f (inverse (norm x) *s x) = norm x *s f (inverse (norm x) *s x)" + "norm y *s f (inverse (norm y) *s y) = norm y *s f (inverse (norm y) *s y)" + "norm (inverse (norm x) *s x) = 1" + "norm (f (inverse (norm x) *s x)) = 1" + "norm (inverse (norm y) *s y) = 1" + "norm (f (inverse (norm y) *s y)) = 1" + "norm (f (inverse (norm x) *s x) - f (inverse (norm y) *s y)) = + norm (inverse (norm x) *s x - inverse (norm y) *s y)" + using z + by (auto simp add: norm_eq_0 vector_smult_assoc field_simps norm_mul intro: f1[rule_format] fd1[rule_format, unfolded dist_def]) + from z th0[OF th00] have "dist (?g x) (?g y) = dist x y" + by (simp add: dist_def)} + ultimately have "dist (?g x) (?g y) = dist x y" by blast} + note thd = this + show ?thesis + apply (rule exI[where x= ?g]) + unfolding orthogonal_transformation_isometry + using g0 thfg thd by metis +qed + +(* ------------------------------------------------------------------------- *) +(* Rotation, reflection, rotoinversion. *) +(* ------------------------------------------------------------------------- *) + +definition "rotation_matrix Q \ orthogonal_matrix Q \ det Q = 1" +definition "rotoinversion_matrix Q \ orthogonal_matrix Q \ det Q = - 1" + +lemma orthogonal_rotation_or_rotoinversion: + fixes Q :: "'a::ordered_idom^'n^'n" + shows " orthogonal_matrix Q \ rotation_matrix Q \ rotoinversion_matrix Q" + by (metis rotoinversion_matrix_def rotation_matrix_def det_orthogonal_matrix) +(* ------------------------------------------------------------------------- *) +(* Explicit formulas for low dimensions. *) +(* ------------------------------------------------------------------------- *) + +lemma setprod_1: "setprod f {(1::nat)..1} = f 1" by simp + +lemma setprod_2: "setprod f {(1::nat)..2} = f 1 * f 2" + by (simp add: nat_number setprod_numseg mult_commute) +lemma setprod_3: "setprod f {(1::nat)..3} = f 1 * f 2 * f 3" + by (simp add: nat_number setprod_numseg mult_commute) + +lemma det_1: "det (A::'a::comm_ring_1^1^1) = A$1$1" + by (simp add: det_def dimindex_def permutes_sing sign_id del: One_nat_def) + +lemma det_2: "det (A::'a::comm_ring_1^2^2) = A$1$1 * A$2$2 - A$1$2 * A$2$1" +proof- + have f12: "finite {2::nat}" "1 \ {2::nat}" by auto + have th12: "{1 .. 2} = insert (1::nat) {2}" by auto + show ?thesis + apply (simp add: det_def dimindex_def th12 del: One_nat_def) + unfolding setsum_over_permutations_insert[OF f12] + unfolding permutes_sing + apply (simp add: sign_swap_id sign_id swap_id_eq del: One_nat_def) + by (simp add: arith_simps(31)[symmetric] of_int_minus of_int_1 del: arith_simps(31)) +qed + +lemma det_3: "det (A::'a::comm_ring_1^3^3) = + A$1$1 * A$2$2 * A$3$3 + + A$1$2 * A$2$3 * A$3$1 + + A$1$3 * A$2$1 * A$3$2 - + A$1$1 * A$2$3 * A$3$2 - + A$1$2 * A$2$1 * A$3$3 - + A$1$3 * A$2$2 * A$3$1" +proof- + have f123: "finite {(2::nat), 3}" "1 \ {(2::nat), 3}" by auto + have f23: "finite {(3::nat)}" "2 \ {(3::nat)}" by auto + have th12: "{1 .. 3} = insert (1::nat) (insert 2 {3})" by auto + + show ?thesis + apply (simp add: det_def dimindex_def th12 del: One_nat_def) + unfolding setsum_over_permutations_insert[OF f123] + unfolding setsum_over_permutations_insert[OF f23] + + unfolding permutes_sing + apply (simp add: sign_swap_id permutation_swap_id sign_compose sign_id swap_id_eq del: One_nat_def) + apply (simp add: arith_simps(31)[symmetric] of_int_minus of_int_1 del: arith_simps(31) One_nat_def) + by (simp add: ring_simps) +qed + +end \ No newline at end of file diff -r 14d9891c917b -r 55ddff2ed906 src/HOL/Library/Euclidean_Space.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Euclidean_Space.thy Mon Feb 09 22:15:37 2009 +0100 @@ -0,0 +1,5170 @@ +(* Title: Library/Euclidean_Space + ID: $Id: + Author: Amine Chaieb, University of Cambridge +*) + +header {* (Real) Vectors in Euclidean space, and elementary linear algebra.*} + +theory Euclidean_Space + imports "~~/src/HOL/Decision_Procs/Dense_Linear_Order" Complex_Main + Finite_Cartesian_Product Glbs Infinite_Set Numeral_Type + uses ("normarith.ML") +begin + +text{* Some common special cases.*} + +lemma forall_1: "(\(i::'a::{order,one}). 1 <= i \ i <= 1 --> P i) \ P 1" + by (metis order_eq_iff) +lemma forall_dimindex_1: "(\i \ {1..dimindex(UNIV:: 1 set)}. P i) \ P 1" + by (simp add: dimindex_def) + +lemma forall_2: "(\(i::nat). 1 <= i \ i <= 2 --> P i) \ P 1 \ P 2" +proof- + have "\i::nat. 1 <= i \ i <= 2 \ i = 1 \ i = 2" by arith + thus ?thesis by metis +qed + +lemma forall_3: "(\(i::nat). 1 <= i \ i <= 3 --> P i) \ P 1 \ P 2 \ P 3" +proof- + have "\i::nat. 1 <= i \ i <= 3 \ i = 1 \ i = 2 \ i = 3" by arith + thus ?thesis by metis +qed + +lemma setsum_singleton[simp]: "setsum f {x} = f x" by simp +lemma setsum_1: "setsum f {(1::'a::{order,one})..1} = f 1" + by (simp add: atLeastAtMost_singleton) + +lemma setsum_2: "setsum f {1::nat..2} = f 1 + f 2" + by (simp add: nat_number atLeastAtMostSuc_conv add_commute) + +lemma setsum_3: "setsum f {1::nat..3} = f 1 + f 2 + f 3" + by (simp add: nat_number atLeastAtMostSuc_conv add_commute) + +section{* Basic componentwise operations on vectors. *} + +instantiation "^" :: (plus,type) plus +begin +definition vector_add_def : "op + \ (\ x y. (\ i. (x$i) + (y$i)))" +instance .. +end + +instantiation "^" :: (times,type) times +begin + definition vector_mult_def : "op * \ (\ x y. (\ i. (x$i) * (y$i)))" + instance .. +end + +instantiation "^" :: (minus,type) minus begin + definition vector_minus_def : "op - \ (\ x y. (\ i. (x$i) - (y$i)))" +instance .. +end + +instantiation "^" :: (uminus,type) uminus begin + definition vector_uminus_def : "uminus \ (\ x. (\ i. - (x$i)))" +instance .. +end +instantiation "^" :: (zero,type) zero begin + definition vector_zero_def : "0 \ (\ i. 0)" +instance .. +end + +instantiation "^" :: (one,type) one begin + definition vector_one_def : "1 \ (\ i. 1)" +instance .. +end + +instantiation "^" :: (ord,type) ord + begin +definition vector_less_eq_def: + "less_eq (x :: 'a ^'b) y = (ALL i : {1 .. dimindex (UNIV :: 'b set)}. + x$i <= y$i)" +definition vector_less_def: "less (x :: 'a ^'b) y = (ALL i : {1 .. + dimindex (UNIV :: 'b set)}. x$i < y$i)" + +instance by (intro_classes) +end + +text{* Also the scalar-vector multiplication. FIXME: We should unify this with the scalar multiplication in real_vector *} + +definition vector_scalar_mult:: "'a::times \ 'a ^'n \ 'a ^ 'n" (infixr "*s" 75) + where "c *s x = (\ i. c * (x$i))" + +text{* Constant Vectors *} + +definition "vec x = (\ i. x)" + +text{* Dot products. *} + +definition dot :: "'a::{comm_monoid_add, times} ^ 'n \ 'a ^ 'n \ 'a" (infix "\" 70) where + "x \ y = setsum (\i. x$i * y$i) {1 .. dimindex (UNIV:: 'n set)}" +lemma dot_1[simp]: "(x::'a::{comm_monoid_add, times}^1) \ y = (x$1) * (y$1)" + by (simp add: dot_def dimindex_def) + +lemma dot_2[simp]: "(x::'a::{comm_monoid_add, times}^2) \ y = (x$1) * (y$1) + (x$2) * (y$2)" + by (simp add: dot_def dimindex_def nat_number) + +lemma dot_3[simp]: "(x::'a::{comm_monoid_add, times}^3) \ y = (x$1) * (y$1) + (x$2) * (y$2) + (x$3) * (y$3)" + by (simp add: dot_def dimindex_def nat_number) + +section {* A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space. *} + +lemmas Cart_lambda_beta' = Cart_lambda_beta[rule_format] +method_setup vector = {* +let + val ss1 = HOL_basic_ss addsimps [@{thm dot_def}, @{thm setsum_addf} RS sym, + @{thm setsum_subtractf} RS sym, @{thm setsum_right_distrib}, + @{thm setsum_left_distrib}, @{thm setsum_negf} RS sym] + val ss2 = @{simpset} addsimps + [@{thm vector_add_def}, @{thm vector_mult_def}, + @{thm vector_minus_def}, @{thm vector_uminus_def}, + @{thm vector_one_def}, @{thm vector_zero_def}, @{thm vec_def}, + @{thm Cart_lambda_beta'}, @{thm vector_scalar_mult_def}] + fun vector_arith_tac ths = + simp_tac ss1 + THEN' (fn i => rtac @{thm setsum_cong2} i + ORELSE rtac @{thm setsum_0'} i + ORELSE simp_tac (HOL_basic_ss addsimps [@{thm "Cart_eq"}]) i) + (* THEN' TRY o clarify_tac HOL_cs THEN' (TRY o rtac @{thm iffI}) *) + THEN' asm_full_simp_tac (ss2 addsimps ths) + in + Method.thms_args (Method.SIMPLE_METHOD' o vector_arith_tac) +end +*} "Lifts trivial vector statements to real arith statements" + +lemma vec_0[simp]: "vec 0 = 0" by (vector vector_zero_def) +lemma vec_1[simp]: "vec 1 = 1" by (vector vector_one_def) + + + +text{* Obvious "component-pushing". *} + +lemma vec_component: " i \ {1 .. dimindex (UNIV :: 'n set)} \ (vec x :: 'a ^ 'n)$i = x" + by (vector vec_def) + +lemma vector_add_component: + fixes x y :: "'a::{plus} ^ 'n" assumes i: "i \ {1 .. dimindex(UNIV:: 'n set)}" + shows "(x + y)$i = x$i + y$i" + using i by vector + +lemma vector_minus_component: + fixes x y :: "'a::{minus} ^ 'n" assumes i: "i \ {1 .. dimindex(UNIV:: 'n set)}" + shows "(x - y)$i = x$i - y$i" + using i by vector + +lemma vector_mult_component: + fixes x y :: "'a::{times} ^ 'n" assumes i: "i \ {1 .. dimindex(UNIV:: 'n set)}" + shows "(x * y)$i = x$i * y$i" + using i by vector + +lemma vector_smult_component: + fixes y :: "'a::{times} ^ 'n" assumes i: "i \ {1 .. dimindex(UNIV:: 'n set)}" + shows "(c *s y)$i = c * (y$i)" + using i by vector + +lemma vector_uminus_component: + fixes x :: "'a::{uminus} ^ 'n" assumes i: "i \ {1 .. dimindex(UNIV:: 'n set)}" + shows "(- x)$i = - (x$i)" + using i by vector + +lemma cond_component: "(if b then x else y)$i = (if b then x$i else y$i)" by vector + +lemmas vector_component = vec_component vector_add_component vector_mult_component vector_smult_component vector_minus_component vector_uminus_component cond_component + +subsection {* Some frequently useful arithmetic lemmas over vectors. *} + +instance "^" :: (semigroup_add,type) semigroup_add + apply (intro_classes) by (vector add_assoc) + + +instance "^" :: (monoid_add,type) monoid_add + apply (intro_classes) by vector+ + +instance "^" :: (group_add,type) group_add + apply (intro_classes) by (vector algebra_simps)+ + +instance "^" :: (ab_semigroup_add,type) ab_semigroup_add + apply (intro_classes) by (vector add_commute) + +instance "^" :: (comm_monoid_add,type) comm_monoid_add + apply (intro_classes) by vector + +instance "^" :: (ab_group_add,type) ab_group_add + apply (intro_classes) by vector+ + +instance "^" :: (cancel_semigroup_add,type) cancel_semigroup_add + apply (intro_classes) + by (vector Cart_eq)+ + +instance "^" :: (cancel_ab_semigroup_add,type) cancel_ab_semigroup_add + apply (intro_classes) + by (vector Cart_eq) + +instance "^" :: (semigroup_mult,type) semigroup_mult + apply (intro_classes) by (vector mult_assoc) + +instance "^" :: (monoid_mult,type) monoid_mult + apply (intro_classes) by vector+ + +instance "^" :: (ab_semigroup_mult,type) ab_semigroup_mult + apply (intro_classes) by (vector mult_commute) + +instance "^" :: (ab_semigroup_idem_mult,type) ab_semigroup_idem_mult + apply (intro_classes) by (vector mult_idem) + +instance "^" :: (comm_monoid_mult,type) comm_monoid_mult + apply (intro_classes) by vector + +fun vector_power :: "('a::{one,times} ^'n) \ nat \ 'a^'n" where + "vector_power x 0 = 1" + | "vector_power x (Suc n) = x * vector_power x n" + +instantiation "^" :: (recpower,type) recpower +begin + definition vec_power_def: "op ^ \ vector_power" + instance + apply (intro_classes) by (simp_all add: vec_power_def) +end + +instance "^" :: (semiring,type) semiring + apply (intro_classes) by (vector ring_simps)+ + +instance "^" :: (semiring_0,type) semiring_0 + apply (intro_classes) by (vector ring_simps)+ +instance "^" :: (semiring_1,type) semiring_1 + apply (intro_classes) apply vector using dimindex_ge_1 by auto +instance "^" :: (comm_semiring,type) comm_semiring + apply (intro_classes) by (vector ring_simps)+ + +instance "^" :: (comm_semiring_0,type) comm_semiring_0 by (intro_classes) +instance "^" :: (semiring_0_cancel,type) semiring_0_cancel by (intro_classes) +instance "^" :: (comm_semiring_0_cancel,type) comm_semiring_0_cancel by (intro_classes) +instance "^" :: (ring,type) ring by (intro_classes) +instance "^" :: (semiring_1_cancel,type) semiring_1_cancel by (intro_classes) +instance "^" :: (comm_semiring_1,type) comm_semiring_1 by (intro_classes) +lemma of_nat_index: + "i\{1 .. dimindex (UNIV :: 'n set)} \ (of_nat n :: 'a::semiring_1 ^'n)$i = of_nat n" + apply (induct n) + apply vector + apply vector + done +lemma zero_index[simp]: + "i\{1 .. dimindex (UNIV :: 'n set)} \ (0 :: 'a::zero ^'n)$i = 0" by vector + +lemma one_index[simp]: + "i\{1 .. dimindex (UNIV :: 'n set)} \ (1 :: 'a::one ^'n)$i = 1" by vector + +lemma one_plus_of_nat_neq_0: "(1::'a::semiring_char_0) + of_nat n \ 0" +proof- + have "(1::'a) + of_nat n = 0 \ of_nat 1 + of_nat n = (of_nat 0 :: 'a)" by simp + also have "\ \ 1 + n = 0" by (simp only: of_nat_add[symmetric] of_nat_eq_iff) + finally show ?thesis by simp +qed + +instance "^" :: (semiring_char_0,type) semiring_char_0 +proof (intro_classes) + fix m n ::nat + show "(of_nat m :: 'a^'b) = of_nat n \ m = n" + proof(induct m arbitrary: n) + case 0 thus ?case apply vector + apply (induct n,auto simp add: ring_simps) + using dimindex_ge_1 apply auto + apply vector + by (auto simp add: of_nat_index one_plus_of_nat_neq_0) + next + case (Suc n m) + thus ?case apply vector + apply (induct m, auto simp add: ring_simps of_nat_index zero_index) + using dimindex_ge_1 apply simp apply blast + apply (simp add: one_plus_of_nat_neq_0) + using dimindex_ge_1 apply simp apply blast + apply (simp add: vector_component one_index of_nat_index) + apply (simp only: of_nat.simps(2)[where ?'a = 'a, symmetric] of_nat_eq_iff) + using dimindex_ge_1 apply simp apply blast + apply (simp add: vector_component one_index of_nat_index) + apply (simp only: of_nat.simps(2)[where ?'a = 'a, symmetric] of_nat_eq_iff) + using dimindex_ge_1 apply simp apply blast + apply (simp add: vector_component one_index of_nat_index) + done + qed +qed + +instance "^" :: (comm_ring_1,type) comm_ring_1 by intro_classes + (* FIXME!!! Why does the axclass package complain here !!*) +(* instance "^" :: (ring_char_0,type) ring_char_0 by intro_classes *) + +lemma vector_smult_assoc: "a *s (b *s x) = ((a::'a::semigroup_mult) * b) *s x" + by (vector mult_assoc) +lemma vector_sadd_rdistrib: "((a::'a::semiring) + b) *s x = a *s x + b *s x" + by (vector ring_simps) +lemma vector_add_ldistrib: "(c::'a::semiring) *s (x + y) = c *s x + c *s y" + by (vector ring_simps) +lemma vector_smult_lzero[simp]: "(0::'a::mult_zero) *s x = 0" by vector +lemma vector_smult_lid[simp]: "(1::'a::monoid_mult) *s x = x" by vector +lemma vector_ssub_ldistrib: "(c::'a::ring) *s (x - y) = c *s x - c *s y" + by (vector ring_simps) +lemma vector_smult_rneg: "(c::'a::ring) *s -x = -(c *s x)" by vector +lemma vector_smult_lneg: "- (c::'a::ring) *s x = -(c *s x)" by vector +lemma vector_sneg_minus1: "-x = (- (1::'a::ring_1)) *s x" by vector +lemma vector_smult_rzero[simp]: "c *s 0 = (0::'a::mult_zero ^ 'n)" by vector +lemma vector_sub_rdistrib: "((a::'a::ring) - b) *s x = a *s x - b *s x" + by (vector ring_simps) + +lemma vec_eq[simp]: "(vec m = vec n) \ (m = n)" + apply (auto simp add: vec_def Cart_eq vec_component Cart_lambda_beta ) + using dimindex_ge_1 apply auto done + +subsection{* Properties of the dot product. *} + +lemma dot_sym: "(x::'a:: {comm_monoid_add, ab_semigroup_mult} ^ 'n) \ y = y \ x" + by (vector mult_commute) +lemma dot_ladd: "((x::'a::ring ^ 'n) + y) \ z = (x \ z) + (y \ z)" + by (vector ring_simps) +lemma dot_radd: "x \ (y + (z::'a::ring ^ 'n)) = (x \ y) + (x \ z)" + by (vector ring_simps) +lemma dot_lsub: "((x::'a::ring ^ 'n) - y) \ z = (x \ z) - (y \ z)" + by (vector ring_simps) +lemma dot_rsub: "(x::'a::ring ^ 'n) \ (y - z) = (x \ y) - (x \ z)" + by (vector ring_simps) +lemma dot_lmult: "(c *s x) \ y = (c::'a::ring) * (x \ y)" by (vector ring_simps) +lemma dot_rmult: "x \ (c *s y) = (c::'a::comm_ring) * (x \ y)" by (vector ring_simps) +lemma dot_lneg: "(-x) \ (y::'a::ring ^ 'n) = -(x \ y)" by vector +lemma dot_rneg: "(x::'a::ring ^ 'n) \ (-y) = -(x \ y)" by vector +lemma dot_lzero[simp]: "0 \ x = (0::'a::{comm_monoid_add, mult_zero})" by vector +lemma dot_rzero[simp]: "x \ 0 = (0::'a::{comm_monoid_add, mult_zero})" by vector +lemma dot_pos_le[simp]: "(0::'a\ordered_ring_strict) <= x \ x" + by (simp add: dot_def setsum_nonneg) + +lemma setsum_squares_eq_0_iff: assumes fS: "finite F" and fp: "\x \ F. f x \ (0 ::'a::pordered_ab_group_add)" shows "setsum f F = 0 \ (ALL x:F. f x = 0)" +using fS fp setsum_nonneg[OF fp] +proof (induct set: finite) + case empty thus ?case by simp +next + case (insert x F) + from insert.prems have Fx: "f x \ 0" and Fp: "\ a \ F. f a \ 0" by simp_all + from insert.hyps Fp setsum_nonneg[OF Fp] + have h: "setsum f F = 0 \ (\a \F. f a = 0)" by metis + from sum_nonneg_eq_zero_iff[OF Fx setsum_nonneg[OF Fp]] insert.hyps(1,2) + show ?case by (simp add: h) +qed + +lemma dot_eq_0: "x \ x = 0 \ (x::'a::{ordered_ring_strict,ring_no_zero_divisors} ^ 'n) = 0" +proof- + {assume f: "finite (UNIV :: 'n set)" + let ?S = "{Suc 0 .. card (UNIV :: 'n set)}" + have fS: "finite ?S" using f by simp + have fp: "\ i\ ?S. x$i * x$i>= 0" by simp + have ?thesis by (vector dimindex_def f setsum_squares_eq_0_iff[OF fS fp])} + moreover + {assume "\ finite (UNIV :: 'n set)" then have ?thesis by (vector dimindex_def)} + ultimately show ?thesis by metis +qed + +lemma dot_pos_lt: "(0 < x \ x) \ (x::'a::{ordered_ring_strict,ring_no_zero_divisors} ^ 'n) \ 0" using dot_eq_0[of x] dot_pos_le[of x] + by (auto simp add: le_less) + +subsection {* Introduce norms, but defer many properties till we get square roots. *} +text{* FIXME : This is ugly *} +defs (overloaded) + real_of_real_def [code inline, simp]: "real == id" + +instantiation "^" :: ("{times, comm_monoid_add}", type) norm begin +definition real_vector_norm_def: "norm \ (\x. sqrt (real (x \ x)))" +instance .. +end + + +subsection{* The collapse of the general concepts to dimention one. *} + +lemma vector_one: "(x::'a ^1) = (\ i. (x$1))" + by (vector dimindex_def) + +lemma forall_one: "(\(x::'a ^1). P x) \ (\x. P(\ i. x))" + apply auto + apply (erule_tac x= "x$1" in allE) + apply (simp only: vector_one[symmetric]) + done + +lemma norm_real: "norm(x::real ^ 1) = abs(x$1)" + by (simp add: real_vector_norm_def) + +text{* Metric *} + +definition dist:: "real ^ 'n \ real ^ 'n \ real" where + "dist x y = norm (x - y)" + +lemma dist_real: "dist(x::real ^ 1) y = abs((x$1) - (y$1))" + using dimindex_ge_1[of "UNIV :: 1 set"] + by (auto simp add: norm_real dist_def vector_component Cart_lambda_beta[where ?'a = "1"] ) + +subsection {* A connectedness or intermediate value lemma with several applications. *} + +lemma connected_real_lemma: + fixes f :: "real \ real ^ 'n" + assumes ab: "a \ b" and fa: "f a \ e1" and fb: "f b \ e2" + and dst: "\e x. a <= x \ x <= b \ 0 < e ==> \d > 0. \y. abs(y - x) < d \ dist(f y) (f x) < e" + and e1: "\y \ e1. \e > 0. \y'. dist y' y < e \ y' \ e1" + and e2: "\y \ e2. \e > 0. \y'. dist y' y < e \ y' \ e2" + and e12: "~(\x \ a. x <= b \ f x \ e1 \ f x \ e2)" + shows "\x \ a. x <= b \ f x \ e1 \ f x \ e2" (is "\ x. ?P x") +proof- + let ?S = "{c. \x \ a. x <= c \ f x \ e1}" + have Se: " \x. x \ ?S" apply (rule exI[where x=a]) by (auto simp add: fa) + have Sub: "\y. isUb UNIV ?S y" + apply (rule exI[where x= b]) + using ab fb e12 by (auto simp add: isUb_def setle_def) + from reals_complete[OF Se Sub] obtain l where + l: "isLub UNIV ?S l"by blast + have alb: "a \ l" "l \ b" using l ab fa fb e12 + apply (auto simp add: isLub_def leastP_def isUb_def setle_def setge_def) + by (metis linorder_linear) + have ale1: "\z \ a. z < l \ f z \ e1" using l + apply (auto simp add: isLub_def leastP_def isUb_def setle_def setge_def) + by (metis linorder_linear not_le) + have th1: "\z x e d :: real. z <= x + e \ e < d ==> z < x \ abs(z - x) < d" by arith + have th2: "\e x:: real. 0 < e ==> ~(x + e <= x)" by arith + have th3: "\d::real. d > 0 \ \e > 0. e < d" by dlo + {assume le2: "f l \ e2" + from le2 fa fb e12 alb have la: "l \ a" by metis + hence lap: "l - a > 0" using alb by arith + from e2[rule_format, OF le2] obtain e where + e: "e > 0" "\y. dist y (f l) < e \ y \ e2" by metis + from dst[OF alb e(1)] obtain d where + d: "d > 0" "\y. \y - l\ < d \ dist (f y) (f l) < e" by metis + have "\d'. d' < d \ d' >0 \ l - d' > a" using lap d(1) + apply ferrack by arith + then obtain d' where d': "d' > 0" "d' < d" "l - d' > a" by metis + from d e have th0: "\y. \y - l\ < d \ f y \ e2" by metis + from th0[rule_format, of "l - d'"] d' have "f (l - d') \ e2" by auto + moreover + have "f (l - d') \ e1" using ale1[rule_format, of "l -d'"] d' by auto + ultimately have False using e12 alb d' by auto} + moreover + {assume le1: "f l \ e1" + from le1 fa fb e12 alb have lb: "l \ b" by metis + hence blp: "b - l > 0" using alb by arith + from e1[rule_format, OF le1] obtain e where + e: "e > 0" "\y. dist y (f l) < e \ y \ e1" by metis + from dst[OF alb e(1)] obtain d where + d: "d > 0" "\y. \y - l\ < d \ dist (f y) (f l) < e" by metis + have "\d'. d' < d \ d' >0" using d(1) by dlo + then obtain d' where d': "d' > 0" "d' < d" by metis + from d e have th0: "\y. \y - l\ < d \ f y \ e1" by auto + hence "\y. l \ y \ y \ l + d' \ f y \ e1" using d' by auto + with ale1 have "\y. a \ y \ y \ l + d' \ f y \ e1" by auto + with l d' have False + by (auto simp add: isLub_def isUb_def setle_def setge_def leastP_def) } + ultimately show ?thesis using alb by metis +qed + +text{* One immediately useful corollary is the existence of square roots! --- Should help to get rid of all the development of square-root for reals as a special case real ^1 *} + +lemma square_bound_lemma: "(x::real) < (1 + x) * (1 + x)" +proof- + have "(x + 1/2)^2 + 3/4 > 0" using zero_le_power2[of "x+1/2"] by arith + thus ?thesis by (simp add: ring_simps power2_eq_square) +qed + +lemma square_continuous: "0 < (e::real) ==> \d. 0 < d \ (\y. abs(y - x) < d \ abs(y * y - x * x) < e)" + using isCont_power[OF isCont_ident, of 2, unfolded isCont_def LIM_def, rule_format, of e x] apply (auto simp add: power2_eq_square) + apply (rule_tac x="s" in exI) + apply auto + apply (erule_tac x=y in allE) + apply auto + done + +lemma real_le_lsqrt: "0 <= x \ 0 <= y \ x <= y^2 ==> sqrt x <= y" + using real_sqrt_le_iff[of x "y^2"] by simp + +lemma real_le_rsqrt: "x^2 \ y \ x \ sqrt y" + using real_sqrt_le_mono[of "x^2" y] by simp + +lemma real_less_rsqrt: "x^2 < y \ x < sqrt y" + using real_sqrt_less_mono[of "x^2" y] by simp + +lemma sqrt_even_pow2: assumes n: "even n" + shows "sqrt(2 ^ n) = 2 ^ (n div 2)" +proof- + from n obtain m where m: "n = 2*m" unfolding even_nat_equiv_def2 + by (auto simp add: nat_number) + from m have "sqrt(2 ^ n) = sqrt ((2 ^ m) ^ 2)" + by (simp only: power_mult[symmetric] mult_commute) + then show ?thesis using m by simp +qed + +lemma real_div_sqrt: "0 <= x ==> x / sqrt(x) = sqrt(x)" + apply (cases "x = 0", simp_all) + using sqrt_divide_self_eq[of x] + apply (simp add: inverse_eq_divide real_sqrt_ge_0_iff field_simps) + done + +text{* Hence derive more interesting properties of the norm. *} + +lemma norm_0: "norm (0::real ^ 'n) = 0" + by (simp add: real_vector_norm_def dot_eq_0) + +lemma norm_pos_le: "0 <= norm (x::real^'n)" + by (simp add: real_vector_norm_def dot_pos_le) +lemma norm_neg: " norm(-x) = norm (x:: real ^ 'n)" + by (simp add: real_vector_norm_def dot_lneg dot_rneg) +lemma norm_sub: "norm(x - y) = norm(y - (x::real ^ 'n))" + by (metis norm_neg minus_diff_eq) +lemma norm_mul: "norm(a *s x) = abs(a) * norm x" + by (simp add: real_vector_norm_def dot_lmult dot_rmult mult_assoc[symmetric] real_sqrt_mult) +lemma norm_eq_0_dot: "(norm x = 0) \ (x \ x = (0::real))" + by (simp add: real_vector_norm_def) +lemma norm_eq_0: "norm x = 0 \ x = (0::real ^ 'n)" + by (simp add: real_vector_norm_def dot_eq_0) +lemma norm_pos_lt: "0 < norm x \ x \ (0::real ^ 'n)" + by (metis less_le real_vector_norm_def norm_pos_le norm_eq_0) +lemma norm_pow_2: "norm x ^ 2 = x \ x" + by (simp add: real_vector_norm_def dot_pos_le) +lemma norm_eq_0_imp: "norm x = 0 ==> x = (0::real ^'n)" by (metis norm_eq_0) +lemma norm_le_0: "norm x <= 0 \ x = (0::real ^'n)" + by (metis norm_eq_0 norm_pos_le order_antisym) +lemma vector_mul_eq_0: "(a *s x = 0) \ a = (0::'a::idom) \ x = 0" + by vector +lemma vector_mul_lcancel: "a *s x = a *s y \ a = (0::real) \ x = y" + by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_ssub_ldistrib) +lemma vector_mul_rcancel: "a *s x = b *s x \ (a::real) = b \ x = 0" + by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_sub_rdistrib) +lemma vector_mul_lcancel_imp: "a \ (0::real) ==> a *s x = a *s y ==> (x = y)" + by (metis vector_mul_lcancel) +lemma vector_mul_rcancel_imp: "x \ 0 \ (a::real) *s x = b *s x ==> a = b" + by (metis vector_mul_rcancel) +lemma norm_cauchy_schwarz: "x \ y <= norm x * norm y" +proof- + {assume "norm x = 0" + hence ?thesis by (simp add: norm_eq_0 dot_lzero dot_rzero norm_0)} + moreover + {assume "norm y = 0" + hence ?thesis by (simp add: norm_eq_0 dot_lzero dot_rzero norm_0)} + moreover + {assume h: "norm x \ 0" "norm y \ 0" + let ?z = "norm y *s x - norm x *s y" + from h have p: "norm x * norm y > 0" by (metis norm_pos_le le_less zero_compare_simps) + from dot_pos_le[of ?z] + have "(norm x * norm y) * (x \ y) \ norm x ^2 * norm y ^2" + apply (simp add: dot_rsub dot_lsub dot_lmult dot_rmult ring_simps) + by (simp add: norm_pow_2[symmetric] power2_eq_square dot_sym) + hence "x\y \ (norm x ^2 * norm y ^2) / (norm x * norm y)" using p + by (simp add: field_simps) + hence ?thesis using h by (simp add: power2_eq_square)} + ultimately show ?thesis by metis +qed + +lemma norm_abs[simp]: "abs (norm x) = norm (x::real ^'n)" + using norm_pos_le[of x] by (simp add: real_abs_def linorder_linear) + +lemma norm_cauchy_schwarz_abs: "\x \ y\ \ norm x * norm y" + using norm_cauchy_schwarz[of x y] norm_cauchy_schwarz[of x "-y"] + by (simp add: real_abs_def dot_rneg norm_neg) +lemma norm_triangle: "norm(x + y) <= norm x + norm (y::real ^'n)" + unfolding real_vector_norm_def + apply (rule real_le_lsqrt) + apply (auto simp add: dot_pos_le real_vector_norm_def[symmetric] norm_pos_le norm_pow_2[symmetric] intro: add_nonneg_nonneg)[1] + apply (auto simp add: dot_pos_le real_vector_norm_def[symmetric] norm_pos_le norm_pow_2[symmetric] intro: add_nonneg_nonneg)[1] + apply (simp add: dot_ladd dot_radd dot_sym ) + by (simp add: norm_pow_2[symmetric] power2_eq_square ring_simps norm_cauchy_schwarz) + +lemma norm_triangle_sub: "norm (x::real ^'n) <= norm(y) + norm(x - y)" + using norm_triangle[of "y" "x - y"] by (simp add: ring_simps) +lemma norm_triangle_le: "norm(x::real ^'n) + norm y <= e ==> norm(x + y) <= e" + by (metis order_trans norm_triangle) +lemma norm_triangle_lt: "norm(x::real ^'n) + norm(y) < e ==> norm(x + y) < e" + by (metis basic_trans_rules(21) norm_triangle) + +lemma setsum_delta: + assumes fS: "finite S" + shows "setsum (\k. if k=a then b k else 0) S = (if a \ S then b a else 0)" +proof- + let ?f = "(\k. if k=a then b k else 0)" + {assume a: "a \ S" + hence "\ k\ S. ?f k = 0" by simp + hence ?thesis using a by simp} + moreover + {assume a: "a \ S" + let ?A = "S - {a}" + let ?B = "{a}" + have eq: "S = ?A \ ?B" using a by blast + have dj: "?A \ ?B = {}" by simp + from fS have fAB: "finite ?A" "finite ?B" by auto + have "setsum ?f S = setsum ?f ?A + setsum ?f ?B" + using setsum_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] + by simp + then have ?thesis using a by simp} + ultimately show ?thesis by blast +qed + +lemma component_le_norm: "i \ {1 .. dimindex(UNIV :: 'n set)} ==> \x$i\ <= norm (x::real ^ 'n)" +proof(simp add: real_vector_norm_def, rule real_le_rsqrt, clarsimp) + assume i: "Suc 0 \ i" "i \ dimindex (UNIV :: 'n set)" + let ?S = "{1 .. dimindex(UNIV :: 'n set)}" + let ?f = "(\k. if k = i then x$i ^2 else 0)" + have fS: "finite ?S" by simp + from i setsum_delta[OF fS, of i "\k. x$i ^ 2"] + have th: "x$i^2 = setsum ?f ?S" by simp + let ?g = "\k. x$k * x$k" + {fix x assume x: "x \ ?S" have "?f x \ ?g x" by (simp add: power2_eq_square)} + with setsum_mono[of ?S ?f ?g] + have "setsum ?f ?S \ setsum ?g ?S" by blast + then show "x$i ^2 \ x \ (x:: real ^ 'n)" unfolding dot_def th[symmetric] . +qed +lemma norm_bound_component_le: "norm(x::real ^ 'n) <= e + ==> \i \ {1 .. dimindex(UNIV:: 'n set)}. \x$i\ <= e" + by (metis component_le_norm order_trans) + +lemma norm_bound_component_lt: "norm(x::real ^ 'n) < e + ==> \i \ {1 .. dimindex(UNIV:: 'n set)}. \x$i\ < e" + by (metis component_le_norm basic_trans_rules(21)) + +lemma norm_le_l1: "norm (x:: real ^'n) <= setsum(\i. \x$i\) {1..dimindex(UNIV::'n set)}" +proof (simp add: real_vector_norm_def, rule real_le_lsqrt,simp add: dot_pos_le, simp add: setsum_mono, simp add: dot_def, induct "dimindex(UNIV::'n set)") + case 0 thus ?case by simp +next + case (Suc n) + have th: "2 * (\x$(Suc n)\ * (\i = Suc 0..n. \x$i\)) \ 0" + apply simp + apply (rule mult_nonneg_nonneg) + by (simp_all add: setsum_abs_ge_zero) + + from Suc + show ?case using th by (simp add: power2_eq_square ring_simps) +qed + +lemma real_abs_norm: "\ norm x\ = norm (x :: real ^'n)" + by (simp add: norm_pos_le) +lemma real_abs_sub_norm: "\norm(x::real ^'n) - norm y\ <= norm(x - y)" + apply (simp add: abs_le_iff ring_simps) + by (metis norm_triangle_sub norm_sub) +lemma norm_le: "norm(x::real ^ 'n) <= norm(y) \ x \ x <= y \ y" + by (simp add: real_vector_norm_def) +lemma norm_lt: "norm(x::real ^'n) < norm(y) \ x \ x < y \ y" + by (simp add: real_vector_norm_def) +lemma norm_eq: "norm (x::real ^'n) = norm y \ x \ x = y \ y" + by (simp add: order_eq_iff norm_le) +lemma norm_eq_1: "norm(x::real ^ 'n) = 1 \ x \ x = 1" + by (simp add: real_vector_norm_def) + +text{* Squaring equations and inequalities involving norms. *} + +lemma dot_square_norm: "x \ x = norm(x)^2" + by (simp add: real_vector_norm_def dot_pos_le ) + +lemma norm_eq_square: "norm(x) = a \ 0 <= a \ x \ x = a^2" +proof- + have th: "\x y::real. x^2 = y^2 \ x = y \ x = -y" by algebra + show ?thesis using norm_pos_le[of x] + apply (simp add: dot_square_norm th) + apply arith + done +qed + +lemma real_abs_le_square_iff: "\x\ \ \y\ \ (x::real)^2 \ y^2" +proof- + have "x^2 \ y^2 \ (x -y) * (y + x) \ 0" by (simp add: ring_simps power2_eq_square) + also have "\ \ \x\ \ \y\" apply (simp add: zero_compare_simps real_abs_def not_less) by arith +finally show ?thesis .. +qed + +lemma norm_le_square: "norm(x) <= a \ 0 <= a \ x \ x <= a^2" + using norm_pos_le[of x] + apply (simp add: dot_square_norm real_abs_le_square_iff[symmetric]) + apply arith + done + +lemma norm_ge_square: "norm(x) >= a \ a <= 0 \ x \ x >= a ^ 2" + using norm_pos_le[of x] + apply (simp add: dot_square_norm real_abs_le_square_iff[symmetric]) + apply arith + done + +lemma norm_lt_square: "norm(x) < a \ 0 < a \ x \ x < a^2" + by (metis not_le norm_ge_square) +lemma norm_gt_square: "norm(x) > a \ a < 0 \ x \ x > a^2" + by (metis norm_le_square not_less) + +text{* Dot product in terms of the norm rather than conversely. *} + +lemma dot_norm: "x \ y = (norm(x + y) ^2 - norm x ^ 2 - norm y ^ 2) / 2" + by (simp add: norm_pow_2 dot_ladd dot_radd dot_sym) + +lemma dot_norm_neg: "x \ y = ((norm x ^ 2 + norm y ^ 2) - norm(x - y) ^ 2) / 2" + by (simp add: norm_pow_2 dot_ladd dot_radd dot_lsub dot_rsub dot_sym) + + +text{* Equality of vectors in terms of @{term "op \"} products. *} + +lemma vector_eq: "(x:: real ^ 'n) = y \ x \ x = x \ y\ y \ y = x \ x" (is "?lhs \ ?rhs") +proof + assume "?lhs" then show ?rhs by simp +next + assume ?rhs + then have "x \ x - x \ y = 0 \ x \ y - y\ y = 0" by simp + hence "x \ (x - y) = 0 \ y \ (x - y) = 0" + by (simp add: dot_rsub dot_lsub dot_sym) + then have "(x - y) \ (x - y) = 0" by (simp add: ring_simps dot_lsub dot_rsub) + then show "x = y" by (simp add: dot_eq_0) +qed + + +subsection{* General linear decision procedure for normed spaces. *} + +lemma norm_cmul_rule_thm: "b >= norm(x) ==> \c\ * b >= norm(c *s x)" + apply (clarsimp simp add: norm_mul) + apply (rule mult_mono1) + apply simp_all + done + +lemma norm_add_rule_thm: "b1 >= norm(x1 :: real ^'n) \ b2 >= norm(x2) ==> b1 + b2 >= norm(x1 + x2)" + apply (rule norm_triangle_le) by simp + +lemma ge_iff_diff_ge_0: "(a::'a::ordered_ring) \ b == a - b \ 0" + by (simp add: ring_simps) + +lemma pth_1: "(x::real^'n) == 1 *s x" by (simp only: vector_smult_lid) +lemma pth_2: "x - (y::real^'n) == x + -y" by (atomize (full)) simp +lemma pth_3: "(-x::real^'n) == -1 *s x" by vector +lemma pth_4: "0 *s (x::real^'n) == 0" "c *s 0 = (0::real ^ 'n)" by vector+ +lemma pth_5: "c *s (d *s x) == (c * d) *s (x::real ^ 'n)" by (atomize (full)) vector +lemma pth_6: "(c::real) *s (x + y) == c *s x + c *s y" by (atomize (full)) (vector ring_simps) +lemma pth_7: "0 + x == (x::real^'n)" "x + 0 == x" by simp_all +lemma pth_8: "(c::real) *s x + d *s x == (c + d) *s x" by (atomize (full)) (vector ring_simps) +lemma pth_9: "((c::real) *s x + z) + d *s x == (c + d) *s x + z" + "c *s x + (d *s x + z) == (c + d) *s x + z" + "(c *s x + w) + (d *s x + z) == (c + d) *s x + (w + z)" by ((atomize (full)), vector ring_simps)+ +lemma pth_a: "(0::real) *s x + y == y" by (atomize (full)) vector +lemma pth_b: "(c::real) *s x + d *s y == c *s x + d *s y" + "(c *s x + z) + d *s y == c *s x + (z + d *s y)" + "c *s x + (d *s y + z) == c *s x + (d *s y + z)" + "(c *s x + w) + (d *s y + z) == c *s x + (w + (d *s y + z))" + by ((atomize (full)), vector)+ +lemma pth_c: "(c::real) *s x + d *s y == d *s y + c *s x" + "(c *s x + z) + d *s y == d *s y + (c *s x + z)" + "c *s x + (d *s y + z) == d *s y + (c *s x + z)" + "(c *s x + w) + (d *s y + z) == d *s y + ((c *s x + w) + z)" by ((atomize (full)), vector)+ +lemma pth_d: "x + (0::real ^'n) == x" by (atomize (full)) vector + +lemma norm_imp_pos_and_ge: "norm (x::real ^ 'n) == n \ norm x \ 0 \ n \ norm x" + by (atomize) (auto simp add: norm_pos_le) + +lemma real_eq_0_iff_le_ge_0: "(x::real) = 0 == x \ 0 \ -x \ 0" by arith + +lemma norm_pths: + "(x::real ^'n) = y \ norm (x - y) \ 0" + "x \ y \ \ (norm (x - y) \ 0)" + using norm_pos_le[of "x - y"] by (auto simp add: norm_0 norm_eq_0) + +use "normarith.ML" + +method_setup norm = {* Method.ctxt_args (Method.SIMPLE_METHOD' o NormArith.norm_arith_tac) +*} "Proves simple linear statements about vector norms" + + + +text{* Hence more metric properties. *} + +lemma dist_refl: "dist x x = 0" by norm + +lemma dist_sym: "dist x y = dist y x"by norm + +lemma dist_pos_le: "0 <= dist x y" by norm + +lemma dist_triangle: "dist x z <= dist x y + dist y z" by norm + +lemma dist_triangle_alt: "dist y z <= dist x y + dist x z" by norm + +lemma dist_eq_0: "dist x y = 0 \ x = y" by norm + +lemma dist_pos_lt: "x \ y ==> 0 < dist x y" by norm +lemma dist_nz: "x \ y \ 0 < dist x y" by norm + +lemma dist_triangle_le: "dist x z + dist y z <= e \ dist x y <= e" by norm + +lemma dist_triangle_lt: "dist x z + dist y z < e ==> dist x y < e" by norm + +lemma dist_triangle_half_l: "dist x1 y < e / 2 \ dist x2 y < e / 2 ==> dist x1 x2 < e" by norm + +lemma dist_triangle_half_r: "dist y x1 < e / 2 \ dist y x2 < e / 2 ==> dist x1 x2 < e" by norm + +lemma dist_triangle_add: "dist (x + y) (x' + y') <= dist x x' + dist y y'" + by norm + +lemma dist_mul: "dist (c *s x) (c *s y) = \c\ * dist x y" + unfolding dist_def vector_ssub_ldistrib[symmetric] norm_mul .. + +lemma dist_triangle_add_half: " dist x x' < e / 2 \ dist y y' < e / 2 ==> dist(x + y) (x' + y') < e" by norm + +lemma dist_le_0: "dist x y <= 0 \ x = y" by norm + +instantiation "^" :: (monoid_add,type) monoid_add +begin + instance by (intro_classes) +end + +lemma setsum_eq: "setsum f S = (\ i. setsum (\x. (f x)$i ) S)" + apply vector + apply auto + apply (cases "finite S") + apply (rule finite_induct[of S]) + apply (auto simp add: vector_component zero_index) + done + +lemma setsum_clauses: + shows "setsum f {} = 0" + and "finite S \ setsum f (insert x S) = + (if x \ S then setsum f S else f x + setsum f S)" + by (auto simp add: insert_absorb) + +lemma setsum_cmul: + fixes f:: "'c \ ('a::semiring_1)^'n" + shows "setsum (\x. c *s f x) S = c *s setsum f S" + by (simp add: setsum_eq Cart_eq Cart_lambda_beta vector_component setsum_right_distrib) + +lemma setsum_component: + fixes f:: " 'a \ ('b::semiring_1) ^'n" + assumes i: "i \ {1 .. dimindex(UNIV:: 'n set)}" + shows "(setsum f S)$i = setsum (\x. (f x)$i) S" + using i by (simp add: setsum_eq Cart_lambda_beta) + + (* This needs finiteness assumption due to the definition of fold!!! *) + +lemma setsum_superset: + assumes fb: "finite B" and ab: "A \ B" + and f0: "\x \ B - A. f x = 0" + shows "setsum f B = setsum f A" +proof- + from ab fb have fa: "finite A" by (metis finite_subset) + from fb have fba: "finite (B - A)" by (metis finite_Diff) + have d: "A \ (B - A) = {}" by blast + from ab have b: "B = A \ (B - A)" by blast + from setsum_Un_disjoint[OF fa fba d, of f] b + setsum_0'[OF f0] + show "setsum f B = setsum f A" by simp +qed + +lemma setsum_restrict_set: + assumes fA: "finite A" + shows "setsum f (A \ B) = setsum (\x. if x \ B then f x else 0) A" +proof- + from fA have fab: "finite (A \ B)" by auto + have aba: "A \ B \ A" by blast + let ?g = "\x. if x \ A\B then f x else 0" + from setsum_superset[OF fA aba, of ?g] + show ?thesis by simp +qed + +lemma setsum_cases: + assumes fA: "finite A" + shows "setsum (\x. if x \ B then f x else g x) A = + setsum f (A \ B) + setsum g (A \ - B)" +proof- + have a: "A = A \ B \ A \ -B" "(A \ B) \ (A \ -B) = {}" + by blast+ + from fA + have f: "finite (A \ B)" "finite (A \ -B)" by auto + let ?g = "\x. if x \ B then f x else g x" + from setsum_Un_disjoint[OF f a(2), of ?g] a(1) + show ?thesis by simp +qed + +lemma setsum_norm: + fixes f :: "'a \ 'b::real_normed_vector" + assumes fS: "finite S" + shows "norm (setsum f S) <= setsum (\x. norm(f x)) S" +proof(induct rule: finite_induct[OF fS]) + case 1 thus ?case by (simp add: norm_zero) +next + case (2 x S) + from "2.hyps" have "norm (setsum f (insert x S)) \ norm (f x) + norm (setsum f S)" by (simp add: norm_triangle_ineq) + also have "\ \ norm (f x) + setsum (\x. norm(f x)) S" + using "2.hyps" by simp + finally show ?case using "2.hyps" by simp +qed + +lemma real_setsum_norm: + fixes f :: "'a \ real ^'n" + assumes fS: "finite S" + shows "norm (setsum f S) <= setsum (\x. norm(f x)) S" +proof(induct rule: finite_induct[OF fS]) + case 1 thus ?case by simp norm +next + case (2 x S) + from "2.hyps" have "norm (setsum f (insert x S)) \ norm (f x) + norm (setsum f S)" apply (simp add: norm_triangle_ineq) by norm + also have "\ \ norm (f x) + setsum (\x. norm(f x)) S" + using "2.hyps" by simp + finally show ?case using "2.hyps" by simp +qed + +lemma setsum_norm_le: + fixes f :: "'a \ 'b::real_normed_vector" + assumes fS: "finite S" + and fg: "\x \ S. norm (f x) \ g x" + shows "norm (setsum f S) \ setsum g S" +proof- + from fg have "setsum (\x. norm(f x)) S <= setsum g S" + by - (rule setsum_mono, simp) + then show ?thesis using setsum_norm[OF fS, of f] fg + by arith +qed + +lemma real_setsum_norm_le: + fixes f :: "'a \ real ^ 'n" + assumes fS: "finite S" + and fg: "\x \ S. norm (f x) \ g x" + shows "norm (setsum f S) \ setsum g S" +proof- + from fg have "setsum (\x. norm(f x)) S <= setsum g S" + by - (rule setsum_mono, simp) + then show ?thesis using real_setsum_norm[OF fS, of f] fg + by arith +qed + +lemma setsum_norm_bound: + fixes f :: "'a \ 'b::real_normed_vector" + assumes fS: "finite S" + and K: "\x \ S. norm (f x) \ K" + shows "norm (setsum f S) \ of_nat (card S) * K" + using setsum_norm_le[OF fS K] setsum_constant[symmetric] + by simp + +lemma real_setsum_norm_bound: + fixes f :: "'a \ real ^ 'n" + assumes fS: "finite S" + and K: "\x \ S. norm (f x) \ K" + shows "norm (setsum f S) \ of_nat (card S) * K" + using real_setsum_norm_le[OF fS K] setsum_constant[symmetric] + by simp + +instantiation "^" :: ("{scaleR, one, times}",type) scaleR +begin + +definition vector_scaleR_def: "(scaleR :: real \ 'a ^'b \ 'a ^'b) \ (\ c x . (scaleR c 1) *s x)" +instance .. +end + +instantiation "^" :: ("ring_1",type) ring_1 +begin +instance by intro_classes +end + +instantiation "^" :: (real_algebra_1,type) real_vector +begin + +instance + apply intro_classes + apply (simp_all add: vector_scaleR_def) + apply (simp_all add: vector_sadd_rdistrib vector_add_ldistrib vector_smult_lid vector_smult_assoc scaleR_left_distrib mult_commute) + done +end + +instantiation "^" :: (real_algebra_1,type) real_algebra +begin + +instance + apply intro_classes + apply (simp_all add: vector_scaleR_def ring_simps) + apply vector + apply vector + done +end + +instantiation "^" :: (real_algebra_1,type) real_algebra_1 +begin + +instance .. +end + +lemma setsum_vmul: + fixes f :: "'a \ 'b::{real_normed_vector,semiring, mult_zero}" + assumes fS: "finite S" + shows "setsum f S *s v = setsum (\x. f x *s v) S" +proof(induct rule: finite_induct[OF fS]) + case 1 then show ?case by (simp add: vector_smult_lzero) +next + case (2 x F) + from "2.hyps" have "setsum f (insert x F) *s v = (f x + setsum f F) *s v" + by simp + also have "\ = f x *s v + setsum f F *s v" + by (simp add: vector_sadd_rdistrib) + also have "\ = setsum (\x. f x *s v) (insert x F)" using "2.hyps" by simp + finally show ?case . +qed + +(* FIXME : Problem thm setsum_vmul[of _ "f:: 'a \ real ^'n"] --- + Get rid of *s and use real_vector instead! Also prove that ^ creates a real_vector !! *) + +lemma setsum_add_split: assumes mn: "(m::nat) \ n + 1" + shows "setsum f {m..n + p} = setsum f {m..n} + setsum f {n + 1..n + p}" +proof- + let ?A = "{m .. n}" + let ?B = "{n + 1 .. n + p}" + have eq: "{m .. n+p} = ?A \ ?B" using mn by auto + have d: "?A \ ?B = {}" by auto + from setsum_Un_disjoint[of "?A" "?B" f] eq d show ?thesis by auto +qed + +lemma setsum_reindex_nonzero: + assumes fS: "finite S" + and nz: "\ x y. x \ S \ y \ S \ x \ y \ f x = f y \ h (f x) = 0" + shows "setsum h (f ` S) = setsum (h o f) S" +using nz +proof(induct rule: finite_induct[OF fS]) + case 1 thus ?case by simp +next + case (2 x F) + {assume fxF: "f x \ f ` F" hence "\y \ F . f y = f x" by auto + then obtain y where y: "y \ F" "f x = f y" by auto + from "2.hyps" y have xy: "x \ y" by auto + + from "2.prems"[of x y] "2.hyps" xy y have h0: "h (f x) = 0" by simp + have "setsum h (f ` insert x F) = setsum h (f ` F)" using fxF by auto + also have "\ = setsum (h o f) (insert x F)" + using "2.hyps" "2.prems" h0 by auto + finally have ?case .} + moreover + {assume fxF: "f x \ f ` F" + have "setsum h (f ` insert x F) = h (f x) + setsum h (f ` F)" + using fxF "2.hyps" by simp + also have "\ = setsum (h o f) (insert x F)" + using "2.hyps" "2.prems" fxF + apply auto apply metis done + finally have ?case .} + ultimately show ?case by blast +qed + +lemma setsum_Un_nonzero: + assumes fS: "finite S" and fF: "finite F" + and f: "\ x\ S \ F . f x = (0::'a::ab_group_add)" + shows "setsum f (S \ F) = setsum f S + setsum f F" + using setsum_Un[OF fS fF, of f] setsum_0'[OF f] by simp + +lemma setsum_natinterval_left: + assumes mn: "(m::nat) <= n" + shows "setsum f {m..n} = f m + setsum f {m + 1..n}" +proof- + from mn have "{m .. n} = insert m {m+1 .. n}" by auto + then show ?thesis by auto +qed + +lemma setsum_natinterval_difff: + fixes f:: "nat \ ('a::ab_group_add)" + shows "setsum (\k. f k - f(k + 1)) {(m::nat) .. n} = + (if m <= n then f m - f(n + 1) else 0)" +by (induct n, auto simp add: ring_simps not_le le_Suc_eq) + +lemmas setsum_restrict_set' = setsum_restrict_set[unfolded Int_def] + +lemma setsum_setsum_restrict: + "finite S \ finite T \ setsum (\x. setsum (\y. f x y) {y. y\ T \ R x y}) S = setsum (\y. setsum (\x. f x y) {x. x \ S \ R x y}) T" + apply (simp add: setsum_restrict_set'[unfolded mem_def] mem_def) + by (rule setsum_commute) + +lemma setsum_image_gen: assumes fS: "finite S" + shows "setsum g S = setsum (\y. setsum g {x. x \ S \ f x = y}) (f ` S)" +proof- + {fix x assume "x \ S" then have "{y. y\ f`S \ f x = y} = {f x}" by auto} + note th0 = this + have "setsum g S = setsum (\x. setsum (\y. g x) {y. y\ f`S \ f x = y}) S" + apply (rule setsum_cong2) + by (simp add: th0) + also have "\ = setsum (\y. setsum g {x. x \ S \ f x = y}) (f ` S)" + apply (rule setsum_setsum_restrict[OF fS]) + by (rule finite_imageI[OF fS]) + finally show ?thesis . +qed + + (* FIXME: Here too need stupid finiteness assumption on T!!! *) +lemma setsum_group: + assumes fS: "finite S" and fT: "finite T" and fST: "f ` S \ T" + shows "setsum (\y. setsum g {x. x\ S \ f x = y}) T = setsum g S" + +apply (subst setsum_image_gen[OF fS, of g f]) +apply (rule setsum_superset[OF fT fST]) +by (auto intro: setsum_0') + +(* FIXME: Change the name to fold_image\ *) +lemma (in comm_monoid_mult) fold_1': "finite S \ (\x\S. f x = 1) \ fold_image op * f 1 S = 1" + apply (induct set: finite) + apply simp by (auto simp add: fold_image_insert) + +lemma (in comm_monoid_mult) fold_union_nonzero: + assumes fS: "finite S" and fT: "finite T" + and I0: "\x \ S\T. f x = 1" + shows "fold_image (op *) f 1 (S \ T) = fold_image (op *) f 1 S * fold_image (op *) f 1 T" +proof- + have "fold_image op * f 1 (S \ T) = 1" + apply (rule fold_1') + using fS fT I0 by auto + with fold_image_Un_Int[OF fS fT] show ?thesis by simp +qed + +lemma setsum_union_nonzero: + assumes fS: "finite S" and fT: "finite T" + and I0: "\x \ S\T. f x = 0" + shows "setsum f (S \ T) = setsum f S + setsum f T" + using fS fT + apply (simp add: setsum_def) + apply (rule comm_monoid_add.fold_union_nonzero) + using I0 by auto + +lemma setprod_union_nonzero: + assumes fS: "finite S" and fT: "finite T" + and I0: "\x \ S\T. f x = 1" + shows "setprod f (S \ T) = setprod f S * setprod f T" + using fS fT + apply (simp add: setprod_def) + apply (rule fold_union_nonzero) + using I0 by auto + +lemma setsum_unions_nonzero: + assumes fS: "finite S" and fSS: "\T \ S. finite T" + and f0: "\T1 T2 x. T1\S \ T2\S \ T1 \ T2 \ x \ T1 \ x \ T2 \ f x = 0" + shows "setsum f (\S) = setsum (\T. setsum f T) S" + using fSS f0 +proof(induct rule: finite_induct[OF fS]) + case 1 thus ?case by simp +next + case (2 T F) + then have fTF: "finite T" "\T\F. finite T" "finite F" and TF: "T \ F" + and H: "setsum f (\ F) = setsum (setsum f) F" by (auto simp add: finite_insert) + from fTF have fUF: "finite (\F)" by (auto intro: finite_Union) + from "2.prems" TF fTF + show ?case + by (auto simp add: H[symmetric] intro: setsum_union_nonzero[OF fTF(1) fUF, of f]) +qed + + (* FIXME : Copied from Pocklington --- should be moved to Finite_Set!!!!!!!! *) + + +lemma (in comm_monoid_mult) fold_related: + assumes Re: "R e e" + and Rop: "\x1 y1 x2 y2. R x1 x2 \ R y1 y2 \ R (x1 * y1) (x2 * y2)" + and fS: "finite S" and Rfg: "\x\S. R (h x) (g x)" + shows "R (fold_image (op *) h e S) (fold_image (op *) g e S)" + using fS by (rule finite_subset_induct) (insert assms, auto) + + (* FIXME: I think we can get rid of the finite assumption!! *) +lemma (in comm_monoid_mult) + fold_eq_general: + assumes fS: "finite S" + and h: "\y\S'. \!x. x\ S \ h(x) = y" + and f12: "\x\S. h x \ S' \ f2(h x) = f1 x" + shows "fold_image (op *) f1 e S = fold_image (op *) f2 e S'" +proof- + from h f12 have hS: "h ` S = S'" by auto + {fix x y assume H: "x \ S" "y \ S" "h x = h y" + from f12 h H have "x = y" by auto } + hence hinj: "inj_on h S" unfolding inj_on_def Ex1_def by blast + from f12 have th: "\x. x \ S \ (f2 \ h) x = f1 x" by auto + from hS have "fold_image (op *) f2 e S' = fold_image (op *) f2 e (h ` S)" by simp + also have "\ = fold_image (op *) (f2 o h) e S" + using fold_image_reindex[OF fS hinj, of f2 e] . + also have "\ = fold_image (op *) f1 e S " using th fold_image_cong[OF fS, of "f2 o h" f1 e] + by blast + finally show ?thesis .. +qed + +lemma (in comm_monoid_mult) fold_eq_general_inverses: + assumes fS: "finite S" + and kh: "\y. y \ T \ k y \ S \ h (k y) = y" + and hk: "\x. x \ S \ h x \ T \ k (h x) = x \ g (h x) = f x" + shows "fold_image (op *) f e S = fold_image (op *) g e T" + using fold_eq_general[OF fS, of T h g f e] kh hk by metis + +lemma setsum_eq_general_reverses: + assumes fS: "finite S" and fT: "finite T" + and kh: "\y. y \ T \ k y \ S \ h (k y) = y" + and hk: "\x. x \ S \ h x \ T \ k (h x) = x \ g (h x) = f x" + shows "setsum f S = setsum g T" + apply (simp add: setsum_def fS fT) + apply (rule comm_monoid_add.fold_eq_general_inverses[OF fS]) + apply (erule kh) + apply (erule hk) + done + +lemma vsum_norm_allsubsets_bound: + fixes f:: "'a \ real ^'n" + assumes fP: "finite P" and fPs: "\Q. Q \ P \ norm (setsum f Q) \ e" + shows "setsum (\x. norm (f x)) P \ 2 * real (dimindex(UNIV :: 'n set)) * e" +proof- + let ?d = "real (dimindex (UNIV ::'n set))" + let ?nf = "\x. norm (f x)" + let ?U = "{1 .. dimindex (UNIV :: 'n set)}" + have th0: "setsum (\x. setsum (\i. \f x $ i\) ?U) P = setsum (\i. setsum (\x. \f x $ i\) P) ?U" + by (rule setsum_commute) + have th1: "2 * ?d * e = of_nat (card ?U) * (2 * e)" by (simp add: real_of_nat_def) + have "setsum ?nf P \ setsum (\x. setsum (\i. \f x $ i\) ?U) P" + apply (rule setsum_mono) + by (rule norm_le_l1) + also have "\ \ 2 * ?d * e" + unfolding th0 th1 + proof(rule setsum_bounded) + fix i assume i: "i \ ?U" + let ?Pp = "{x. x\ P \ f x $ i \ 0}" + let ?Pn = "{x. x \ P \ f x $ i < 0}" + have thp: "P = ?Pp \ ?Pn" by auto + have thp0: "?Pp \ ?Pn ={}" by auto + have PpP: "?Pp \ P" and PnP: "?Pn \ P" by blast+ + have Ppe:"setsum (\x. \f x $ i\) ?Pp \ e" + using i component_le_norm[OF i, of "setsum (\x. f x) ?Pp"] fPs[OF PpP] + by (auto simp add: setsum_component intro: abs_le_D1) + have Pne: "setsum (\x. \f x $ i\) ?Pn \ e" + using i component_le_norm[OF i, of "setsum (\x. - f x) ?Pn"] fPs[OF PnP] + by (auto simp add: setsum_negf norm_neg setsum_component vector_component intro: abs_le_D1) + have "setsum (\x. \f x $ i\) P = setsum (\x. \f x $ i\) ?Pp + setsum (\x. \f x $ i\) ?Pn" + apply (subst thp) + apply (rule setsum_Un_nonzero) + using fP thp0 by auto + also have "\ \ 2*e" using Pne Ppe by arith + finally show "setsum (\x. \f x $ i\) P \ 2*e" . + qed + finally show ?thesis . +qed + +lemma dot_lsum: "finite S \ setsum f S \ (y::'a::{comm_ring}^'n) = setsum (\x. f x \ y) S " + by (induct rule: finite_induct, auto simp add: dot_lzero dot_ladd) + +lemma dot_rsum: "finite S \ (y::'a::{comm_ring}^'n) \ setsum f S = setsum (\x. y \ f x) S " + by (induct rule: finite_induct, auto simp add: dot_rzero dot_radd) + +subsection{* Basis vectors in coordinate directions. *} + + +definition "basis k = (\ i. if i = k then 1 else 0)" + +lemma delta_mult_idempotent: + "(if k=a then 1 else (0::'a::semiring_1)) * (if k=a then 1 else 0) = (if k=a then 1 else 0)" by (cases "k=a", auto) + +lemma norm_basis: + assumes k: "k \ {1 .. dimindex (UNIV :: 'n set)}" + shows "norm (basis k :: real ^'n) = 1" + using k + apply (simp add: basis_def real_vector_norm_def dot_def) + apply (vector delta_mult_idempotent) + using setsum_delta[of "{1 .. dimindex (UNIV :: 'n set)}" "k" "\k. 1::real"] + apply auto + done + +lemma norm_basis_1: "norm(basis 1 :: real ^'n) = 1" + apply (simp add: basis_def real_vector_norm_def dot_def) + apply (vector delta_mult_idempotent) + using setsum_delta[of "{1 .. dimindex (UNIV :: 'n set)}" "1" "\k. 1::real"] dimindex_nonzero[of "UNIV :: 'n set"] + apply auto + done + +lemma vector_choose_size: "0 <= c ==> \(x::real^'n). norm x = c" + apply (rule exI[where x="c *s basis 1"]) + by (simp only: norm_mul norm_basis_1) + +lemma vector_choose_dist: assumes e: "0 <= e" + shows "\(y::real^'n). dist x y = e" +proof- + from vector_choose_size[OF e] obtain c:: "real ^'n" where "norm c = e" + by blast + then have "dist x (x - c) = e" by (simp add: dist_def) + then show ?thesis by blast +qed + +lemma basis_inj: "inj_on (basis :: nat \ real ^'n) {1 .. dimindex (UNIV :: 'n set)}" + by (auto simp add: inj_on_def basis_def Cart_eq Cart_lambda_beta) + +lemma basis_component: "i \ {1 .. dimindex(UNIV:: 'n set)} ==> (basis k ::('a::semiring_1)^'n)$i = (if k=i then 1 else 0)" + by (simp add: basis_def Cart_lambda_beta) + +lemma cond_value_iff: "f (if b then x else y) = (if b then f x else f y)" + by auto + +lemma basis_expansion: + "setsum (\i. (x$i) *s basis i) {1 .. dimindex (UNIV :: 'n set)} = (x::('a::ring_1) ^'n)" (is "?lhs = ?rhs" is "setsum ?f ?S = _") + by (auto simp add: Cart_eq basis_component[where ?'n = "'n"] setsum_component vector_component cond_value_iff setsum_delta[of "?S", where ?'b = "'a", simplified] cong del: if_weak_cong) + +lemma basis_expansion_unique: + "setsum (\i. f i *s basis i) {1 .. dimindex (UNIV :: 'n set)} = (x::('a::comm_ring_1) ^'n) \ (\i\{1 .. dimindex(UNIV:: 'n set)}. f i = x$i)" + by (simp add: Cart_eq setsum_component vector_component basis_component setsum_delta cond_value_iff cong del: if_weak_cong) + +lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)" + by auto + +lemma dot_basis: + assumes i: "i \ {1 .. dimindex (UNIV :: 'n set)}" + shows "basis i \ x = x$i" "x \ (basis i :: 'a^'n) = (x$i :: 'a::semiring_1)" + using i + by (auto simp add: dot_def basis_def Cart_lambda_beta cond_application_beta cond_value_iff setsum_delta cong del: if_weak_cong) + +lemma basis_eq_0: "basis i = (0::'a::semiring_1^'n) \ i \ {1..dimindex(UNIV ::'n set)}" + by (auto simp add: Cart_eq basis_component zero_index) + +lemma basis_nonzero: + assumes k: "k \ {1 .. dimindex(UNIV ::'n set)}" + shows "basis k \ (0:: 'a::semiring_1 ^'n)" + using k by (simp add: basis_eq_0) + +lemma vector_eq_ldot: "(\x. x \ y = x \ z) \ y = (z::'a::semiring_1^'n)" + apply (auto simp add: Cart_eq dot_basis) + apply (erule_tac x="basis i" in allE) + apply (simp add: dot_basis) + apply (subgoal_tac "y = z") + apply simp + apply vector + done + +lemma vector_eq_rdot: "(\z. x \ z = y \ z) \ x = (y::'a::semiring_1^'n)" + apply (auto simp add: Cart_eq dot_basis) + apply (erule_tac x="basis i" in allE) + apply (simp add: dot_basis) + apply (subgoal_tac "x = y") + apply simp + apply vector + done + +subsection{* Orthogonality. *} + +definition "orthogonal x y \ (x \ y = 0)" + +lemma orthogonal_basis: + assumes i:"i \ {1 .. dimindex(UNIV ::'n set)}" + shows "orthogonal (basis i :: 'a^'n) x \ x$i = (0::'a::ring_1)" + using i + by (auto simp add: orthogonal_def dot_def basis_def Cart_lambda_beta cond_value_iff cond_application_beta setsum_delta cong del: if_weak_cong) + +lemma orthogonal_basis_basis: + assumes i:"i \ {1 .. dimindex(UNIV ::'n set)}" + and j: "j \ {1 .. dimindex(UNIV ::'n set)}" + shows "orthogonal (basis i :: 'a::ring_1^'n) (basis j) \ i \ j" + unfolding orthogonal_basis[OF i] basis_component[OF i] by simp + + (* FIXME : Maybe some of these require less than comm_ring, but not all*) +lemma orthogonal_clauses: + "orthogonal a (0::'a::comm_ring ^'n)" + "orthogonal a x ==> orthogonal a (c *s x)" + "orthogonal a x ==> orthogonal a (-x)" + "orthogonal a x \ orthogonal a y ==> orthogonal a (x + y)" + "orthogonal a x \ orthogonal a y ==> orthogonal a (x - y)" + "orthogonal 0 a" + "orthogonal x a ==> orthogonal (c *s x) a" + "orthogonal x a ==> orthogonal (-x) a" + "orthogonal x a \ orthogonal y a ==> orthogonal (x + y) a" + "orthogonal x a \ orthogonal y a ==> orthogonal (x - y) a" + unfolding orthogonal_def dot_rneg dot_rmult dot_radd dot_rsub + dot_lzero dot_rzero dot_lneg dot_lmult dot_ladd dot_lsub + by simp_all + +lemma orthogonal_commute: "orthogonal (x::'a::{ab_semigroup_mult,comm_monoid_add} ^'n)y \ orthogonal y x" + by (simp add: orthogonal_def dot_sym) + +subsection{* Explicit vector construction from lists. *} + +lemma Cart_lambda_beta_1[simp]: "(Cart_lambda g)$1 = g 1" + apply (rule Cart_lambda_beta[rule_format]) + using dimindex_ge_1 apply auto done + +lemma Cart_lambda_beta_1'[simp]: "(Cart_lambda g)$(Suc 0) = g 1" + by (simp only: One_nat_def[symmetric] Cart_lambda_beta_1) + +definition "vector l = (\ i. if i <= length l then l ! (i - 1) else 0)" + +lemma vector_1: "(vector[x]) $1 = x" + using dimindex_ge_1 + by (auto simp add: vector_def Cart_lambda_beta[rule_format]) +lemma dimindex_2[simp]: "2 \ {1 .. dimindex (UNIV :: 2 set)}" + by (auto simp add: dimindex_def) +lemma dimindex_2'[simp]: "2 \ {Suc 0 .. dimindex (UNIV :: 2 set)}" + by (auto simp add: dimindex_def) +lemma dimindex_3[simp]: "2 \ {1 .. dimindex (UNIV :: 3 set)}" "3 \ {1 .. dimindex (UNIV :: 3 set)}" + by (auto simp add: dimindex_def) + +lemma dimindex_3'[simp]: "2 \ {Suc 0 .. dimindex (UNIV :: 3 set)}" "3 \ {Suc 0 .. dimindex (UNIV :: 3 set)}" + by (auto simp add: dimindex_def) + +lemma vector_2: + "(vector[x,y]) $1 = x" + "(vector[x,y] :: 'a^2)$2 = (y::'a::zero)" + apply (simp add: vector_def) + using Cart_lambda_beta[rule_format, OF dimindex_2, of "\i. if i \ length [x,y] then [x,y] ! (i - 1) else (0::'a)"] + apply (simp only: vector_def ) + apply auto + done + +lemma vector_3: + "(vector [x,y,z] ::('a::zero)^3)$1 = x" + "(vector [x,y,z] ::('a::zero)^3)$2 = y" + "(vector [x,y,z] ::('a::zero)^3)$3 = z" +apply (simp_all add: vector_def Cart_lambda_beta dimindex_3) + using Cart_lambda_beta[rule_format, OF dimindex_3(1), of "\i. if i \ length [x,y,z] then [x,y,z] ! (i - 1) else (0::'a)"] using Cart_lambda_beta[rule_format, OF dimindex_3(2), of "\i. if i \ length [x,y,z] then [x,y,z] ! (i - 1) else (0::'a)"] + by simp_all + +lemma forall_vector_1: "(\v::'a::zero^1. P v) \ (\x. P(vector[x]))" + apply auto + apply (erule_tac x="v$1" in allE) + apply (subgoal_tac "vector [v$1] = v") + apply simp + by (vector vector_def dimindex_def) + +lemma forall_vector_2: "(\v::'a::zero^2. P v) \ (\x y. P(vector[x, y]))" + apply auto + apply (erule_tac x="v$1" in allE) + apply (erule_tac x="v$2" in allE) + apply (subgoal_tac "vector [v$1, v$2] = v") + apply simp + apply (vector vector_def dimindex_def) + apply auto + apply (subgoal_tac "i = 1 \ i =2", auto) + done + +lemma forall_vector_3: "(\v::'a::zero^3. P v) \ (\x y z. P(vector[x, y, z]))" + apply auto + apply (erule_tac x="v$1" in allE) + apply (erule_tac x="v$2" in allE) + apply (erule_tac x="v$3" in allE) + apply (subgoal_tac "vector [v$1, v$2, v$3] = v") + apply simp + apply (vector vector_def dimindex_def) + apply auto + apply (subgoal_tac "i = 1 \ i =2 \ i = 3", auto) + done + +subsection{* Linear functions. *} + +definition "linear f \ (\x y. f(x + y) = f x + f y) \ (\c x. f(c *s x) = c *s f x)" + +lemma linear_compose_cmul: "linear f ==> linear (\x. (c::'a::comm_semiring) *s f x)" + by (vector linear_def Cart_eq Cart_lambda_beta[rule_format] ring_simps) + +lemma linear_compose_neg: "linear (f :: 'a ^'n \ 'a::comm_ring ^'m) ==> linear (\x. -(f(x)))" by (vector linear_def Cart_eq) + +lemma linear_compose_add: "linear (f :: 'a ^'n \ 'a::semiring_1 ^'m) \ linear g ==> linear (\x. f(x) + g(x))" + by (vector linear_def Cart_eq ring_simps) + +lemma linear_compose_sub: "linear (f :: 'a ^'n \ 'a::ring_1 ^'m) \ linear g ==> linear (\x. f x - g x)" + by (vector linear_def Cart_eq ring_simps) + +lemma linear_compose: "linear f \ linear g ==> linear (g o f)" + by (simp add: linear_def) + +lemma linear_id: "linear id" by (simp add: linear_def id_def) + +lemma linear_zero: "linear (\x. 0::'a::semiring_1 ^ 'n)" by (simp add: linear_def) + +lemma linear_compose_setsum: + assumes fS: "finite S" and lS: "\a \ S. linear (f a :: 'a::semiring_1 ^ 'n \ 'a ^ 'm)" + shows "linear(\x. setsum (\a. f a x :: 'a::semiring_1 ^'m) S)" + using lS + apply (induct rule: finite_induct[OF fS]) + by (auto simp add: linear_zero intro: linear_compose_add) + +lemma linear_vmul_component: + fixes f:: "'a::semiring_1^'m \ 'a^'n" + assumes lf: "linear f" and k: "k \ {1 .. dimindex (UNIV :: 'n set)}" + shows "linear (\x. f x $ k *s v)" + using lf k + apply (auto simp add: linear_def ) + by (vector ring_simps)+ + +lemma linear_0: "linear f ==> f 0 = (0::'a::semiring_1 ^'n)" + unfolding linear_def + apply clarsimp + apply (erule allE[where x="0::'a"]) + apply simp + done + +lemma linear_cmul: "linear f ==> f(c*s x) = c *s f x" by (simp add: linear_def) + +lemma linear_neg: "linear (f :: 'a::ring_1 ^'n \ _) ==> f (-x) = - f x" + unfolding vector_sneg_minus1 + using linear_cmul[of f] by auto + +lemma linear_add: "linear f ==> f(x + y) = f x + f y" by (metis linear_def) + +lemma linear_sub: "linear (f::'a::ring_1 ^'n \ _) ==> f(x - y) = f x - f y" + by (simp add: diff_def linear_add linear_neg) + +lemma linear_setsum: + fixes f:: "'a::semiring_1^'n \ _" + assumes lf: "linear f" and fS: "finite S" + shows "f (setsum g S) = setsum (f o g) S" +proof (induct rule: finite_induct[OF fS]) + case 1 thus ?case by (simp add: linear_0[OF lf]) +next + case (2 x F) + have "f (setsum g (insert x F)) = f (g x + setsum g F)" using "2.hyps" + by simp + also have "\ = f (g x) + f (setsum g F)" using linear_add[OF lf] by simp + also have "\ = setsum (f o g) (insert x F)" using "2.hyps" by simp + finally show ?case . +qed + +lemma linear_setsum_mul: + fixes f:: "'a ^'n \ 'a::semiring_1^'m" + assumes lf: "linear f" and fS: "finite S" + shows "f (setsum (\i. c i *s v i) S) = setsum (\i. c i *s f (v i)) S" + using linear_setsum[OF lf fS, of "\i. c i *s v i" , unfolded o_def] + linear_cmul[OF lf] by simp + +lemma linear_injective_0: + assumes lf: "linear (f:: 'a::ring_1 ^ 'n \ _)" + shows "inj f \ (\x. f x = 0 \ x = 0)" +proof- + have "inj f \ (\ x y. f x = f y \ x = y)" by (simp add: inj_on_def) + also have "\ \ (\ x y. f x - f y = 0 \ x - y = 0)" by simp + also have "\ \ (\ x y. f (x - y) = 0 \ x - y = 0)" + by (simp add: linear_sub[OF lf]) + also have "\ \ (\ x. f x = 0 \ x = 0)" by auto + finally show ?thesis . +qed + +lemma linear_bounded: + fixes f:: "real ^'m \ real ^'n" + assumes lf: "linear f" + shows "\B. \x. norm (f x) \ B * norm x" +proof- + let ?S = "{1..dimindex(UNIV:: 'm set)}" + let ?B = "setsum (\i. norm(f(basis i))) ?S" + have fS: "finite ?S" by simp + {fix x:: "real ^ 'm" + let ?g = "(\i::nat. (x$i) *s (basis i) :: real ^ 'm)" + have "norm (f x) = norm (f (setsum (\i. (x$i) *s (basis i)) ?S))" + by (simp only: basis_expansion) + also have "\ = norm (setsum (\i. (x$i) *s f (basis i))?S)" + using linear_setsum[OF lf fS, of ?g, unfolded o_def] linear_cmul[OF lf] + by auto + finally have th0: "norm (f x) = norm (setsum (\i. (x$i) *s f (basis i))?S)" . + {fix i assume i: "i \ ?S" + from component_le_norm[OF i, of x] + have "norm ((x$i) *s f (basis i :: real ^'m)) \ norm (f (basis i)) * norm x" + unfolding norm_mul + apply (simp only: mult_commute) + apply (rule mult_mono) + by (auto simp add: ring_simps norm_pos_le) } + then have th: "\i\ ?S. norm ((x$i) *s f (basis i :: real ^'m)) \ norm (f (basis i)) * norm x" by metis + from real_setsum_norm_le[OF fS, of "\i. (x$i) *s (f (basis i))", OF th] + have "norm (f x) \ ?B * norm x" unfolding th0 setsum_left_distrib by metis} + then show ?thesis by blast +qed + +lemma linear_bounded_pos: + fixes f:: "real ^'n \ real ^ 'm" + assumes lf: "linear f" + shows "\B > 0. \x. norm (f x) \ B * norm x" +proof- + from linear_bounded[OF lf] obtain B where + B: "\x. norm (f x) \ B * norm x" by blast + let ?K = "\B\ + 1" + have Kp: "?K > 0" by arith + {assume C: "B < 0" + have "norm (1::real ^ 'n) > 0" by (simp add: norm_pos_lt) + with C have "B * norm (1:: real ^ 'n) < 0" + by (simp add: zero_compare_simps) + with B[rule_format, of 1] norm_pos_le[of "f 1"] have False by simp + } + then have Bp: "B \ 0" by ferrack + {fix x::"real ^ 'n" + have "norm (f x) \ ?K * norm x" + using B[rule_format, of x] norm_pos_le[of x] norm_pos_le[of "f x"] Bp + by (auto simp add: ring_simps split add: abs_split) + } + then show ?thesis using Kp by blast +qed + +subsection{* Bilinear functions. *} + +definition "bilinear f \ (\x. linear(\y. f x y)) \ (\y. linear(\x. f x y))" + +lemma bilinear_ladd: "bilinear h ==> h (x + y) z = (h x z) + (h y z)" + by (simp add: bilinear_def linear_def) +lemma bilinear_radd: "bilinear h ==> h x (y + z) = (h x y) + (h x z)" + by (simp add: bilinear_def linear_def) + +lemma bilinear_lmul: "bilinear h ==> h (c *s x) y = c *s (h x y)" + by (simp add: bilinear_def linear_def) + +lemma bilinear_rmul: "bilinear h ==> h x (c *s y) = c *s (h x y)" + by (simp add: bilinear_def linear_def) + +lemma bilinear_lneg: "bilinear h ==> h (- (x:: 'a::ring_1 ^ 'n)) y = -(h x y)" + by (simp only: vector_sneg_minus1 bilinear_lmul) + +lemma bilinear_rneg: "bilinear h ==> h x (- (y:: 'a::ring_1 ^ 'n)) = - h x y" + by (simp only: vector_sneg_minus1 bilinear_rmul) + +lemma (in ab_group_add) eq_add_iff: "x = x + y \ y = 0" + using add_imp_eq[of x y 0] by auto + +lemma bilinear_lzero: + fixes h :: "'a::ring^'n \ _" assumes bh: "bilinear h" shows "h 0 x = 0" + using bilinear_ladd[OF bh, of 0 0 x] + by (simp add: eq_add_iff ring_simps) + +lemma bilinear_rzero: + fixes h :: "'a::ring^'n \ _" assumes bh: "bilinear h" shows "h x 0 = 0" + using bilinear_radd[OF bh, of x 0 0 ] + by (simp add: eq_add_iff ring_simps) + +lemma bilinear_lsub: "bilinear h ==> h (x - (y:: 'a::ring_1 ^ 'n)) z = h x z - h y z" + by (simp add: diff_def bilinear_ladd bilinear_lneg) + +lemma bilinear_rsub: "bilinear h ==> h z (x - (y:: 'a::ring_1 ^ 'n)) = h z x - h z y" + by (simp add: diff_def bilinear_radd bilinear_rneg) + +lemma bilinear_setsum: + fixes h:: "'a ^'n \ 'a::semiring_1^'m \ 'a ^ 'k" + assumes bh: "bilinear h" and fS: "finite S" and fT: "finite T" + shows "h (setsum f S) (setsum g T) = setsum (\(i,j). h (f i) (g j)) (S \ T) " +proof- + have "h (setsum f S) (setsum g T) = setsum (\x. h (f x) (setsum g T)) S" + apply (rule linear_setsum[unfolded o_def]) + using bh fS by (auto simp add: bilinear_def) + also have "\ = setsum (\x. setsum (\y. h (f x) (g y)) T) S" + apply (rule setsum_cong, simp) + apply (rule linear_setsum[unfolded o_def]) + using bh fT by (auto simp add: bilinear_def) + finally show ?thesis unfolding setsum_cartesian_product . +qed + +lemma bilinear_bounded: + fixes h:: "real ^'m \ real^'n \ real ^ 'k" + assumes bh: "bilinear h" + shows "\B. \x y. norm (h x y) \ B * norm x * norm y" +proof- + let ?M = "{1 .. dimindex (UNIV :: 'm set)}" + let ?N = "{1 .. dimindex (UNIV :: 'n set)}" + let ?B = "setsum (\(i,j). norm (h (basis i) (basis j))) (?M \ ?N)" + have fM: "finite ?M" and fN: "finite ?N" by simp_all + {fix x:: "real ^ 'm" and y :: "real^'n" + have "norm (h x y) = norm (h (setsum (\i. (x$i) *s basis i) ?M) (setsum (\i. (y$i) *s basis i) ?N))" unfolding basis_expansion .. + also have "\ = norm (setsum (\ (i,j). h ((x$i) *s basis i) ((y$j) *s basis j)) (?M \ ?N))" unfolding bilinear_setsum[OF bh fM fN] .. + finally have th: "norm (h x y) = \" . + have "norm (h x y) \ ?B * norm x * norm y" + apply (simp add: setsum_left_distrib th) + apply (rule real_setsum_norm_le) + using fN fM + apply simp + apply (auto simp add: bilinear_rmul[OF bh] bilinear_lmul[OF bh] norm_mul ring_simps) + apply (rule mult_mono) + apply (auto simp add: norm_pos_le zero_le_mult_iff component_le_norm) + apply (rule mult_mono) + apply (auto simp add: norm_pos_le zero_le_mult_iff component_le_norm) + done} + then show ?thesis by metis +qed + +lemma bilinear_bounded_pos: + fixes h:: "real ^'m \ real^'n \ real ^ 'k" + assumes bh: "bilinear h" + shows "\B > 0. \x y. norm (h x y) \ B * norm x * norm y" +proof- + from bilinear_bounded[OF bh] obtain B where + B: "\x y. norm (h x y) \ B * norm x * norm y" by blast + let ?K = "\B\ + 1" + have Kp: "?K > 0" by arith + have KB: "B < ?K" by arith + {fix x::"real ^'m" and y :: "real ^'n" + from KB Kp + have "B * norm x * norm y \ ?K * norm x * norm y" + apply - + apply (rule mult_right_mono, rule mult_right_mono) + by (auto simp add: norm_pos_le) + then have "norm (h x y) \ ?K * norm x * norm y" + using B[rule_format, of x y] by simp} + with Kp show ?thesis by blast +qed + +subsection{* Adjoints. *} + +definition "adjoint f = (SOME f'. \x y. f x \ y = x \ f' y)" + +lemma choice_iff: "(\x. \y. P x y) \ (\f. \x. P x (f x))" by metis + +lemma adjoint_works_lemma: + fixes f:: "'a::ring_1 ^'n \ 'a ^ 'm" + assumes lf: "linear f" + shows "\x y. f x \ y = x \ adjoint f y" +proof- + let ?N = "{1 .. dimindex (UNIV :: 'n set)}" + let ?M = "{1 .. dimindex (UNIV :: 'm set)}" + have fN: "finite ?N" by simp + have fM: "finite ?M" by simp + {fix y:: "'a ^ 'm" + let ?w = "(\ i. (f (basis i) \ y)) :: 'a ^ 'n" + {fix x + have "f x \ y = f (setsum (\i. (x$i) *s basis i) ?N) \ y" + by (simp only: basis_expansion) + also have "\ = (setsum (\i. (x$i) *s f (basis i)) ?N) \ y" + unfolding linear_setsum[OF lf fN] + by (simp add: linear_cmul[OF lf]) + finally have "f x \ y = x \ ?w" + apply (simp only: ) + apply (simp add: dot_def setsum_component Cart_lambda_beta setsum_left_distrib setsum_right_distrib vector_component setsum_commute[of _ ?M ?N] ring_simps del: One_nat_def) + done} + } + then show ?thesis unfolding adjoint_def + some_eq_ex[of "\f'. \x y. f x \ y = x \ f' y"] + using choice_iff[of "\a b. \x. f x \ a = x \ b "] + by metis +qed + +lemma adjoint_works: + fixes f:: "'a::ring_1 ^'n \ 'a ^ 'm" + assumes lf: "linear f" + shows "x \ adjoint f y = f x \ y" + using adjoint_works_lemma[OF lf] by metis + + +lemma adjoint_linear: + fixes f :: "'a::comm_ring_1 ^'n \ 'a ^ 'm" + assumes lf: "linear f" + shows "linear (adjoint f)" + by (simp add: linear_def vector_eq_ldot[symmetric] dot_radd dot_rmult adjoint_works[OF lf]) + +lemma adjoint_clauses: + fixes f:: "'a::comm_ring_1 ^'n \ 'a ^ 'm" + assumes lf: "linear f" + shows "x \ adjoint f y = f x \ y" + and "adjoint f y \ x = y \ f x" + by (simp_all add: adjoint_works[OF lf] dot_sym ) + +lemma adjoint_adjoint: + fixes f:: "'a::comm_ring_1 ^ 'n \ _" + assumes lf: "linear f" + shows "adjoint (adjoint f) = f" + apply (rule ext) + by (simp add: vector_eq_ldot[symmetric] adjoint_clauses[OF adjoint_linear[OF lf]] adjoint_clauses[OF lf]) + +lemma adjoint_unique: + fixes f:: "'a::comm_ring_1 ^ 'n \ 'a ^ 'm" + assumes lf: "linear f" and u: "\x y. f' x \ y = x \ f y" + shows "f' = adjoint f" + apply (rule ext) + using u + by (simp add: vector_eq_rdot[symmetric] adjoint_clauses[OF lf]) + +text{* Matrix notation. NB: an MxN matrix is of type 'a^'n^'m, not 'a^'m^'n *} + +consts generic_mult :: "'a \ 'b \ 'c" (infixr "\" 75) + +defs (overloaded) +matrix_matrix_mult_def: "(m:: ('a::semiring_1) ^'n^'m) \ (m' :: 'a ^'p^'n) \ (\ i j. setsum (\k. ((m$i)$k) * ((m'$k)$j)) {1 .. dimindex (UNIV :: 'n set)}) ::'a ^ 'p ^'m" + +abbreviation + matrix_matrix_mult' :: "('a::semiring_1) ^'n^'m \ 'a ^'p^'n \ 'a ^ 'p ^'m" (infixl "**" 70) + where "m ** m' == m\ m'" + +defs (overloaded) + matrix_vector_mult_def: "(m::('a::semiring_1) ^'n^'m) \ (x::'a ^'n) \ (\ i. setsum (\j. ((m$i)$j) * (x$j)) {1..dimindex(UNIV ::'n set)}) :: 'a^'m" + +abbreviation + matrix_vector_mult' :: "('a::semiring_1) ^'n^'m \ 'a ^'n \ 'a ^ 'm" (infixl "*v" 70) + where + "m *v v == m \ v" + +defs (overloaded) + vector_matrix_mult_def: "(x::'a^'m) \ (m::('a::semiring_1) ^'n^'m) \ (\ j. setsum (\i. ((m$i)$j) * (x$i)) {1..dimindex(UNIV :: 'm set)}) :: 'a^'n" + +abbreviation + vactor_matrix_mult' :: "'a ^ 'm \ ('a::semiring_1) ^'n^'m \ 'a ^'n " (infixl "v*" 70) + where + "v v* m == v \ m" + +definition "(mat::'a::zero => 'a ^'n^'m) k = (\ i j. if i = j then k else 0)" +definition "(transp::'a^'n^'m \ 'a^'m^'n) A = (\ i j. ((A$j)$i))" +definition "(row::nat => 'a ^'n^'m \ 'a ^'n) i A = (\ j. ((A$i)$j))" +definition "(column::nat =>'a^'n^'m =>'a^'m) j A = (\ i. ((A$i)$j))" +definition "rows(A::'a^'n^'m) = { row i A | i. i \ {1 .. dimindex(UNIV :: 'm set)}}" +definition "columns(A::'a^'n^'m) = { column i A | i. i \ {1 .. dimindex(UNIV :: 'n set)}}" + +lemma mat_0[simp]: "mat 0 = 0" by (vector mat_def) +lemma matrix_add_ldistrib: "(A ** (B + C)) = (A \ B) + (A \ C)" + by (vector matrix_matrix_mult_def setsum_addf[symmetric] ring_simps) + +lemma setsum_delta': + assumes fS: "finite S" shows + "setsum (\k. if a = k then b k else 0) S = + (if a\ S then b a else 0)" + using setsum_delta[OF fS, of a b, symmetric] + by (auto intro: setsum_cong) + +lemma matrix_mul_lid: "mat 1 ** A = A" + apply (simp add: matrix_matrix_mult_def mat_def) + apply vector + by (auto simp only: cond_value_iff cond_application_beta setsum_delta'[OF finite_atLeastAtMost] mult_1_left mult_zero_left if_True) + + +lemma matrix_mul_rid: "A ** mat 1 = A" + apply (simp add: matrix_matrix_mult_def mat_def) + apply vector + by (auto simp only: cond_value_iff cond_application_beta setsum_delta[OF finite_atLeastAtMost] mult_1_right mult_zero_right if_True cong: if_cong) + +lemma matrix_mul_assoc: "A ** (B ** C) = (A ** B) ** C" + apply (vector matrix_matrix_mult_def setsum_right_distrib setsum_left_distrib mult_assoc) + apply (subst setsum_commute) + apply simp + done + +lemma matrix_vector_mul_assoc: "A *v (B *v x) = (A ** B) *v x" + apply (vector matrix_matrix_mult_def matrix_vector_mult_def setsum_right_distrib setsum_left_distrib mult_assoc) + apply (subst setsum_commute) + apply simp + done + +lemma matrix_vector_mul_lid: "mat 1 *v x = x" + apply (vector matrix_vector_mult_def mat_def) + by (simp add: cond_value_iff cond_application_beta + setsum_delta' cong del: if_weak_cong) + +lemma matrix_transp_mul: "transp(A ** B) = transp B ** transp (A::'a::comm_semiring_1^'m^'n)" + by (simp add: matrix_matrix_mult_def transp_def Cart_eq Cart_lambda_beta mult_commute) + +lemma matrix_eq: "A = B \ (\x. A *v x = B *v x)" (is "?lhs \ ?rhs") + apply auto + apply (subst Cart_eq) + apply clarify + apply (clarsimp simp add: matrix_vector_mult_def basis_def cond_value_iff cond_application_beta Cart_eq Cart_lambda_beta cong del: if_weak_cong) + apply (erule_tac x="basis ia" in allE) + apply (erule_tac x="i" in ballE) + by (auto simp add: basis_def cond_value_iff cond_application_beta Cart_lambda_beta setsum_delta[OF finite_atLeastAtMost] cong del: if_weak_cong) + +lemma matrix_vector_mul_component: + assumes k: "k \ {1.. dimindex (UNIV :: 'm set)}" + shows "((A::'a::semiring_1^'n'^'m) *v x)$k = (A$k) \ x" + using k + by (simp add: matrix_vector_mult_def Cart_lambda_beta dot_def) + +lemma dot_lmul_matrix: "((x::'a::comm_semiring_1 ^'n) v* A) \ y = x \ (A *v y)" + apply (simp add: dot_def matrix_vector_mult_def vector_matrix_mult_def setsum_left_distrib setsum_right_distrib Cart_lambda_beta mult_ac) + apply (subst setsum_commute) + by simp + +lemma transp_mat: "transp (mat n) = mat n" + by (vector transp_def mat_def) + +lemma transp_transp: "transp(transp A) = A" + by (vector transp_def) + +lemma row_transp: + fixes A:: "'a::semiring_1^'n^'m" + assumes i: "i \ {1.. dimindex (UNIV :: 'n set)}" + shows "row i (transp A) = column i A" + using i + by (simp add: row_def column_def transp_def Cart_eq Cart_lambda_beta) + +lemma column_transp: + fixes A:: "'a::semiring_1^'n^'m" + assumes i: "i \ {1.. dimindex (UNIV :: 'm set)}" + shows "column i (transp A) = row i A" + using i + by (simp add: row_def column_def transp_def Cart_eq Cart_lambda_beta) + +lemma rows_transp: "rows(transp (A::'a::semiring_1^'n^'m)) = columns A" +apply (auto simp add: rows_def columns_def row_transp intro: set_ext) +apply (rule_tac x=i in exI) +apply (auto simp add: row_transp) +done + +lemma columns_transp: "columns(transp (A::'a::semiring_1^'n^'m)) = rows A" by (metis transp_transp rows_transp) + +text{* Two sometimes fruitful ways of looking at matrix-vector multiplication. *} + +lemma matrix_mult_dot: "A *v x = (\ i. A$i \ x)" + by (simp add: matrix_vector_mult_def dot_def) + +lemma matrix_mult_vsum: "(A::'a::comm_semiring_1^'n^'m) *v x = setsum (\i. (x$i) *s column i A) {1 .. dimindex(UNIV:: 'n set)}" + by (simp add: matrix_vector_mult_def Cart_eq setsum_component Cart_lambda_beta vector_component column_def mult_commute) + +lemma vector_componentwise: + "(x::'a::ring_1^'n) = (\ j. setsum (\i. (x$i) * (basis i :: 'a^'n)$j) {1..dimindex(UNIV :: 'n set)})" + apply (subst basis_expansion[symmetric]) + by (vector Cart_eq Cart_lambda_beta setsum_component) + +lemma linear_componentwise: + fixes f:: "'a::ring_1 ^ 'm \ 'a ^ 'n" + assumes lf: "linear f" and j: "j \ {1 .. dimindex (UNIV :: 'n set)}" + shows "(f x)$j = setsum (\i. (x$i) * (f (basis i)$j)) {1 .. dimindex (UNIV :: 'm set)}" (is "?lhs = ?rhs") +proof- + let ?M = "{1 .. dimindex (UNIV :: 'm set)}" + let ?N = "{1 .. dimindex (UNIV :: 'n set)}" + have fM: "finite ?M" by simp + have "?rhs = (setsum (\i.(x$i) *s f (basis i) ) ?M)$j" + unfolding vector_smult_component[OF j, symmetric] + unfolding setsum_component[OF j, of "(\i.(x$i) *s f (basis i :: 'a^'m))" ?M] + .. + then show ?thesis unfolding linear_setsum_mul[OF lf fM, symmetric] basis_expansion .. +qed + +text{* Inverse matrices (not necessarily square) *} + +definition "invertible(A::'a::semiring_1^'n^'m) \ (\A'::'a^'m^'n. A ** A' = mat 1 \ A' ** A = mat 1)" + +definition "matrix_inv(A:: 'a::semiring_1^'n^'m) = + (SOME A'::'a^'m^'n. A ** A' = mat 1 \ A' ** A = mat 1)" + +text{* Correspondence between matrices and linear operators. *} + +definition matrix:: "('a::{plus,times, one, zero}^'m \ 'a ^ 'n) \ 'a^'m^'n" +where "matrix f = (\ i j. (f(basis j))$i)" + +lemma matrix_vector_mul_linear: "linear(\x. A *v (x::'a::comm_semiring_1 ^ 'n))" + by (simp add: linear_def matrix_vector_mult_def Cart_eq Cart_lambda_beta vector_component ring_simps setsum_right_distrib setsum_addf) + +lemma matrix_works: assumes lf: "linear f" shows "matrix f *v x = f (x::'a::comm_ring_1 ^ 'n)" +apply (simp add: matrix_def matrix_vector_mult_def Cart_eq Cart_lambda_beta mult_commute del: One_nat_def) +apply clarify +apply (rule linear_componentwise[OF lf, symmetric]) +apply simp +done + +lemma matrix_vector_mul: "linear f ==> f = (\x. matrix f *v (x::'a::comm_ring_1 ^ 'n))" by (simp add: ext matrix_works) + +lemma matrix_of_matrix_vector_mul: "matrix(\x. A *v (x :: 'a:: comm_ring_1 ^ 'n)) = A" + by (simp add: matrix_eq matrix_vector_mul_linear matrix_works) + +lemma matrix_compose: + assumes lf: "linear (f::'a::comm_ring_1^'n \ _)" and lg: "linear g" + shows "matrix (g o f) = matrix g ** matrix f" + using lf lg linear_compose[OF lf lg] matrix_works[OF linear_compose[OF lf lg]] + by (simp add: matrix_eq matrix_works matrix_vector_mul_assoc[symmetric] o_def) + +lemma matrix_vector_column:"(A::'a::comm_semiring_1^'n^'m) *v x = setsum (\i. (x$i) *s ((transp A)$i)) {1..dimindex(UNIV:: 'n set)}" + by (simp add: matrix_vector_mult_def transp_def Cart_eq Cart_lambda_beta setsum_component vector_component mult_commute) + +lemma adjoint_matrix: "adjoint(\x. (A::'a::comm_ring_1^'n^'m) *v x) = (\x. transp A *v x)" + apply (rule adjoint_unique[symmetric]) + apply (rule matrix_vector_mul_linear) + apply (simp add: transp_def dot_def Cart_lambda_beta matrix_vector_mult_def setsum_left_distrib setsum_right_distrib) + apply (subst setsum_commute) + apply (auto simp add: mult_ac) + done + +lemma matrix_adjoint: assumes lf: "linear (f :: 'a::comm_ring_1^'n \ 'a ^ 'm)" + shows "matrix(adjoint f) = transp(matrix f)" + apply (subst matrix_vector_mul[OF lf]) + unfolding adjoint_matrix matrix_of_matrix_vector_mul .. + +subsection{* Interlude: Some properties of real sets *} + +lemma seq_mono_lemma: assumes "\(n::nat) \ m. (d n :: real) < e n" and "\n \ m. e n <= e m" + shows "\n \ m. d n < e m" + using prems apply auto + apply (erule_tac x="n" in allE) + apply (erule_tac x="n" in allE) + apply auto + done + + +lemma real_convex_bound_lt: + assumes xa: "(x::real) < a" and ya: "y < a" and u: "0 <= u" and v: "0 <= v" + and uv: "u + v = 1" + shows "u * x + v * y < a" +proof- + have uv': "u = 0 \ v \ 0" using u v uv by arith + have "a = a * (u + v)" unfolding uv by simp + hence th: "u * a + v * a = a" by (simp add: ring_simps) + from xa u have "u \ 0 \ u*x < u*a" by (simp add: mult_compare_simps) + from ya v have "v \ 0 \ v * y < v * a" by (simp add: mult_compare_simps) + from xa ya u v have "u * x + v * y < u * a + v * a" + apply (cases "u = 0", simp_all add: uv') + apply(rule mult_strict_left_mono) + using uv' apply simp_all + + apply (rule add_less_le_mono) + apply(rule mult_strict_left_mono) + apply simp_all + apply (rule mult_left_mono) + apply simp_all + done + thus ?thesis unfolding th . +qed + +lemma real_convex_bound_le: + assumes xa: "(x::real) \ a" and ya: "y \ a" and u: "0 <= u" and v: "0 <= v" + and uv: "u + v = 1" + shows "u * x + v * y \ a" +proof- + from xa ya u v have "u * x + v * y \ u * a + v * a" by (simp add: add_mono mult_left_mono) + also have "\ \ (u + v) * a" by (simp add: ring_simps) + finally show ?thesis unfolding uv by simp +qed + +lemma infinite_enumerate: assumes fS: "infinite S" + shows "\r. subseq r \ (\n. r n \ S)" +unfolding subseq_def +using enumerate_in_set[OF fS] enumerate_mono[of _ _ S] fS by auto + +lemma approachable_lt_le: "(\(d::real)>0. \x. f x < d \ P x) \ (\d>0. \x. f x \ d \ P x)" +apply auto +apply (rule_tac x="d/2" in exI) +apply auto +done + + +lemma triangle_lemma: + assumes x: "0 <= (x::real)" and y:"0 <= y" and z: "0 <= z" and xy: "x^2 <= y^2 + z^2" + shows "x <= y + z" +proof- + have "y^2 + z^2 \ y^2 + 2*y*z + z^2" using z y by (simp add: zero_compare_simps) + with xy have th: "x ^2 \ (y+z)^2" by (simp add: power2_eq_square ring_simps) + from y z have yz: "y + z \ 0" by arith + from power2_le_imp_le[OF th yz] show ?thesis . +qed + + +lemma lambda_skolem: "(\i \ {1 .. dimindex(UNIV :: 'n set)}. \x. P i x) \ + (\x::'a ^ 'n. \i \ {1 .. dimindex(UNIV:: 'n set)}. P i (x$i))" (is "?lhs \ ?rhs") +proof- + let ?S = "{1 .. dimindex(UNIV :: 'n set)}" + {assume H: "?rhs" + then have ?lhs by auto} + moreover + {assume H: "?lhs" + then obtain f where f:"\i\ ?S. P i (f i)" unfolding Ball_def choice_iff by metis + let ?x = "(\ i. (f i)) :: 'a ^ 'n" + {fix i assume i: "i \ ?S" + with f i have "P i (f i)" by metis + then have "P i (?x$i)" using Cart_lambda_beta[of f, rule_format, OF i] by auto + } + hence "\i \ ?S. P i (?x$i)" by metis + hence ?rhs by metis } + ultimately show ?thesis by metis +qed + +(* Supremum and infimum of real sets *) + + +definition rsup:: "real set \ real" where + "rsup S = (SOME a. isLub UNIV S a)" + +lemma rsup_alt: "rsup S = (SOME a. (\x \ S. x \ a) \ (\b. (\x \ S. x \ b) \ a \ b))" by (auto simp add: isLub_def rsup_def leastP_def isUb_def setle_def setge_def) + +lemma rsup: assumes Se: "S \ {}" and b: "\b. S *<= b" + shows "isLub UNIV S (rsup S)" +using Se b +unfolding rsup_def +apply clarify +apply (rule someI_ex) +apply (rule reals_complete) +by (auto simp add: isUb_def setle_def) + +lemma rsup_le: assumes Se: "S \ {}" and Sb: "S *<= b" shows "rsup S \ b" +proof- + from Sb have bu: "isUb UNIV S b" by (simp add: isUb_def setle_def) + from rsup[OF Se] Sb have "isLub UNIV S (rsup S)" by blast + then show ?thesis using bu by (auto simp add: isLub_def leastP_def setle_def setge_def) +qed + +lemma rsup_finite_Max: assumes fS: "finite S" and Se: "S \ {}" + shows "rsup S = Max S" +using fS Se +proof- + let ?m = "Max S" + from Max_ge[OF fS] have Sm: "\ x\ S. x \ ?m" by metis + with rsup[OF Se] have lub: "isLub UNIV S (rsup S)" by (metis setle_def) + from Max_in[OF fS Se] lub have mrS: "?m \ rsup S" + by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def) + moreover + have "rsup S \ ?m" using Sm lub + by (auto simp add: isLub_def leastP_def isUb_def setle_def setge_def) + ultimately show ?thesis by arith +qed + +lemma rsup_finite_in: assumes fS: "finite S" and Se: "S \ {}" + shows "rsup S \ S" + using rsup_finite_Max[OF fS Se] Max_in[OF fS Se] by metis + +lemma rsup_finite_Ub: assumes fS: "finite S" and Se: "S \ {}" + shows "isUb S S (rsup S)" + using rsup_finite_Max[OF fS Se] rsup_finite_in[OF fS Se] Max_ge[OF fS] + unfolding isUb_def setle_def by metis + +lemma rsup_finite_ge_iff: assumes fS: "finite S" and Se: "S \ {}" + shows "a \ rsup S \ (\ x \ S. a \ x)" +using rsup_finite_Ub[OF fS Se] by (auto simp add: isUb_def setle_def) + +lemma rsup_finite_le_iff: assumes fS: "finite S" and Se: "S \ {}" + shows "a \ rsup S \ (\ x \ S. a \ x)" +using rsup_finite_Ub[OF fS Se] by (auto simp add: isUb_def setle_def) + +lemma rsup_finite_gt_iff: assumes fS: "finite S" and Se: "S \ {}" + shows "a < rsup S \ (\ x \ S. a < x)" +using rsup_finite_Ub[OF fS Se] by (auto simp add: isUb_def setle_def) + +lemma rsup_finite_lt_iff: assumes fS: "finite S" and Se: "S \ {}" + shows "a > rsup S \ (\ x \ S. a > x)" +using rsup_finite_Ub[OF fS Se] by (auto simp add: isUb_def setle_def) + +lemma rsup_unique: assumes b: "S *<= b" and S: "\b' < b. \x \ S. b' < x" + shows "rsup S = b" +using b S +unfolding setle_def rsup_alt +apply - +apply (rule some_equality) +apply (metis linorder_not_le order_eq_iff[symmetric])+ +done + +lemma rsup_le_subset: "S\{} \ S \ T \ (\b. T *<= b) \ rsup S \ rsup T" + apply (rule rsup_le) + apply simp + using rsup[of T] by (auto simp add: isLub_def leastP_def setge_def setle_def isUb_def) + +lemma isUb_def': "isUb R S = (\x. S *<= x \ x \ R)" + apply (rule ext) + by (metis isUb_def) + +lemma UNIV_trivial: "UNIV x" using UNIV_I[of x] by (metis mem_def) +lemma rsup_bounds: assumes Se: "S \ {}" and l: "a <=* S" and u: "S *<= b" + shows "a \ rsup S \ rsup S \ b" +proof- + from rsup[OF Se] u have lub: "isLub UNIV S (rsup S)" by blast + hence b: "rsup S \ b" using u by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def') + from Se obtain y where y: "y \ S" by blast + from lub l have "a \ rsup S" apply (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def') + apply (erule ballE[where x=y]) + apply (erule ballE[where x=y]) + apply arith + using y apply auto + done + with b show ?thesis by blast +qed + +lemma rsup_abs_le: "S \ {} \ (\x\S. \x\ \ a) \ \rsup S\ \ a" + unfolding abs_le_interval_iff using rsup_bounds[of S "-a" a] + by (auto simp add: setge_def setle_def) + +lemma rsup_asclose: assumes S:"S \ {}" and b: "\x\S. \x - l\ \ e" shows "\rsup S - l\ \ e" +proof- + have th: "\(x::real) l e. \x - l\ \ e \ l - e \ x \ x \ l + e" by arith + show ?thesis using S b rsup_bounds[of S "l - e" "l+e"] unfolding th + by (auto simp add: setge_def setle_def) +qed + +definition rinf:: "real set \ real" where + "rinf S = (SOME a. isGlb UNIV S a)" + +lemma rinf_alt: "rinf S = (SOME a. (\x \ S. x \ a) \ (\b. (\x \ S. x \ b) \ a \ b))" by (auto simp add: isGlb_def rinf_def greatestP_def isLb_def setle_def setge_def) + +lemma reals_complete_Glb: assumes Se: "\x. x \ S" and lb: "\ y. isLb UNIV S y" + shows "\(t::real). isGlb UNIV S t" +proof- + let ?M = "uminus ` S" + from lb have th: "\y. isUb UNIV ?M y" apply (auto simp add: isUb_def isLb_def setle_def setge_def) + by (rule_tac x="-y" in exI, auto) + from Se have Me: "\x. x \ ?M" by blast + from reals_complete[OF Me th] obtain t where t: "isLub UNIV ?M t" by blast + have "isGlb UNIV S (- t)" using t + apply (auto simp add: isLub_def isGlb_def leastP_def greatestP_def setle_def setge_def isUb_def isLb_def) + apply (erule_tac x="-y" in allE) + apply auto + done + then show ?thesis by metis +qed + +lemma rinf: assumes Se: "S \ {}" and b: "\b. b <=* S" + shows "isGlb UNIV S (rinf S)" +using Se b +unfolding rinf_def +apply clarify +apply (rule someI_ex) +apply (rule reals_complete_Glb) +apply (auto simp add: isLb_def setle_def setge_def) +done + +lemma rinf_ge: assumes Se: "S \ {}" and Sb: "b <=* S" shows "rinf S \ b" +proof- + from Sb have bu: "isLb UNIV S b" by (simp add: isLb_def setge_def) + from rinf[OF Se] Sb have "isGlb UNIV S (rinf S)" by blast + then show ?thesis using bu by (auto simp add: isGlb_def greatestP_def setle_def setge_def) +qed + +lemma rinf_finite_Min: assumes fS: "finite S" and Se: "S \ {}" + shows "rinf S = Min S" +using fS Se +proof- + let ?m = "Min S" + from Min_le[OF fS] have Sm: "\ x\ S. x \ ?m" by metis + with rinf[OF Se] have glb: "isGlb UNIV S (rinf S)" by (metis setge_def) + from Min_in[OF fS Se] glb have mrS: "?m \ rinf S" + by (auto simp add: isGlb_def greatestP_def setle_def setge_def isLb_def) + moreover + have "rinf S \ ?m" using Sm glb + by (auto simp add: isGlb_def greatestP_def isLb_def setle_def setge_def) + ultimately show ?thesis by arith +qed + +lemma rinf_finite_in: assumes fS: "finite S" and Se: "S \ {}" + shows "rinf S \ S" + using rinf_finite_Min[OF fS Se] Min_in[OF fS Se] by metis + +lemma rinf_finite_Lb: assumes fS: "finite S" and Se: "S \ {}" + shows "isLb S S (rinf S)" + using rinf_finite_Min[OF fS Se] rinf_finite_in[OF fS Se] Min_le[OF fS] + unfolding isLb_def setge_def by metis + +lemma rinf_finite_ge_iff: assumes fS: "finite S" and Se: "S \ {}" + shows "a \ rinf S \ (\ x \ S. a \ x)" +using rinf_finite_Lb[OF fS Se] by (auto simp add: isLb_def setge_def) + +lemma rinf_finite_le_iff: assumes fS: "finite S" and Se: "S \ {}" + shows "a \ rinf S \ (\ x \ S. a \ x)" +using rinf_finite_Lb[OF fS Se] by (auto simp add: isLb_def setge_def) + +lemma rinf_finite_gt_iff: assumes fS: "finite S" and Se: "S \ {}" + shows "a < rinf S \ (\ x \ S. a < x)" +using rinf_finite_Lb[OF fS Se] by (auto simp add: isLb_def setge_def) + +lemma rinf_finite_lt_iff: assumes fS: "finite S" and Se: "S \ {}" + shows "a > rinf S \ (\ x \ S. a > x)" +using rinf_finite_Lb[OF fS Se] by (auto simp add: isLb_def setge_def) + +lemma rinf_unique: assumes b: "b <=* S" and S: "\b' > b. \x \ S. b' > x" + shows "rinf S = b" +using b S +unfolding setge_def rinf_alt +apply - +apply (rule some_equality) +apply (metis linorder_not_le order_eq_iff[symmetric])+ +done + +lemma rinf_ge_subset: "S\{} \ S \ T \ (\b. b <=* T) \ rinf S >= rinf T" + apply (rule rinf_ge) + apply simp + using rinf[of T] by (auto simp add: isGlb_def greatestP_def setge_def setle_def isLb_def) + +lemma isLb_def': "isLb R S = (\x. x <=* S \ x \ R)" + apply (rule ext) + by (metis isLb_def) + +lemma rinf_bounds: assumes Se: "S \ {}" and l: "a <=* S" and u: "S *<= b" + shows "a \ rinf S \ rinf S \ b" +proof- + from rinf[OF Se] l have lub: "isGlb UNIV S (rinf S)" by blast + hence b: "a \ rinf S" using l by (auto simp add: isGlb_def greatestP_def setle_def setge_def isLb_def') + from Se obtain y where y: "y \ S" by blast + from lub u have "b \ rinf S" apply (auto simp add: isGlb_def greatestP_def setle_def setge_def isLb_def') + apply (erule ballE[where x=y]) + apply (erule ballE[where x=y]) + apply arith + using y apply auto + done + with b show ?thesis by blast +qed + +lemma rinf_abs_ge: "S \ {} \ (\x\S. \x\ \ a) \ \rinf S\ \ a" + unfolding abs_le_interval_iff using rinf_bounds[of S "-a" a] + by (auto simp add: setge_def setle_def) + +lemma rinf_asclose: assumes S:"S \ {}" and b: "\x\S. \x - l\ \ e" shows "\rinf S - l\ \ e" +proof- + have th: "\(x::real) l e. \x - l\ \ e \ l - e \ x \ x \ l + e" by arith + show ?thesis using S b rinf_bounds[of S "l - e" "l+e"] unfolding th + by (auto simp add: setge_def setle_def) +qed + + + +subsection{* Operator norm. *} + +definition "onorm f = rsup {norm (f x)| x. norm x = 1}" + +lemma norm_bound_generalize: + fixes f:: "real ^'n \ real^'m" + assumes lf: "linear f" + shows "(\x. norm x = 1 \ norm (f x) \ b) \ (\x. norm (f x) \ b * norm x)" (is "?lhs \ ?rhs") +proof- + {assume H: ?rhs + {fix x :: "real^'n" assume x: "norm x = 1" + from H[rule_format, of x] x have "norm (f x) \ b" by simp} + then have ?lhs by blast } + + moreover + {assume H: ?lhs + from H[rule_format, of "basis 1"] + have bp: "b \ 0" using norm_pos_le[of "f (basis 1)"] dimindex_ge_1[of "UNIV:: 'n set"] + by (auto simp add: norm_basis) + {fix x :: "real ^'n" + {assume "x = 0" + then have "norm (f x) \ b * norm x" by (simp add: linear_0[OF lf] norm_0 bp)} + moreover + {assume x0: "x \ 0" + hence n0: "norm x \ 0" by (metis norm_eq_0) + let ?c = "1/ norm x" + have "norm (?c*s x) = 1" by (simp add: n0 norm_mul) + with H have "norm (f(?c*s x)) \ b" by blast + hence "?c * norm (f x) \ b" + by (simp add: linear_cmul[OF lf] norm_mul) + hence "norm (f x) \ b * norm x" + using n0 norm_pos_le[of x] by (auto simp add: field_simps)} + ultimately have "norm (f x) \ b * norm x" by blast} + then have ?rhs by blast} + ultimately show ?thesis by blast +qed + +lemma onorm: + fixes f:: "real ^'n \ real ^'m" + assumes lf: "linear f" + shows "norm (f x) <= onorm f * norm x" + and "\x. norm (f x) <= b * norm x \ onorm f <= b" +proof- + { + let ?S = "{norm (f x) |x. norm x = 1}" + have Se: "?S \ {}" using norm_basis_1 by auto + from linear_bounded[OF lf] have b: "\ b. ?S *<= b" + unfolding norm_bound_generalize[OF lf, symmetric] by (auto simp add: setle_def) + {from rsup[OF Se b, unfolded onorm_def[symmetric]] + show "norm (f x) <= onorm f * norm x" + apply - + apply (rule spec[where x = x]) + unfolding norm_bound_generalize[OF lf, symmetric] + by (auto simp add: isLub_def isUb_def leastP_def setge_def setle_def)} + { + show "\x. norm (f x) <= b * norm x \ onorm f <= b" + using rsup[OF Se b, unfolded onorm_def[symmetric]] + unfolding norm_bound_generalize[OF lf, symmetric] + by (auto simp add: isLub_def isUb_def leastP_def setge_def setle_def)} + } +qed + +lemma onorm_pos_le: assumes lf: "linear (f::real ^'n \ real ^'m)" shows "0 <= onorm f" + using order_trans[OF norm_pos_le onorm(1)[OF lf, of "basis 1"], unfolded norm_basis_1] by simp + +lemma onorm_eq_0: assumes lf: "linear (f::real ^'n \ real ^'m)" + shows "onorm f = 0 \ (\x. f x = 0)" + using onorm[OF lf] + apply (auto simp add: norm_0 onorm_pos_le norm_le_0) + apply atomize + apply (erule allE[where x="0::real"]) + using onorm_pos_le[OF lf] + apply arith + done + +lemma onorm_const: "onorm(\x::real^'n. (y::real ^ 'm)) = norm y" +proof- + let ?f = "\x::real^'n. (y::real ^ 'm)" + have th: "{norm (?f x)| x. norm x = 1} = {norm y}" + by(auto intro: vector_choose_size set_ext) + show ?thesis + unfolding onorm_def th + apply (rule rsup_unique) by (simp_all add: setle_def) +qed + +lemma onorm_pos_lt: assumes lf: "linear (f::real ^ 'n \ real ^'m)" + shows "0 < onorm f \ ~(\x. f x = 0)" + unfolding onorm_eq_0[OF lf, symmetric] + using onorm_pos_le[OF lf] by arith + +lemma onorm_compose: + assumes lf: "linear (f::real ^'n \ real ^'m)" and lg: "linear g" + shows "onorm (f o g) <= onorm f * onorm g" + apply (rule onorm(2)[OF linear_compose[OF lg lf], rule_format]) + unfolding o_def + apply (subst mult_assoc) + apply (rule order_trans) + apply (rule onorm(1)[OF lf]) + apply (rule mult_mono1) + apply (rule onorm(1)[OF lg]) + apply (rule onorm_pos_le[OF lf]) + done + +lemma onorm_neg_lemma: assumes lf: "linear (f::real ^'n \ real^'m)" + shows "onorm (\x. - f x) \ onorm f" + using onorm[OF linear_compose_neg[OF lf]] onorm[OF lf] + unfolding norm_neg by metis + +lemma onorm_neg: assumes lf: "linear (f::real ^'n \ real^'m)" + shows "onorm (\x. - f x) = onorm f" + using onorm_neg_lemma[OF lf] onorm_neg_lemma[OF linear_compose_neg[OF lf]] + by simp + +lemma onorm_triangle: + assumes lf: "linear (f::real ^'n \ real ^'m)" and lg: "linear g" + shows "onorm (\x. f x + g x) <= onorm f + onorm g" + apply(rule onorm(2)[OF linear_compose_add[OF lf lg], rule_format]) + apply (rule order_trans) + apply (rule norm_triangle) + apply (simp add: distrib) + apply (rule add_mono) + apply (rule onorm(1)[OF lf]) + apply (rule onorm(1)[OF lg]) + done + +lemma onorm_triangle_le: "linear (f::real ^'n \ real ^'m) \ linear g \ onorm(f) + onorm(g) <= e + \ onorm(\x. f x + g x) <= e" + apply (rule order_trans) + apply (rule onorm_triangle) + apply assumption+ + done + +lemma onorm_triangle_lt: "linear (f::real ^'n \ real ^'m) \ linear g \ onorm(f) + onorm(g) < e + ==> onorm(\x. f x + g x) < e" + apply (rule order_le_less_trans) + apply (rule onorm_triangle) + by assumption+ + +(* "lift" from 'a to 'a^1 and "drop" from 'a^1 to 'a -- FIXME: potential use of transfer *) + +definition vec1:: "'a \ 'a ^ 1" where "vec1 x = (\ i. x)" + +definition dest_vec1:: "'a ^1 \ 'a" + where "dest_vec1 x = (x$1)" + +lemma vec1_component[simp]: "(vec1 x)$1 = x" + by (simp add: vec1_def) + +lemma vec1_dest_vec1[simp]: "vec1(dest_vec1 x) = x" "dest_vec1(vec1 y) = y" + by (simp_all add: vec1_def dest_vec1_def Cart_eq Cart_lambda_beta dimindex_def del: One_nat_def) + +lemma forall_vec1: "(\x. P x) \ (\x. P (vec1 x))" by (metis vec1_dest_vec1) + +lemma exists_vec1: "(\x. P x) \ (\x. P(vec1 x))" by (metis vec1_dest_vec1) + +lemma forall_dest_vec1: "(\x. P x) \ (\x. P(dest_vec1 x))" by (metis vec1_dest_vec1) + +lemma exists_dest_vec1: "(\x. P x) \ (\x. P(dest_vec1 x))"by (metis vec1_dest_vec1) + +lemma vec1_eq[simp]: "vec1 x = vec1 y \ x = y" by (metis vec1_dest_vec1) + +lemma dest_vec1_eq[simp]: "dest_vec1 x = dest_vec1 y \ x = y" by (metis vec1_dest_vec1) + +lemma vec1_in_image_vec1: "vec1 x \ (vec1 ` S) \ x \ S" by auto + +lemma vec1_vec: "vec1 x = vec x" by (vector vec1_def) + +lemma vec1_add: "vec1(x + y) = vec1 x + vec1 y" by (vector vec1_def) +lemma vec1_sub: "vec1(x - y) = vec1 x - vec1 y" by (vector vec1_def) +lemma vec1_cmul: "vec1(c* x) = c *s vec1 x " by (vector vec1_def) +lemma vec1_neg: "vec1(- x) = - vec1 x " by (vector vec1_def) + +lemma vec1_setsum: assumes fS: "finite S" + shows "vec1(setsum f S) = setsum (vec1 o f) S" + apply (induct rule: finite_induct[OF fS]) + apply (simp add: vec1_vec) + apply (auto simp add: vec1_add) + done + +lemma dest_vec1_lambda: "dest_vec1(\ i. x i) = x 1" + by (simp add: dest_vec1_def) + +lemma dest_vec1_vec: "dest_vec1(vec x) = x" + by (simp add: vec1_vec[symmetric]) + +lemma dest_vec1_add: "dest_vec1(x + y) = dest_vec1 x + dest_vec1 y" + by (metis vec1_dest_vec1 vec1_add) + +lemma dest_vec1_sub: "dest_vec1(x - y) = dest_vec1 x - dest_vec1 y" + by (metis vec1_dest_vec1 vec1_sub) + +lemma dest_vec1_cmul: "dest_vec1(c*sx) = c * dest_vec1 x" + by (metis vec1_dest_vec1 vec1_cmul) + +lemma dest_vec1_neg: "dest_vec1(- x) = - dest_vec1 x" + by (metis vec1_dest_vec1 vec1_neg) + +lemma dest_vec1_0[simp]: "dest_vec1 0 = 0" by (metis vec_0 dest_vec1_vec) + +lemma dest_vec1_sum: assumes fS: "finite S" + shows "dest_vec1(setsum f S) = setsum (dest_vec1 o f) S" + apply (induct rule: finite_induct[OF fS]) + apply (simp add: dest_vec1_vec) + apply (auto simp add: dest_vec1_add) + done + +lemma norm_vec1: "norm(vec1 x) = abs(x)" + by (simp add: vec1_def norm_real) + +lemma dist_vec1: "dist(vec1 x) (vec1 y) = abs(x - y)" + by (simp only: dist_real vec1_component) +lemma abs_dest_vec1: "norm x = \dest_vec1 x\" + by (metis vec1_dest_vec1 norm_vec1) + +lemma linear_vmul_dest_vec1: + fixes f:: "'a::semiring_1^'n \ 'a^1" + shows "linear f \ linear (\x. dest_vec1(f x) *s v)" + unfolding dest_vec1_def + apply (rule linear_vmul_component) + by (auto simp add: dimindex_def) + +lemma linear_from_scalars: + assumes lf: "linear (f::'a::comm_ring_1 ^1 \ 'a^'n)" + shows "f = (\x. dest_vec1 x *s column 1 (matrix f))" + apply (rule ext) + apply (subst matrix_works[OF lf, symmetric]) + apply (auto simp add: Cart_eq matrix_vector_mult_def dest_vec1_def column_def Cart_lambda_beta vector_component dimindex_def mult_commute del: One_nat_def ) + done + +lemma linear_to_scalars: assumes lf: "linear (f::'a::comm_ring_1 ^'n \ 'a^1)" + shows "f = (\x. vec1(row 1 (matrix f) \ x))" + apply (rule ext) + apply (subst matrix_works[OF lf, symmetric]) + apply (auto simp add: Cart_eq matrix_vector_mult_def vec1_def row_def Cart_lambda_beta vector_component dimindex_def dot_def mult_commute) + done + +lemma dest_vec1_eq_0: "dest_vec1 x = 0 \ x = 0" + by (simp add: dest_vec1_eq[symmetric]) + +lemma setsum_scalars: assumes fS: "finite S" + shows "setsum f S = vec1 (setsum (dest_vec1 o f) S)" + unfolding vec1_setsum[OF fS] by simp + +lemma dest_vec1_wlog_le: "(\(x::'a::linorder ^ 1) y. P x y \ P y x) \ (\x y. dest_vec1 x <= dest_vec1 y ==> P x y) \ P x y" + apply (cases "dest_vec1 x \ dest_vec1 y") + apply simp + apply (subgoal_tac "dest_vec1 y \ dest_vec1 x") + apply (auto) + done + +text{* Pasting vectors. *} + +lemma linear_fstcart: "linear fstcart" + by (auto simp add: linear_def fstcart_def Cart_eq Cart_lambda_beta vector_component dimindex_finite_sum) + +lemma linear_sndcart: "linear sndcart" + by (auto simp add: linear_def sndcart_def Cart_eq Cart_lambda_beta vector_component dimindex_finite_sum) + +lemma fstcart_vec[simp]: "fstcart(vec x) = vec x" + by (vector fstcart_def vec_def dimindex_finite_sum) + +lemma fstcart_add[simp]:"fstcart(x + y) = fstcart (x::'a::{plus,times}^('b,'c) finite_sum) + fstcart y" + using linear_fstcart[unfolded linear_def] by blast + +lemma fstcart_cmul[simp]:"fstcart(c*s x) = c*s fstcart (x::'a::{plus,times}^('b,'c) finite_sum)" + using linear_fstcart[unfolded linear_def] by blast + +lemma fstcart_neg[simp]:"fstcart(- x) = - fstcart (x::'a::ring_1^('b,'c) finite_sum)" +unfolding vector_sneg_minus1 fstcart_cmul .. + +lemma fstcart_sub[simp]:"fstcart(x - y) = fstcart (x::'a::ring_1^('b,'c) finite_sum) - fstcart y" + unfolding diff_def fstcart_add fstcart_neg .. + +lemma fstcart_setsum: + fixes f:: "'d \ 'a::semiring_1^_" + assumes fS: "finite S" + shows "fstcart (setsum f S) = setsum (\i. fstcart (f i)) S" + by (induct rule: finite_induct[OF fS], simp_all add: vec_0[symmetric] del: vec_0) + +lemma sndcart_vec[simp]: "sndcart(vec x) = vec x" + by (vector sndcart_def vec_def dimindex_finite_sum) + +lemma sndcart_add[simp]:"sndcart(x + y) = sndcart (x::'a::{plus,times}^('b,'c) finite_sum) + sndcart y" + using linear_sndcart[unfolded linear_def] by blast + +lemma sndcart_cmul[simp]:"sndcart(c*s x) = c*s sndcart (x::'a::{plus,times}^('b,'c) finite_sum)" + using linear_sndcart[unfolded linear_def] by blast + +lemma sndcart_neg[simp]:"sndcart(- x) = - sndcart (x::'a::ring_1^('b,'c) finite_sum)" +unfolding vector_sneg_minus1 sndcart_cmul .. + +lemma sndcart_sub[simp]:"sndcart(x - y) = sndcart (x::'a::ring_1^('b,'c) finite_sum) - sndcart y" + unfolding diff_def sndcart_add sndcart_neg .. + +lemma sndcart_setsum: + fixes f:: "'d \ 'a::semiring_1^_" + assumes fS: "finite S" + shows "sndcart (setsum f S) = setsum (\i. sndcart (f i)) S" + by (induct rule: finite_induct[OF fS], simp_all add: vec_0[symmetric] del: vec_0) + +lemma pastecart_vec[simp]: "pastecart (vec x) (vec x) = vec x" + by (simp add: pastecart_eq fstcart_vec sndcart_vec fstcart_pastecart sndcart_pastecart) + +lemma pastecart_add[simp]:"pastecart (x1::'a::{plus,times}^_) y1 + pastecart x2 y2 = pastecart (x1 + x2) (y1 + y2)" + by (simp add: pastecart_eq fstcart_add sndcart_add fstcart_pastecart sndcart_pastecart) + +lemma pastecart_cmul[simp]: "pastecart (c *s (x1::'a::{plus,times}^_)) (c *s y1) = c *s pastecart x1 y1" + by (simp add: pastecart_eq fstcart_pastecart sndcart_pastecart) + +lemma pastecart_neg[simp]: "pastecart (- (x::'a::ring_1^_)) (- y) = - pastecart x y" + unfolding vector_sneg_minus1 pastecart_cmul .. + +lemma pastecart_sub: "pastecart (x1::'a::ring_1^_) y1 - pastecart x2 y2 = pastecart (x1 - x2) (y1 - y2)" + by (simp add: diff_def pastecart_neg[symmetric] del: pastecart_neg) + +lemma pastecart_setsum: + fixes f:: "'d \ 'a::semiring_1^_" + assumes fS: "finite S" + shows "pastecart (setsum f S) (setsum g S) = setsum (\i. pastecart (f i) (g i)) S" + by (simp add: pastecart_eq fstcart_setsum[OF fS] sndcart_setsum[OF fS] fstcart_pastecart sndcart_pastecart) + +lemma norm_fstcart: "norm(fstcart x) <= norm (x::real ^('n,'m) finite_sum)" +proof- + let ?n = "dimindex (UNIV :: 'n set)" + let ?m = "dimindex (UNIV :: 'm set)" + let ?N = "{1 .. ?n}" + let ?M = "{1 .. ?m}" + let ?NM = "{1 .. dimindex (UNIV :: ('n,'m) finite_sum set)}" + have th_0: "1 \ ?n +1" by simp + have th0: "norm x = norm (pastecart (fstcart x) (sndcart x))" + by (simp add: pastecart_fst_snd) + have th1: "fstcart x \ fstcart x \ pastecart (fstcart x) (sndcart x) \ pastecart (fstcart x) (sndcart x)" + by (simp add: dot_def setsum_add_split[OF th_0, of _ ?m] pastecart_def dimindex_finite_sum Cart_lambda_beta setsum_nonneg zero_le_square del: One_nat_def) + then show ?thesis + unfolding th0 + unfolding real_vector_norm_def real_sqrt_le_iff real_of_real_def id_def + by (simp add: dot_def dimindex_finite_sum Cart_lambda_beta) +qed + +lemma dist_fstcart: "dist(fstcart (x::real^_)) (fstcart y) <= dist x y" + by (metis dist_def fstcart_sub[symmetric] norm_fstcart) + +lemma norm_sndcart: "norm(sndcart x) <= norm (x::real ^('n,'m) finite_sum)" +proof- + let ?n = "dimindex (UNIV :: 'n set)" + let ?m = "dimindex (UNIV :: 'm set)" + let ?N = "{1 .. ?n}" + let ?M = "{1 .. ?m}" + let ?nm = "dimindex (UNIV :: ('n,'m) finite_sum set)" + let ?NM = "{1 .. ?nm}" + have thnm[simp]: "?nm = ?n + ?m" by (simp add: dimindex_finite_sum) + have th_0: "1 \ ?n +1" by simp + have th0: "norm x = norm (pastecart (fstcart x) (sndcart x))" + by (simp add: pastecart_fst_snd) + let ?f = "\n. n - ?n" + let ?S = "{?n+1 .. ?nm}" + have finj:"inj_on ?f ?S" + using dimindex_nonzero[of "UNIV :: 'n set"] dimindex_nonzero[of "UNIV :: 'm set"] + apply (simp add: Ball_def atLeastAtMost_iff inj_on_def dimindex_finite_sum del: One_nat_def) + by arith + have fS: "?f ` ?S = ?M" + apply (rule set_ext) + apply (simp add: image_iff Bex_def) using dimindex_nonzero[of "UNIV :: 'n set"] dimindex_nonzero[of "UNIV :: 'm set"] by arith + have th1: "sndcart x \ sndcart x \ pastecart (fstcart x) (sndcart x) \ pastecart (fstcart x) (sndcart x)" + by (simp add: dot_def setsum_add_split[OF th_0, of _ ?m] pastecart_def dimindex_finite_sum Cart_lambda_beta setsum_nonneg zero_le_square setsum_reindex[OF finj, unfolded fS] del: One_nat_def) + then show ?thesis + unfolding th0 + unfolding real_vector_norm_def real_sqrt_le_iff real_of_real_def id_def + by (simp add: dot_def dimindex_finite_sum Cart_lambda_beta) +qed + +lemma dist_sndcart: "dist(sndcart (x::real^_)) (sndcart y) <= dist x y" + by (metis dist_def sndcart_sub[symmetric] norm_sndcart) + +lemma dot_pastecart: "(pastecart (x1::'a::{times,comm_monoid_add}^'n) (x2::'a::{times,comm_monoid_add}^'m)) \ (pastecart y1 y2) = x1 \ y1 + x2 \ y2" +proof- + let ?n = "dimindex (UNIV :: 'n set)" + let ?m = "dimindex (UNIV :: 'm set)" + let ?N = "{1 .. ?n}" + let ?M = "{1 .. ?m}" + let ?nm = "dimindex (UNIV :: ('n,'m) finite_sum set)" + let ?NM = "{1 .. ?nm}" + have thnm: "?nm = ?n + ?m" by (simp add: dimindex_finite_sum) + have th_0: "1 \ ?n +1" by simp + have th_1: "\i. i \ {?m + 1 .. ?nm} \ i - ?m \ ?N" apply (simp add: thnm) by arith + let ?f = "\a b i. (a$i) * (b$i)" + let ?g = "?f (pastecart x1 x2) (pastecart y1 y2)" + let ?S = "{?n +1 .. ?nm}" + {fix i + assume i: "i \ ?N" + have "?g i = ?f x1 y1 i" + using i + apply (simp add: pastecart_def Cart_lambda_beta thnm) done + } + hence th2: "setsum ?g ?N = setsum (?f x1 y1) ?N" + apply - + apply (rule setsum_cong) + apply auto + done + {fix i + assume i: "i \ ?S" + have "?g i = ?f x2 y2 (i - ?n)" + using i + apply (simp add: pastecart_def Cart_lambda_beta thnm) done + } + hence th3: "setsum ?g ?S = setsum (\i. ?f x2 y2 (i -?n)) ?S" + apply - + apply (rule setsum_cong) + apply auto + done + let ?r = "\n. n - ?n" + have rinj: "inj_on ?r ?S" apply (simp add: inj_on_def Ball_def thnm) by arith + have rS: "?r ` ?S = ?M" apply (rule set_ext) + apply (simp add: thnm image_iff Bex_def) by arith + have "pastecart x1 x2 \ (pastecart y1 y2) = setsum ?g ?NM" by (simp add: dot_def) + also have "\ = setsum ?g ?N + setsum ?g ?S" + by (simp add: dot_def thnm setsum_add_split[OF th_0, of _ ?m] del: One_nat_def) + also have "\ = setsum (?f x1 y1) ?N + setsum (?f x2 y2) ?M" + unfolding setsum_reindex[OF rinj, unfolded rS o_def] th2 th3 .. + finally + show ?thesis by (simp add: dot_def) +qed + +lemma norm_pastecart: "norm(pastecart x y) <= norm(x :: real ^ _) + norm(y)" + unfolding real_vector_norm_def dot_pastecart real_sqrt_le_iff real_of_real_def id_def + apply (rule power2_le_imp_le) + apply (simp add: real_sqrt_pow2[OF add_nonneg_nonneg[OF dot_pos_le[of x] dot_pos_le[of y]]]) + apply (auto simp add: power2_eq_square ring_simps) + apply (simp add: power2_eq_square[symmetric]) + apply (rule mult_nonneg_nonneg) + apply (simp_all add: real_sqrt_pow2[OF dot_pos_le]) + apply (rule add_nonneg_nonneg) + apply (simp_all add: real_sqrt_pow2[OF dot_pos_le]) + done + +subsection {* A generic notion of "hull" (convex, affine, conic hull and closure). *} + +definition hull :: "'a set set \ 'a set \ 'a set" (infixl "hull" 75) where + "S hull s = Inter {t. t \ S \ s \ t}" + +lemma hull_same: "s \ S \ S hull s = s" + unfolding hull_def by auto + +lemma hull_in: "(\T. T \ S ==> Inter T \ S) ==> (S hull s) \ S" +unfolding hull_def subset_iff by auto + +lemma hull_eq: "(\T. T \ S ==> Inter T \ S) ==> (S hull s) = s \ s \ S" +using hull_same[of s S] hull_in[of S s] by metis + + +lemma hull_hull: "S hull (S hull s) = S hull s" + unfolding hull_def by blast + +lemma hull_subset: "s \ (S hull s)" + unfolding hull_def by blast + +lemma hull_mono: " s \ t ==> (S hull s) \ (S hull t)" + unfolding hull_def by blast + +lemma hull_antimono: "S \ T ==> (T hull s) \ (S hull s)" + unfolding hull_def by blast + +lemma hull_minimal: "s \ t \ t \ S ==> (S hull s) \ t" + unfolding hull_def by blast + +lemma subset_hull: "t \ S ==> S hull s \ t \ s \ t" + unfolding hull_def by blast + +lemma hull_unique: "s \ t \ t \ S \ (\t'. s \ t' \ t' \ S ==> t \ t') + ==> (S hull s = t)" +unfolding hull_def by auto + +lemma hull_induct: "(\x. x\ S \ P x) \ Q {x. P x} \ \x\ Q hull S. P x" + using hull_minimal[of S "{x. P x}" Q] + by (auto simp add: subset_eq Collect_def mem_def) + +lemma hull_inc: "x \ S \ x \ P hull S" by (metis hull_subset subset_eq) + +lemma hull_union_subset: "(S hull s) \ (S hull t) \ (S hull (s \ t))" +unfolding Un_subset_iff by (metis hull_mono Un_upper1 Un_upper2) + +lemma hull_union: assumes T: "\T. T \ S ==> Inter T \ S" + shows "S hull (s \ t) = S hull (S hull s \ S hull t)" +apply rule +apply (rule hull_mono) +unfolding Un_subset_iff +apply (metis hull_subset Un_upper1 Un_upper2 subset_trans) +apply (rule hull_minimal) +apply (metis hull_union_subset) +apply (metis hull_in T) +done + +lemma hull_redundant_eq: "a \ (S hull s) \ (S hull (insert a s) = S hull s)" + unfolding hull_def by blast + +lemma hull_redundant: "a \ (S hull s) ==> (S hull (insert a s) = S hull s)" +by (metis hull_redundant_eq) + +text{* Archimedian properties and useful consequences. *} + +lemma real_arch_simple: "\n. x <= real (n::nat)" + using reals_Archimedean2[of x] apply auto by (rule_tac x="Suc n" in exI, auto) +lemmas real_arch_lt = reals_Archimedean2 + +lemmas real_arch = reals_Archimedean3 + +lemma real_arch_inv: "0 < e \ (\n::nat. n \ 0 \ 0 < inverse (real n) \ inverse (real n) < e)" + using reals_Archimedean + apply (auto simp add: field_simps inverse_positive_iff_positive) + apply (subgoal_tac "inverse (real n) > 0") + apply arith + apply simp + done + +lemma real_pow_lbound: "0 <= x ==> 1 + real n * x <= (1 + x) ^ n" +proof(induct n) + case 0 thus ?case by simp +next + case (Suc n) + hence h: "1 + real n * x \ (1 + x) ^ n" by simp + from h have p: "1 \ (1 + x) ^ n" using Suc.prems by simp + from h have "1 + real n * x + x \ (1 + x) ^ n + x" by simp + also have "\ \ (1 + x) ^ Suc n" apply (subst diff_le_0_iff_le[symmetric]) + apply (simp add: ring_simps) + using mult_left_mono[OF p Suc.prems] by simp + finally show ?case by (simp add: real_of_nat_Suc ring_simps) +qed + +lemma real_arch_pow: assumes x: "1 < (x::real)" shows "\n. y < x^n" +proof- + from x have x0: "x - 1 > 0" by arith + from real_arch[OF x0, rule_format, of y] + obtain n::nat where n:"y < real n * (x - 1)" by metis + from x0 have x00: "x- 1 \ 0" by arith + from real_pow_lbound[OF x00, of n] n + have "y < x^n" by auto + then show ?thesis by metis +qed + +lemma real_arch_pow2: "\n. (x::real) < 2^ n" + using real_arch_pow[of 2 x] by simp + +lemma real_arch_pow_inv: assumes y: "(y::real) > 0" and x1: "x < 1" + shows "\n. x^n < y" +proof- + {assume x0: "x > 0" + from x0 x1 have ix: "1 < 1/x" by (simp add: field_simps) + from real_arch_pow[OF ix, of "1/y"] + obtain n where n: "1/y < (1/x)^n" by blast + then + have ?thesis using y x0 by (auto simp add: field_simps power_divide) } + moreover + {assume "\ x > 0" with y x1 have ?thesis apply auto by (rule exI[where x=1], auto)} + ultimately show ?thesis by metis +qed + +lemma forall_pos_mono: "(\d e::real. d < e \ P d ==> P e) \ (\n::nat. n \ 0 ==> P(inverse(real n))) \ (\e. 0 < e ==> P e)" + by (metis real_arch_inv) + +lemma forall_pos_mono_1: "(\d e::real. d < e \ P d ==> P e) \ (\n. P(inverse(real (Suc n)))) ==> 0 < e ==> P e" + apply (rule forall_pos_mono) + apply auto + apply (atomize) + apply (erule_tac x="n - 1" in allE) + apply auto + done + +lemma real_archimedian_rdiv_eq_0: assumes x0: "x \ 0" and c: "c \ 0" and xc: "\(m::nat)>0. real m * x \ c" + shows "x = 0" +proof- + {assume "x \ 0" with x0 have xp: "x > 0" by arith + from real_arch[OF xp, rule_format, of c] obtain n::nat where n: "c < real n * x" by blast + with xc[rule_format, of n] have "n = 0" by arith + with n c have False by simp} + then show ?thesis by blast +qed + +(* ------------------------------------------------------------------------- *) +(* Relate max and min to sup and inf. *) +(* ------------------------------------------------------------------------- *) + +lemma real_max_rsup: "max x y = rsup {x,y}" +proof- + have f: "finite {x, y}" "{x,y} \ {}" by simp_all + from rsup_finite_le_iff[OF f, of "max x y"] have "rsup {x,y} \ max x y" by simp + moreover + have "max x y \ rsup {x,y}" using rsup_finite_ge_iff[OF f, of "max x y"] + by (simp add: linorder_linear) + ultimately show ?thesis by arith +qed + +lemma real_min_rinf: "min x y = rinf {x,y}" +proof- + have f: "finite {x, y}" "{x,y} \ {}" by simp_all + from rinf_finite_le_iff[OF f, of "min x y"] have "rinf {x,y} \ min x y" + by (simp add: linorder_linear) + moreover + have "min x y \ rinf {x,y}" using rinf_finite_ge_iff[OF f, of "min x y"] + by simp + ultimately show ?thesis by arith +qed + +(* ------------------------------------------------------------------------- *) +(* Geometric progression. *) +(* ------------------------------------------------------------------------- *) + +lemma sum_gp_basic: "((1::'a::{field, recpower}) - x) * setsum (\i. x^i) {0 .. n} = (1 - x^(Suc n))" + (is "?lhs = ?rhs") +proof- + {assume x1: "x = 1" hence ?thesis by simp} + moreover + {assume x1: "x\1" + hence x1': "x - 1 \ 0" "1 - x \ 0" "x - 1 = - (1 - x)" "- (1 - x) \ 0" by auto + from geometric_sum[OF x1, of "Suc n", unfolded x1'] + have "(- (1 - x)) * setsum (\i. x^i) {0 .. n} = - (1 - x^(Suc n))" + unfolding atLeastLessThanSuc_atLeastAtMost + using x1' apply (auto simp only: field_simps) + apply (simp add: ring_simps) + done + then have ?thesis by (simp add: ring_simps) } + ultimately show ?thesis by metis +qed + +lemma sum_gp_multiplied: assumes mn: "m <= n" + shows "((1::'a::{field, recpower}) - x) * setsum (op ^ x) {m..n} = x^m - x^ Suc n" + (is "?lhs = ?rhs") +proof- + let ?S = "{0..(n - m)}" + from mn have mn': "n - m \ 0" by arith + let ?f = "op + m" + have i: "inj_on ?f ?S" unfolding inj_on_def by auto + have f: "?f ` ?S = {m..n}" + using mn apply (auto simp add: image_iff Bex_def) by arith + have th: "op ^ x o op + m = (\i. x^m * x^i)" + by (rule ext, simp add: power_add power_mult) + from setsum_reindex[OF i, of "op ^ x", unfolded f th setsum_right_distrib[symmetric]] + have "?lhs = x^m * ((1 - x) * setsum (op ^ x) {0..n - m})" by simp + then show ?thesis unfolding sum_gp_basic using mn + by (simp add: ring_simps power_add[symmetric]) +qed + +lemma sum_gp: "setsum (op ^ (x::'a::{field, recpower})) {m .. n} = + (if n < m then 0 else if x = 1 then of_nat ((n + 1) - m) + else (x^ m - x^ (Suc n)) / (1 - x))" +proof- + {assume nm: "n < m" hence ?thesis by simp} + moreover + {assume "\ n < m" hence nm: "m \ n" by arith + {assume x: "x = 1" hence ?thesis by simp} + moreover + {assume x: "x \ 1" hence nz: "1 - x \ 0" by simp + from sum_gp_multiplied[OF nm, of x] nz have ?thesis by (simp add: field_simps)} + ultimately have ?thesis by metis + } + ultimately show ?thesis by metis +qed + +lemma sum_gp_offset: "setsum (op ^ (x::'a::{field,recpower})) {m .. m+n} = + (if x = 1 then of_nat n + 1 else x^m * (1 - x^Suc n) / (1 - x))" + unfolding sum_gp[of x m "m + n"] power_Suc + by (simp add: ring_simps power_add) + + +subsection{* A bit of linear algebra. *} + +definition "subspace S \ 0 \ S \ (\x\ S. \y \S. x + y \ S) \ (\c. \x \S. c *s x \S )" +definition "span S = (subspace hull S)" +definition "dependent S \ (\a \ S. a \ span(S - {a}))" +abbreviation "independent s == ~(dependent s)" + +(* Closure properties of subspaces. *) + +lemma subspace_UNIV[simp]: "subspace(UNIV)" by (simp add: subspace_def) + +lemma subspace_0: "subspace S ==> 0 \ S" by (metis subspace_def) + +lemma subspace_add: "subspace S \ x \ S \ y \ S ==> x + y \ S" + by (metis subspace_def) + +lemma subspace_mul: "subspace S \ x \ S \ c *s x \ S" + by (metis subspace_def) + +lemma subspace_neg: "subspace S \ (x::'a::ring_1^'n) \ S \ - x \ S" + by (metis vector_sneg_minus1 subspace_mul) + +lemma subspace_sub: "subspace S \ (x::'a::ring_1^'n) \ S \ y \ S \ x - y \ S" + by (metis diff_def subspace_add subspace_neg) + +lemma subspace_setsum: + assumes sA: "subspace A" and fB: "finite B" + and f: "\x\ B. f x \ A" + shows "setsum f B \ A" + using fB f sA + apply(induct rule: finite_induct[OF fB]) + by (simp add: subspace_def sA, auto simp add: sA subspace_add) + +lemma subspace_linear_image: + assumes lf: "linear (f::'a::semiring_1^'n \ _)" and sS: "subspace S" + shows "subspace(f ` S)" + using lf sS linear_0[OF lf] + unfolding linear_def subspace_def + apply (auto simp add: image_iff) + apply (rule_tac x="x + y" in bexI, auto) + apply (rule_tac x="c*s x" in bexI, auto) + done + +lemma subspace_linear_preimage: "linear (f::'a::semiring_1^'n \ _) ==> subspace S ==> subspace {x. f x \ S}" + by (auto simp add: subspace_def linear_def linear_0[of f]) + +lemma subspace_trivial: "subspace {0::'a::semiring_1 ^_}" + by (simp add: subspace_def) + +lemma subspace_inter: "subspace A \ subspace B ==> subspace (A \ B)" + by (simp add: subspace_def) + + +lemma span_mono: "A \ B ==> span A \ span B" + by (metis span_def hull_mono) + +lemma subspace_span: "subspace(span S)" + unfolding span_def + apply (rule hull_in[unfolded mem_def]) + apply (simp only: subspace_def Inter_iff Int_iff subset_eq) + apply auto + apply (erule_tac x="X" in ballE) + apply (simp add: mem_def) + apply blast + apply (erule_tac x="X" in ballE) + apply (erule_tac x="X" in ballE) + apply (erule_tac x="X" in ballE) + apply (clarsimp simp add: mem_def) + apply simp + apply simp + apply simp + apply (erule_tac x="X" in ballE) + apply (erule_tac x="X" in ballE) + apply (simp add: mem_def) + apply simp + apply simp + done + +lemma span_clauses: + "a \ S ==> a \ span S" + "0 \ span S" + "x\ span S \ y \ span S ==> x + y \ span S" + "x \ span S \ c *s x \ span S" + by (metis span_def hull_subset subset_eq subspace_span subspace_def)+ + +lemma span_induct: assumes SP: "\x. x \ S ==> P x" + and P: "subspace P" and x: "x \ span S" shows "P x" +proof- + from SP have SP': "S \ P" by (simp add: mem_def subset_eq) + from P have P': "P \ subspace" by (simp add: mem_def) + from x hull_minimal[OF SP' P', unfolded span_def[symmetric]] + show "P x" by (metis mem_def subset_eq) +qed + +lemma span_empty: "span {} = {(0::'a::semiring_0 ^ 'n)}" + apply (simp add: span_def) + apply (rule hull_unique) + apply (auto simp add: mem_def subspace_def) + unfolding mem_def[of "0::'a^'n", symmetric] + apply simp + done + +lemma independent_empty: "independent {}" + by (simp add: dependent_def) + +lemma independent_mono: "independent A \ B \ A ==> independent B" + apply (clarsimp simp add: dependent_def span_mono) + apply (subgoal_tac "span (B - {a}) \ span (A - {a})") + apply force + apply (rule span_mono) + apply auto + done + +lemma span_subspace: "A \ B \ B \ span A \ subspace B \ span A = B" + by (metis order_antisym span_def hull_minimal mem_def) + +lemma span_induct': assumes SP: "\x \ S. P x" + and P: "subspace P" shows "\x \ span S. P x" + using span_induct SP P by blast + +inductive span_induct_alt_help for S:: "'a::semiring_1^'n \ bool" + where + span_induct_alt_help_0: "span_induct_alt_help S 0" + | span_induct_alt_help_S: "x \ S \ span_induct_alt_help S z \ span_induct_alt_help S (c *s x + z)" + +lemma span_induct_alt': + assumes h0: "h (0::'a::semiring_1^'n)" and hS: "\c x y. x \ S \ h y \ h (c*s x + y)" shows "\x \ span S. h x" +proof- + {fix x:: "'a^'n" assume x: "span_induct_alt_help S x" + have "h x" + apply (rule span_induct_alt_help.induct[OF x]) + apply (rule h0) + apply (rule hS, assumption, assumption) + done} + note th0 = this + {fix x assume x: "x \ span S" + + have "span_induct_alt_help S x" + proof(rule span_induct[where x=x and S=S]) + show "x \ span S" using x . + next + fix x assume xS : "x \ S" + from span_induct_alt_help_S[OF xS span_induct_alt_help_0, of 1] + show "span_induct_alt_help S x" by simp + next + have "span_induct_alt_help S 0" by (rule span_induct_alt_help_0) + moreover + {fix x y assume h: "span_induct_alt_help S x" "span_induct_alt_help S y" + from h + have "span_induct_alt_help S (x + y)" + apply (induct rule: span_induct_alt_help.induct) + apply simp + unfolding add_assoc + apply (rule span_induct_alt_help_S) + apply assumption + apply simp + done} + moreover + {fix c x assume xt: "span_induct_alt_help S x" + then have "span_induct_alt_help S (c*s x)" + apply (induct rule: span_induct_alt_help.induct) + apply (simp add: span_induct_alt_help_0) + apply (simp add: vector_smult_assoc vector_add_ldistrib) + apply (rule span_induct_alt_help_S) + apply assumption + apply simp + done + } + ultimately show "subspace (span_induct_alt_help S)" + unfolding subspace_def mem_def Ball_def by blast + qed} + with th0 show ?thesis by blast +qed + +lemma span_induct_alt: + assumes h0: "h (0::'a::semiring_1^'n)" and hS: "\c x y. x \ S \ h y \ h (c*s x + y)" and x: "x \ span S" + shows "h x" +using span_induct_alt'[of h S] h0 hS x by blast + +(* Individual closure properties. *) + +lemma span_superset: "x \ S ==> x \ span S" by (metis span_clauses) + +lemma span_0: "0 \ span S" by (metis subspace_span subspace_0) + +lemma span_add: "x \ span S \ y \ span S ==> x + y \ span S" + by (metis subspace_add subspace_span) + +lemma span_mul: "x \ span S ==> (c *s x) \ span S" + by (metis subspace_span subspace_mul) + +lemma span_neg: "x \ span S ==> - (x::'a::ring_1^'n) \ span S" + by (metis subspace_neg subspace_span) + +lemma span_sub: "(x::'a::ring_1^'n) \ span S \ y \ span S ==> x - y \ span S" + by (metis subspace_span subspace_sub) + +lemma span_setsum: "finite A \ \x \ A. f x \ span S ==> setsum f A \ span S" + apply (rule subspace_setsum) + by (metis subspace_span subspace_setsum)+ + +lemma span_add_eq: "(x::'a::ring_1^'n) \ span S \ x + y \ span S \ y \ span S" + apply (auto simp only: span_add span_sub) + apply (subgoal_tac "(x + y) - x \ span S", simp) + by (simp only: span_add span_sub) + +(* Mapping under linear image. *) + +lemma span_linear_image: assumes lf: "linear (f::'a::semiring_1 ^ 'n => _)" + shows "span (f ` S) = f ` (span S)" +proof- + {fix x + assume x: "x \ span (f ` S)" + have "x \ f ` span S" + apply (rule span_induct[where x=x and S = "f ` S"]) + apply (clarsimp simp add: image_iff) + apply (frule span_superset) + apply blast + apply (simp only: mem_def) + apply (rule subspace_linear_image[OF lf]) + apply (rule subspace_span) + apply (rule x) + done} + moreover + {fix x assume x: "x \ span S" + have th0:"(\a. f a \ span (f ` S)) = {x. f x \ span (f ` S)}" apply (rule set_ext) + unfolding mem_def Collect_def .. + have "f x \ span (f ` S)" + apply (rule span_induct[where S=S]) + apply (rule span_superset) + apply simp + apply (subst th0) + apply (rule subspace_linear_preimage[OF lf subspace_span, of "f ` S"]) + apply (rule x) + done} + ultimately show ?thesis by blast +qed + +(* The key breakdown property. *) + +lemma span_breakdown: + assumes bS: "(b::'a::ring_1 ^ 'n) \ S" and aS: "a \ span S" + shows "\k. a - k*s b \ span (S - {b})" (is "?P a") +proof- + {fix x assume xS: "x \ S" + {assume ab: "x = b" + then have "?P x" + apply simp + apply (rule exI[where x="1"], simp) + by (rule span_0)} + moreover + {assume ab: "x \ b" + then have "?P x" using xS + apply - + apply (rule exI[where x=0]) + apply (rule span_superset) + by simp} + ultimately have "?P x" by blast} + moreover have "subspace ?P" + unfolding subspace_def + apply auto + apply (simp add: mem_def) + apply (rule exI[where x=0]) + using span_0[of "S - {b}"] + apply (simp add: mem_def) + apply (clarsimp simp add: mem_def) + apply (rule_tac x="k + ka" in exI) + apply (subgoal_tac "x + y - (k + ka) *s b = (x - k*s b) + (y - ka *s b)") + apply (simp only: ) + apply (rule span_add[unfolded mem_def]) + apply assumption+ + apply (vector ring_simps) + apply (clarsimp simp add: mem_def) + apply (rule_tac x= "c*k" in exI) + apply (subgoal_tac "c *s x - (c * k) *s b = c*s (x - k*s b)") + apply (simp only: ) + apply (rule span_mul[unfolded mem_def]) + apply assumption + by (vector ring_simps) + ultimately show "?P a" using aS span_induct[where S=S and P= "?P"] by metis +qed + +lemma span_breakdown_eq: + "(x::'a::ring_1^'n) \ span (insert a S) \ (\k. (x - k *s a) \ span S)" (is "?lhs \ ?rhs") +proof- + {assume x: "x \ span (insert a S)" + from x span_breakdown[of "a" "insert a S" "x"] + have ?rhs apply clarsimp + apply (rule_tac x= "k" in exI) + apply (rule set_rev_mp[of _ "span (S - {a})" _]) + apply assumption + apply (rule span_mono) + apply blast + done} + moreover + { fix k assume k: "x - k *s a \ span S" + have eq: "x = (x - k *s a) + k *s a" by vector + have "(x - k *s a) + k *s a \ span (insert a S)" + apply (rule span_add) + apply (rule set_rev_mp[of _ "span S" _]) + apply (rule k) + apply (rule span_mono) + apply blast + apply (rule span_mul) + apply (rule span_superset) + apply blast + done + then have ?lhs using eq by metis} + ultimately show ?thesis by blast +qed + +(* Hence some "reversal" results.*) + +lemma in_span_insert: + assumes a: "(a::'a::field^'n) \ span (insert b S)" and na: "a \ span S" + shows "b \ span (insert a S)" +proof- + from span_breakdown[of b "insert b S" a, OF insertI1 a] + obtain k where k: "a - k*s b \ span (S - {b})" by auto + {assume k0: "k = 0" + with k have "a \ span S" + apply (simp) + apply (rule set_rev_mp) + apply assumption + apply (rule span_mono) + apply blast + done + with na have ?thesis by blast} + moreover + {assume k0: "k \ 0" + have eq: "b = (1/k) *s a - ((1/k) *s a - b)" by vector + from k0 have eq': "(1/k) *s (a - k*s b) = (1/k) *s a - b" + by (vector field_simps) + from k have "(1/k) *s (a - k*s b) \ span (S - {b})" + by (rule span_mul) + hence th: "(1/k) *s a - b \ span (S - {b})" + unfolding eq' . + + from k + have ?thesis + apply (subst eq) + apply (rule span_sub) + apply (rule span_mul) + apply (rule span_superset) + apply blast + apply (rule set_rev_mp) + apply (rule th) + apply (rule span_mono) + using na by blast} + ultimately show ?thesis by blast +qed + +lemma in_span_delete: + assumes a: "(a::'a::field^'n) \ span S" + and na: "a \ span (S-{b})" + shows "b \ span (insert a (S - {b}))" + apply (rule in_span_insert) + apply (rule set_rev_mp) + apply (rule a) + apply (rule span_mono) + apply blast + apply (rule na) + done + +(* Transitivity property. *) + +lemma span_trans: + assumes x: "(x::'a::ring_1^'n) \ span S" and y: "y \ span (insert x S)" + shows "y \ span S" +proof- + from span_breakdown[of x "insert x S" y, OF insertI1 y] + obtain k where k: "y -k*s x \ span (S - {x})" by auto + have eq: "y = (y - k *s x) + k *s x" by vector + show ?thesis + apply (subst eq) + apply (rule span_add) + apply (rule set_rev_mp) + apply (rule k) + apply (rule span_mono) + apply blast + apply (rule span_mul) + by (rule x) +qed + +(* ------------------------------------------------------------------------- *) +(* An explicit expansion is sometimes needed. *) +(* ------------------------------------------------------------------------- *) + +lemma span_explicit: + "span P = {y::'a::semiring_1^'n. \S u. finite S \ S \ P \ setsum (\v. u v *s v) S = y}" + (is "_ = ?E" is "_ = {y. ?h y}" is "_ = {y. \S u. ?Q S u y}") +proof- + {fix x assume x: "x \ ?E" + then obtain S u where fS: "finite S" and SP: "S\P" and u: "setsum (\v. u v *s v) S = x" + by blast + have "x \ span P" + unfolding u[symmetric] + apply (rule span_setsum[OF fS]) + using span_mono[OF SP] + by (auto intro: span_superset span_mul)} + moreover + have "\x \ span P. x \ ?E" + unfolding mem_def Collect_def + proof(rule span_induct_alt') + show "?h 0" + apply (rule exI[where x="{}"]) by simp + next + fix c x y + assume x: "x \ P" and hy: "?h y" + from hy obtain S u where fS: "finite S" and SP: "S\P" + and u: "setsum (\v. u v *s v) S = y" by blast + let ?S = "insert x S" + let ?u = "\y. if y = x then (if x \ S then u y + c else c) + else u y" + from fS SP x have th0: "finite (insert x S)" "insert x S \ P" by blast+ + {assume xS: "x \ S" + have S1: "S = (S - {x}) \ {x}" + and Sss:"finite (S - {x})" "finite {x}" "(S -{x}) \ {x} = {}" using xS fS by auto + have "setsum (\v. ?u v *s v) ?S =(\v\S - {x}. u v *s v) + (u x + c) *s x" + using xS + by (simp add: setsum_Un_disjoint[OF Sss, unfolded S1[symmetric]] + setsum_clauses(2)[OF fS] cong del: if_weak_cong) + also have "\ = (\v\S. u v *s v) + c *s x" + apply (simp add: setsum_Un_disjoint[OF Sss, unfolded S1[symmetric]]) + by (vector ring_simps) + also have "\ = c*s x + y" + by (simp add: add_commute u) + finally have "setsum (\v. ?u v *s v) ?S = c*s x + y" . + then have "?Q ?S ?u (c*s x + y)" using th0 by blast} + moreover + {assume xS: "x \ S" + have th00: "(\v\S. (if v = x then c else u v) *s v) = y" + unfolding u[symmetric] + apply (rule setsum_cong2) + using xS by auto + have "?Q ?S ?u (c*s x + y)" using fS xS th0 + by (simp add: th00 setsum_clauses add_commute cong del: if_weak_cong)} + ultimately have "?Q ?S ?u (c*s x + y)" + by (cases "x \ S", simp, simp) + then show "?h (c*s x + y)" + apply - + apply (rule exI[where x="?S"]) + apply (rule exI[where x="?u"]) by metis + qed + ultimately show ?thesis by blast +qed + +lemma dependent_explicit: + "dependent P \ (\S u. finite S \ S \ P \ (\(v::'a::{idom,field}^'n) \S. u v \ 0 \ setsum (\v. u v *s v) S = 0))" (is "?lhs = ?rhs") +proof- + {assume dP: "dependent P" + then obtain a S u where aP: "a \ P" and fS: "finite S" + and SP: "S \ P - {a}" and ua: "setsum (\v. u v *s v) S = a" + unfolding dependent_def span_explicit by blast + let ?S = "insert a S" + let ?u = "\y. if y = a then - 1 else u y" + let ?v = a + from aP SP have aS: "a \ S" by blast + from fS SP aP have th0: "finite ?S" "?S \ P" "?v \ ?S" "?u ?v \ 0" by auto + have s0: "setsum (\v. ?u v *s v) ?S = 0" + using fS aS + apply (simp add: vector_smult_lneg vector_smult_lid setsum_clauses ring_simps ) + apply (subst (2) ua[symmetric]) + apply (rule setsum_cong2) + by auto + with th0 have ?rhs + apply - + apply (rule exI[where x= "?S"]) + apply (rule exI[where x= "?u"]) + by clarsimp} + moreover + {fix S u v assume fS: "finite S" + and SP: "S \ P" and vS: "v \ S" and uv: "u v \ 0" + and u: "setsum (\v. u v *s v) S = 0" + let ?a = v + let ?S = "S - {v}" + let ?u = "\i. (- u i) / u v" + have th0: "?a \ P" "finite ?S" "?S \ P" using fS SP vS by auto + have "setsum (\v. ?u v *s v) ?S = setsum (\v. (- (inverse (u ?a))) *s (u v *s v)) S - ?u v *s v" + using fS vS uv + by (simp add: setsum_diff1 vector_smult_lneg divide_inverse + vector_smult_assoc field_simps) + also have "\ = ?a" + unfolding setsum_cmul u + using uv by (simp add: vector_smult_lneg) + finally have "setsum (\v. ?u v *s v) ?S = ?a" . + with th0 have ?lhs + unfolding dependent_def span_explicit + apply - + apply (rule bexI[where x= "?a"]) + apply simp_all + apply (rule exI[where x= "?S"]) + by auto} + ultimately show ?thesis by blast +qed + + +lemma span_finite: + assumes fS: "finite S" + shows "span S = {(y::'a::semiring_1^'n). \u. setsum (\v. u v *s v) S = y}" + (is "_ = ?rhs") +proof- + {fix y assume y: "y \ span S" + from y obtain S' u where fS': "finite S'" and SS': "S' \ S" and + u: "setsum (\v. u v *s v) S' = y" unfolding span_explicit by blast + let ?u = "\x. if x \ S' then u x else 0" + from setsum_restrict_set[OF fS, of "\v. u v *s v" S', symmetric] SS' + have "setsum (\v. ?u v *s v) S = setsum (\v. u v *s v) S'" + unfolding cond_value_iff cond_application_beta + apply (simp add: cond_value_iff cong del: if_weak_cong) + apply (rule setsum_cong) + apply auto + done + hence "setsum (\v. ?u v *s v) S = y" by (metis u) + hence "y \ ?rhs" by auto} + moreover + {fix y u assume u: "setsum (\v. u v *s v) S = y" + then have "y \ span S" using fS unfolding span_explicit by auto} + ultimately show ?thesis by blast +qed + + +(* Standard bases are a spanning set, and obviously finite. *) + +lemma span_stdbasis:"span {basis i :: 'a::ring_1^'n | i. i \ {1 .. dimindex(UNIV :: 'n set)}} = UNIV" +apply (rule set_ext) +apply auto +apply (subst basis_expansion[symmetric]) +apply (rule span_setsum) +apply simp +apply auto +apply (rule span_mul) +apply (rule span_superset) +apply (auto simp add: Collect_def mem_def) +done + + +lemma has_size_stdbasis: "{basis i ::real ^'n | i. i \ {1 .. dimindex (UNIV :: 'n set)}} hassize (dimindex(UNIV :: 'n set))" (is "?S hassize ?n") +proof- + have eq: "?S = basis ` {1 .. ?n}" by blast + show ?thesis unfolding eq + apply (rule hassize_image_inj[OF basis_inj]) + by (simp add: hassize_def) +qed + +lemma finite_stdbasis: "finite {basis i ::real^'n |i. i\ {1 .. dimindex(UNIV:: 'n set)}}" + using has_size_stdbasis[unfolded hassize_def] + .. + +lemma card_stdbasis: "card {basis i ::real^'n |i. i\ {1 .. dimindex(UNIV :: 'n set)}} = dimindex(UNIV :: 'n set)" + using has_size_stdbasis[unfolded hassize_def] + .. + +lemma independent_stdbasis_lemma: + assumes x: "(x::'a::semiring_1 ^ 'n) \ span (basis ` S)" + and i: "i \ {1 .. dimindex (UNIV :: 'n set)}" + and iS: "i \ S" + shows "(x$i) = 0" +proof- + let ?n = "dimindex (UNIV :: 'n set)" + let ?U = "{1 .. ?n}" + let ?B = "basis ` S" + let ?P = "\(x::'a^'n). \i\ ?U. i \ S \ x$i =0" + {fix x::"'a^'n" assume xS: "x\ ?B" + from xS have "?P x" by (auto simp add: basis_component)} + moreover + have "subspace ?P" + by (auto simp add: subspace_def Collect_def mem_def zero_index vector_component) + ultimately show ?thesis + using x span_induct[of ?B ?P x] i iS by blast +qed + +lemma independent_stdbasis: "independent {basis i ::real^'n |i. i\ {1 .. dimindex(UNIV :: 'n set)}}" +proof- + let ?n = "dimindex (UNIV :: 'n set)" + let ?I = "{1 .. ?n}" + let ?b = "basis :: nat \ real ^'n" + let ?B = "?b ` ?I" + have eq: "{?b i|i. i \ ?I} = ?B" + by auto + {assume d: "dependent ?B" + then obtain k where k: "k \ ?I" "?b k \ span (?B - {?b k})" + unfolding dependent_def by auto + have eq1: "?B - {?b k} = ?B - ?b ` {k}" by simp + have eq2: "?B - {?b k} = ?b ` (?I - {k})" + unfolding eq1 + apply (rule inj_on_image_set_diff[symmetric]) + apply (rule basis_inj) using k(1) by auto + from k(2) have th0: "?b k \ span (?b ` (?I - {k}))" unfolding eq2 . + from independent_stdbasis_lemma[OF th0 k(1), simplified] + have False by (simp add: basis_component[OF k(1), of k])} + then show ?thesis unfolding eq dependent_def .. +qed + +(* This is useful for building a basis step-by-step. *) + +lemma independent_insert: + "independent(insert (a::'a::field ^'n) S) \ + (if a \ S then independent S + else independent S \ a \ span S)" (is "?lhs \ ?rhs") +proof- + {assume aS: "a \ S" + hence ?thesis using insert_absorb[OF aS] by simp} + moreover + {assume aS: "a \ S" + {assume i: ?lhs + then have ?rhs using aS + apply simp + apply (rule conjI) + apply (rule independent_mono) + apply assumption + apply blast + by (simp add: dependent_def)} + moreover + {assume i: ?rhs + have ?lhs using i aS + apply simp + apply (auto simp add: dependent_def) + apply (case_tac "aa = a", auto) + apply (subgoal_tac "insert a S - {aa} = insert a (S - {aa})") + apply simp + apply (subgoal_tac "a \ span (insert aa (S - {aa}))") + apply (subgoal_tac "insert aa (S - {aa}) = S") + apply simp + apply blast + apply (rule in_span_insert) + apply assumption + apply blast + apply blast + done} + ultimately have ?thesis by blast} + ultimately show ?thesis by blast +qed + +(* The degenerate case of the Exchange Lemma. *) + +lemma mem_delete: "x \ (A - {a}) \ x \ a \ x \ A" + by blast + +lemma span_span: "span (span A) = span A" + unfolding span_def hull_hull .. + +lemma span_inc: "S \ span S" + by (metis subset_eq span_superset) + +lemma spanning_subset_independent: + assumes BA: "B \ A" and iA: "independent (A::('a::field ^'n) set)" + and AsB: "A \ span B" + shows "A = B" +proof + from BA show "B \ A" . +next + from span_mono[OF BA] span_mono[OF AsB] + have sAB: "span A = span B" unfolding span_span by blast + + {fix x assume x: "x \ A" + from iA have th0: "x \ span (A - {x})" + unfolding dependent_def using x by blast + from x have xsA: "x \ span A" by (blast intro: span_superset) + have "A - {x} \ A" by blast + hence th1:"span (A - {x}) \ span A" by (metis span_mono) + {assume xB: "x \ B" + from xB BA have "B \ A -{x}" by blast + hence "span B \ span (A - {x})" by (metis span_mono) + with th1 th0 sAB have "x \ span A" by blast + with x have False by (metis span_superset)} + then have "x \ B" by blast} + then show "A \ B" by blast +qed + +(* The general case of the Exchange Lemma, the key to what follows. *) + +lemma exchange_lemma: + assumes f:"finite (t:: ('a::field^'n) set)" and i: "independent s" + and sp:"s \ span t" + shows "\t'. (t' hassize card t) \ s \ t' \ t' \ s \ t \ s \ span t'" +using f i sp +proof(induct c\"card(t - s)" arbitrary: s t rule: nat_less_induct) + fix n:: nat and s t :: "('a ^'n) set" + assume H: " \m(x:: ('a ^'n) set) xa. + finite xa \ + independent x \ + x \ span xa \ + m = card (xa - x) \ + (\t'. (t' hassize card xa) \ + x \ t' \ t' \ x \ xa \ x \ span t')" + and ft: "finite t" and s: "independent s" and sp: "s \ span t" + and n: "n = card (t - s)" + let ?P = "\t'. (t' hassize card t) \ s \ t' \ t' \ s \ t \ s \ span t'" + let ?ths = "\t'. ?P t'" + {assume st: "s \ t" + from st ft span_mono[OF st] have ?ths apply - apply (rule exI[where x=t]) + by (auto simp add: hassize_def intro: span_superset)} + moreover + {assume st: "t \ s" + + from spanning_subset_independent[OF st s sp] + st ft span_mono[OF st] have ?ths apply - apply (rule exI[where x=t]) + by (auto simp add: hassize_def intro: span_superset)} + moreover + {assume st: "\ s \ t" "\ t \ s" + from st(2) obtain b where b: "b \ t" "b \ s" by blast + from b have "t - {b} - s \ t - s" by blast + then have cardlt: "card (t - {b} - s) < n" using n ft + by (auto intro: psubset_card_mono) + from b ft have ct0: "card t \ 0" by auto + {assume stb: "s \ span(t -{b})" + from ft have ftb: "finite (t -{b})" by auto + from H[rule_format, OF cardlt ftb s stb] + obtain u where u: "u hassize card (t-{b})" "s \ u" "u \ s \ (t - {b})" "s \ span u" by blast + let ?w = "insert b u" + have th0: "s \ insert b u" using u by blast + from u(3) b have "u \ s \ t" by blast + then have th1: "insert b u \ s \ t" using u b by blast + have bu: "b \ u" using b u by blast + from u(1) have fu: "finite u" by (simp add: hassize_def) + from u(1) ft b have "u hassize (card t - 1)" by auto + then + have th2: "insert b u hassize card t" + using card_insert_disjoint[OF fu bu] ct0 by (auto simp add: hassize_def) + from u(4) have "s \ span u" . + also have "\ \ span (insert b u)" apply (rule span_mono) by blast + finally have th3: "s \ span (insert b u)" . from th0 th1 th2 th3 have th: "?P ?w" by blast + from th have ?ths by blast} + moreover + {assume stb: "\ s \ span(t -{b})" + from stb obtain a where a: "a \ s" "a \ span (t - {b})" by blast + have ab: "a \ b" using a b by blast + have at: "a \ t" using a ab span_superset[of a "t- {b}"] by auto + have mlt: "card ((insert a (t - {b})) - s) < n" + using cardlt ft n a b by auto + have ft': "finite (insert a (t - {b}))" using ft by auto + {fix x assume xs: "x \ s" + have t: "t \ (insert b (insert a (t -{b})))" using b by auto + from b(1) have "b \ span t" by (simp add: span_superset) + have bs: "b \ span (insert a (t - {b}))" + by (metis in_span_delete a sp mem_def subset_eq) + from xs sp have "x \ span t" by blast + with span_mono[OF t] + have x: "x \ span (insert b (insert a (t - {b})))" .. + from span_trans[OF bs x] have "x \ span (insert a (t - {b}))" .} + then have sp': "s \ span (insert a (t - {b}))" by blast + + from H[rule_format, OF mlt ft' s sp' refl] obtain u where + u: "u hassize card (insert a (t -{b}))" "s \ u" "u \ s \ insert a (t -{b})" + "s \ span u" by blast + from u a b ft at ct0 have "?P u" by (auto simp add: hassize_def) + then have ?ths by blast } + ultimately have ?ths by blast + } + ultimately + show ?ths by blast +qed + +(* This implies corresponding size bounds. *) + +lemma independent_span_bound: + assumes f: "finite t" and i: "independent (s::('a::field^'n) set)" and sp:"s \ span t" + shows "finite s \ card s \ card t" + by (metis exchange_lemma[OF f i sp] hassize_def finite_subset card_mono) + +lemma finite_Atleast_Atmost[simp]: "finite {f x |x. x\ {(i::'a::finite_intvl_succ) .. j}}" +proof- + have eq: "{f x |x. x\ {i .. j}} = f ` {i .. j}" by auto + show ?thesis unfolding eq + apply (rule finite_imageI) + apply (rule finite_intvl) + done +qed + +lemma finite_Atleast_Atmost_nat[simp]: "finite {f x |x. x\ {(i::nat) .. j}}" +proof- + have eq: "{f x |x. x\ {i .. j}} = f ` {i .. j}" by auto + show ?thesis unfolding eq + apply (rule finite_imageI) + apply (rule finite_atLeastAtMost) + done +qed + + +lemma independent_bound: + fixes S:: "(real^'n) set" + shows "independent S \ finite S \ card S <= dimindex(UNIV :: 'n set)" + apply (subst card_stdbasis[symmetric]) + apply (rule independent_span_bound) + apply (rule finite_Atleast_Atmost_nat) + apply assumption + unfolding span_stdbasis + apply (rule subset_UNIV) + done + +lemma dependent_biggerset: "(finite (S::(real ^'n) set) ==> card S > dimindex(UNIV:: 'n set)) ==> dependent S" + by (metis independent_bound not_less) + +(* Hence we can create a maximal independent subset. *) + +lemma maximal_independent_subset_extend: + assumes sv: "(S::(real^'n) set) \ V" and iS: "independent S" + shows "\B. S \ B \ B \ V \ independent B \ V \ span B" + using sv iS +proof(induct d\ "dimindex (UNIV :: 'n set) - card S" arbitrary: S rule: nat_less_induct) + fix n and S:: "(real^'n) set" + assume H: "\mS \ V. independent S \ m = dimindex (UNIV::'n set) - card S \ + (\B. S \ B \ B \ V \ independent B \ V \ span B)" + and sv: "S \ V" and i: "independent S" and n: "n = dimindex (UNIV :: 'n set) - card S" + let ?P = "\B. S \ B \ B \ V \ independent B \ V \ span B" + let ?ths = "\x. ?P x" + let ?d = "dimindex (UNIV :: 'n set)" + {assume "V \ span S" + then have ?ths using sv i by blast } + moreover + {assume VS: "\ V \ span S" + from VS obtain a where a: "a \ V" "a \ span S" by blast + from a have aS: "a \ S" by (auto simp add: span_superset) + have th0: "insert a S \ V" using a sv by blast + from independent_insert[of a S] i a + have th1: "independent (insert a S)" by auto + have mlt: "?d - card (insert a S) < n" + using aS a n independent_bound[OF th1] dimindex_ge_1[of "UNIV :: 'n set"] + by auto + + from H[rule_format, OF mlt th0 th1 refl] + obtain B where B: "insert a S \ B" "B \ V" "independent B" " V \ span B" + by blast + from B have "?P B" by auto + then have ?ths by blast} + ultimately show ?ths by blast +qed + +lemma maximal_independent_subset: + "\(B:: (real ^'n) set). B\ V \ independent B \ V \ span B" + by (metis maximal_independent_subset_extend[of "{}:: (real ^'n) set"] empty_subsetI independent_empty) + +(* Notion of dimension. *) + +definition "dim V = (SOME n. \B. B \ V \ independent B \ V \ span B \ (B hassize n))" + +lemma basis_exists: "\B. (B :: (real ^'n) set) \ V \ independent B \ V \ span B \ (B hassize dim V)" +unfolding dim_def some_eq_ex[of "\n. \B. B \ V \ independent B \ V \ span B \ (B hassize n)"] +unfolding hassize_def +using maximal_independent_subset[of V] independent_bound +by auto + +(* Consequences of independence or spanning for cardinality. *) + +lemma independent_card_le_dim: "(B::(real ^'n) set) \ V \ independent B \ finite B \ card B \ dim V" +by (metis basis_exists[of V] independent_span_bound[where ?'a=real] hassize_def subset_trans) + +lemma span_card_ge_dim: "(B::(real ^'n) set) \ V \ V \ span B \ finite B \ dim V \ card B" + by (metis basis_exists[of V] independent_span_bound hassize_def subset_trans) + +lemma basis_card_eq_dim: + "B \ (V:: (real ^'n) set) \ V \ span B \ independent B \ finite B \ card B = dim V" + by (metis order_eq_iff independent_card_le_dim span_card_ge_dim independent_mono) + +lemma dim_unique: "(B::(real ^'n) set) \ V \ V \ span B \ independent B \ B hassize n \ dim V = n" + by (metis basis_card_eq_dim hassize_def) + +(* More lemmas about dimension. *) + +lemma dim_univ: "dim (UNIV :: (real^'n) set) = dimindex (UNIV :: 'n set)" + apply (rule dim_unique[of "{basis i |i. i\ {1 .. dimindex (UNIV :: 'n set)}}"]) + by (auto simp only: span_stdbasis has_size_stdbasis independent_stdbasis) + +lemma dim_subset: + "(S:: (real ^'n) set) \ T \ dim S \ dim T" + using basis_exists[of T] basis_exists[of S] + by (metis independent_span_bound[where ?'a = real and ?'n = 'n] subset_eq hassize_def) + +lemma dim_subset_univ: "dim (S:: (real^'n) set) \ dimindex (UNIV :: 'n set)" + by (metis dim_subset subset_UNIV dim_univ) + +(* Converses to those. *) + +lemma card_ge_dim_independent: + assumes BV:"(B::(real ^'n) set) \ V" and iB:"independent B" and dVB:"dim V \ card B" + shows "V \ span B" +proof- + {fix a assume aV: "a \ V" + {assume aB: "a \ span B" + then have iaB: "independent (insert a B)" using iB aV BV by (simp add: independent_insert) + from aV BV have th0: "insert a B \ V" by blast + from aB have "a \B" by (auto simp add: span_superset) + with independent_card_le_dim[OF th0 iaB] dVB have False by auto} + then have "a \ span B" by blast} + then show ?thesis by blast +qed + +lemma card_le_dim_spanning: + assumes BV: "(B:: (real ^'n) set) \ V" and VB: "V \ span B" + and fB: "finite B" and dVB: "dim V \ card B" + shows "independent B" +proof- + {fix a assume a: "a \ B" "a \ span (B -{a})" + from a fB have c0: "card B \ 0" by auto + from a fB have cb: "card (B -{a}) = card B - 1" by auto + from BV a have th0: "B -{a} \ V" by blast + {fix x assume x: "x \ V" + from a have eq: "insert a (B -{a}) = B" by blast + from x VB have x': "x \ span B" by blast + from span_trans[OF a(2), unfolded eq, OF x'] + have "x \ span (B -{a})" . } + then have th1: "V \ span (B -{a})" by blast + have th2: "finite (B -{a})" using fB by auto + from span_card_ge_dim[OF th0 th1 th2] + have c: "dim V \ card (B -{a})" . + from c c0 dVB cb have False by simp} + then show ?thesis unfolding dependent_def by blast +qed + +lemma card_eq_dim: "(B:: (real ^'n) set) \ V \ B hassize dim V \ independent B \ V \ span B" + by (metis hassize_def order_eq_iff card_le_dim_spanning + card_ge_dim_independent) + +(* ------------------------------------------------------------------------- *) +(* More general size bound lemmas. *) +(* ------------------------------------------------------------------------- *) + +lemma independent_bound_general: + "independent (S:: (real^'n) set) \ finite S \ card S \ dim S" + by (metis independent_card_le_dim independent_bound subset_refl) + +lemma dependent_biggerset_general: "(finite (S:: (real^'n) set) \ card S > dim S) \ dependent S" + using independent_bound_general[of S] by (metis linorder_not_le) + +lemma dim_span: "dim (span (S:: (real ^'n) set)) = dim S" +proof- + have th0: "dim S \ dim (span S)" + by (auto simp add: subset_eq intro: dim_subset span_superset) + from basis_exists[of S] + obtain B where B: "B \ S" "independent B" "S \ span B" "B hassize dim S" by blast + from B have fB: "finite B" "card B = dim S" unfolding hassize_def by blast+ + have bSS: "B \ span S" using B(1) by (metis subset_eq span_inc) + have sssB: "span S \ span B" using span_mono[OF B(3)] by (simp add: span_span) + from span_card_ge_dim[OF bSS sssB fB(1)] th0 show ?thesis + using fB(2) by arith +qed + +lemma subset_le_dim: "(S:: (real ^'n) set) \ span T \ dim S \ dim T" + by (metis dim_span dim_subset) + +lemma span_eq_dim: "span (S:: (real ^'n) set) = span T ==> dim S = dim T" + by (metis dim_span) + +lemma spans_image: + assumes lf: "linear (f::'a::semiring_1^'n \ _)" and VB: "V \ span B" + shows "f ` V \ span (f ` B)" + unfolding span_linear_image[OF lf] + by (metis VB image_mono) + +lemma dim_image_le: assumes lf: "linear f" shows "dim (f ` S) \ dim (S:: (real ^'n) set)" +proof- + from basis_exists[of S] obtain B where + B: "B \ S" "independent B" "S \ span B" "B hassize dim S" by blast + from B have fB: "finite B" "card B = dim S" unfolding hassize_def by blast+ + have "dim (f ` S) \ card (f ` B)" + apply (rule span_card_ge_dim) + using lf B fB by (auto simp add: span_linear_image spans_image subset_image_iff) + also have "\ \ dim S" using card_image_le[OF fB(1)] fB by simp + finally show ?thesis . +qed + +(* Relation between bases and injectivity/surjectivity of map. *) + +lemma spanning_surjective_image: + assumes us: "UNIV \ span (S:: ('a::semiring_1 ^'n) set)" + and lf: "linear f" and sf: "surj f" + shows "UNIV \ span (f ` S)" +proof- + have "UNIV \ f ` UNIV" using sf by (auto simp add: surj_def) + also have " \ \ span (f ` S)" using spans_image[OF lf us] . +finally show ?thesis . +qed + +lemma independent_injective_image: + assumes iS: "independent (S::('a::semiring_1^'n) set)" and lf: "linear f" and fi: "inj f" + shows "independent (f ` S)" +proof- + {fix a assume a: "a \ S" "f a \ span (f ` S - {f a})" + have eq: "f ` S - {f a} = f ` (S - {a})" using fi + by (auto simp add: inj_on_def) + from a have "f a \ f ` span (S -{a})" + unfolding eq span_linear_image[OF lf, of "S - {a}"] by blast + hence "a \ span (S -{a})" using fi by (auto simp add: inj_on_def) + with a(1) iS have False by (simp add: dependent_def) } + then show ?thesis unfolding dependent_def by blast +qed + +(* ------------------------------------------------------------------------- *) +(* Picking an orthogonal replacement for a spanning set. *) +(* ------------------------------------------------------------------------- *) + (* FIXME : Move to some general theory ?*) +definition "pairwise R S \ (\x \ S. \y\ S. x\y \ R x y)" + +lemma vector_sub_project_orthogonal: "(b::'a::ordered_field^'n) \ (x - ((b \ x) / (b\b)) *s b) = 0" + apply (cases "b = 0", simp) + apply (simp add: dot_rsub dot_rmult) + unfolding times_divide_eq_right[symmetric] + by (simp add: field_simps dot_eq_0) + +lemma basis_orthogonal: + fixes B :: "(real ^'n) set" + assumes fB: "finite B" + shows "\C. finite C \ card C \ card B \ span C = span B \ pairwise orthogonal C" + (is " \C. ?P B C") +proof(induct rule: finite_induct[OF fB]) + case 1 thus ?case apply (rule exI[where x="{}"]) by (auto simp add: pairwise_def) +next + case (2 a B) + note fB = `finite B` and aB = `a \ B` + from `\C. finite C \ card C \ card B \ span C = span B \ pairwise orthogonal C` + obtain C where C: "finite C" "card C \ card B" + "span C = span B" "pairwise orthogonal C" by blast + let ?a = "a - setsum (\x. (x\a / (x\x)) *s x) C" + let ?C = "insert ?a C" + from C(1) have fC: "finite ?C" by simp + from fB aB C(1,2) have cC: "card ?C \ card (insert a B)" by (simp add: card_insert_if) + {fix x k + have th0: "\(a::'b::comm_ring) b c. a - (b - c) = c + (a - b)" by (simp add: ring_simps) + have "x - k *s (a - (\x\C. (x \ a / (x \ x)) *s x)) \ span C \ x - k *s a \ span C" + apply (simp only: vector_ssub_ldistrib th0) + apply (rule span_add_eq) + apply (rule span_mul) + apply (rule span_setsum[OF C(1)]) + apply clarify + apply (rule span_mul) + by (rule span_superset)} + then have SC: "span ?C = span (insert a B)" + unfolding expand_set_eq span_breakdown_eq C(3)[symmetric] by auto + thm pairwise_def + {fix x y assume xC: "x \ ?C" and yC: "y \ ?C" and xy: "x \ y" + {assume xa: "x = ?a" and ya: "y = ?a" + have "orthogonal x y" using xa ya xy by blast} + moreover + {assume xa: "x = ?a" and ya: "y \ ?a" "y \ C" + from ya have Cy: "C = insert y (C - {y})" by blast + have fth: "finite (C - {y})" using C by simp + have "orthogonal x y" + using xa ya + unfolding orthogonal_def xa dot_lsub dot_rsub diff_eq_0_iff_eq + apply simp + apply (subst Cy) + using C(1) fth + apply (simp only: setsum_clauses) + apply (auto simp add: dot_ladd dot_lmult dot_eq_0 dot_sym[of y a] dot_lsum[OF fth]) + apply (rule setsum_0') + apply clarsimp + apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format]) + by auto} + moreover + {assume xa: "x \ ?a" "x \ C" and ya: "y = ?a" + from xa have Cx: "C = insert x (C - {x})" by blast + have fth: "finite (C - {x})" using C by simp + have "orthogonal x y" + using xa ya + unfolding orthogonal_def ya dot_rsub dot_lsub diff_eq_0_iff_eq + apply simp + apply (subst Cx) + using C(1) fth + apply (simp only: setsum_clauses) + apply (subst dot_sym[of x]) + apply (auto simp add: dot_radd dot_rmult dot_eq_0 dot_sym[of x a] dot_rsum[OF fth]) + apply (rule setsum_0') + apply clarsimp + apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format]) + by auto} + moreover + {assume xa: "x \ C" and ya: "y \ C" + have "orthogonal x y" using xa ya xy C(4) unfolding pairwise_def by blast} + ultimately have "orthogonal x y" using xC yC by blast} + then have CPO: "pairwise orthogonal ?C" unfolding pairwise_def by blast + from fC cC SC CPO have "?P (insert a B) ?C" by blast + then show ?case by blast +qed + +lemma orthogonal_basis_exists: + fixes V :: "(real ^'n) set" + shows "\B. independent B \ B \ span V \ V \ span B \ (B hassize dim V) \ pairwise orthogonal B" +proof- + from basis_exists[of V] obtain B where B: "B \ V" "independent B" "V \ span B" "B hassize dim V" by blast + from B have fB: "finite B" "card B = dim V" by (simp_all add: hassize_def) + from basis_orthogonal[OF fB(1)] obtain C where + C: "finite C" "card C \ card B" "span C = span B" "pairwise orthogonal C" by blast + from C B + have CSV: "C \ span V" by (metis span_inc span_mono subset_trans) + from span_mono[OF B(3)] C have SVC: "span V \ span C" by (simp add: span_span) + from card_le_dim_spanning[OF CSV SVC C(1)] C(2,3) fB + have iC: "independent C" by (simp add: dim_span) + from C fB have "card C \ dim V" by simp + moreover have "dim V \ card C" using span_card_ge_dim[OF CSV SVC C(1)] + by (simp add: dim_span) + ultimately have CdV: "C hassize dim V" unfolding hassize_def using C(1) by simp + from C B CSV CdV iC show ?thesis by auto +qed + +lemma span_eq: "span S = span T \ S \ span T \ T \ span S" + by (metis set_eq_subset span_mono span_span span_inc) + +(* ------------------------------------------------------------------------- *) +(* Low-dimensional subset is in a hyperplane (weak orthogonal complement). *) +(* ------------------------------------------------------------------------- *) + +lemma span_not_univ_orthogonal: + assumes sU: "span S \ UNIV" + shows "\(a:: real ^'n). a \0 \ (\x \ span S. a \ x = 0)" +proof- + from sU obtain a where a: "a \ span S" by blast + from orthogonal_basis_exists obtain B where + B: "independent B" "B \ span S" "S \ span B" "B hassize dim S" "pairwise orthogonal B" + by blast + from B have fB: "finite B" "card B = dim S" by (simp_all add: hassize_def) + from span_mono[OF B(2)] span_mono[OF B(3)] + have sSB: "span S = span B" by (simp add: span_span) + let ?a = "a - setsum (\b. (a\b / (b\b)) *s b) B" + have "setsum (\b. (a\b / (b\b)) *s b) B \ span S" + unfolding sSB + apply (rule span_setsum[OF fB(1)]) + apply clarsimp + apply (rule span_mul) + by (rule span_superset) + with a have a0:"?a \ 0" by auto + have "\x\span B. ?a \ x = 0" + proof(rule span_induct') + show "subspace (\x. ?a \ x = 0)" + by (auto simp add: subspace_def mem_def dot_radd dot_rmult) + next + {fix x assume x: "x \ B" + from x have B': "B = insert x (B - {x})" by blast + have fth: "finite (B - {x})" using fB by simp + have "?a \ x = 0" + apply (subst B') using fB fth + unfolding setsum_clauses(2)[OF fth] + apply simp + apply (clarsimp simp add: dot_lsub dot_ladd dot_lmult dot_lsum dot_eq_0) + apply (rule setsum_0', rule ballI) + unfolding dot_sym + by (auto simp add: x field_simps dot_eq_0 intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format])} + then show "\x \ B. ?a \ x = 0" by blast + qed + with a0 show ?thesis unfolding sSB by (auto intro: exI[where x="?a"]) +qed + +lemma span_not_univ_subset_hyperplane: + assumes SU: "span S \ (UNIV ::(real^'n) set)" + shows "\ a. a \0 \ span S \ {x. a \ x = 0}" + using span_not_univ_orthogonal[OF SU] by auto + +lemma lowdim_subset_hyperplane: + assumes d: "dim S < dimindex (UNIV :: 'n set)" + shows "\(a::real ^'n). a \ 0 \ span S \ {x. a \ x = 0}" +proof- + {assume "span S = UNIV" + hence "dim (span S) = dim (UNIV :: (real ^'n) set)" by simp + hence "dim S = dimindex (UNIV :: 'n set)" by (simp add: dim_span dim_univ) + with d have False by arith} + hence th: "span S \ UNIV" by blast + from span_not_univ_subset_hyperplane[OF th] show ?thesis . +qed + +(* We can extend a linear basis-basis injection to the whole set. *) + +lemma linear_indep_image_lemma: + assumes lf: "linear f" and fB: "finite B" + and ifB: "independent (f ` B)" + and fi: "inj_on f B" and xsB: "x \ span B" + and fx: "f (x::'a::field^'n) = 0" + shows "x = 0" + using fB ifB fi xsB fx +proof(induct arbitrary: x rule: finite_induct[OF fB]) + case 1 thus ?case by (auto simp add: span_empty) +next + case (2 a b x) + have fb: "finite b" using "2.prems" by simp + have th0: "f ` b \ f ` (insert a b)" + apply (rule image_mono) by blast + from independent_mono[ OF "2.prems"(2) th0] + have ifb: "independent (f ` b)" . + have fib: "inj_on f b" + apply (rule subset_inj_on [OF "2.prems"(3)]) + by blast + from span_breakdown[of a "insert a b", simplified, OF "2.prems"(4)] + obtain k where k: "x - k*s a \ span (b -{a})" by blast + have "f (x - k*s a) \ span (f ` b)" + unfolding span_linear_image[OF lf] + apply (rule imageI) + using k span_mono[of "b-{a}" b] by blast + hence "f x - k*s f a \ span (f ` b)" + by (simp add: linear_sub[OF lf] linear_cmul[OF lf]) + hence th: "-k *s f a \ span (f ` b)" + using "2.prems"(5) by (simp add: vector_smult_lneg) + {assume k0: "k = 0" + from k0 k have "x \ span (b -{a})" by simp + then have "x \ span b" using span_mono[of "b-{a}" b] + by blast} + moreover + {assume k0: "k \ 0" + from span_mul[OF th, of "- 1/ k"] k0 + have th1: "f a \ span (f ` b)" + by (auto simp add: vector_smult_assoc) + from inj_on_image_set_diff[OF "2.prems"(3), of "insert a b " "{a}", symmetric] + have tha: "f ` insert a b - f ` {a} = f ` (insert a b - {a})" by blast + from "2.prems"(2)[unfolded dependent_def bex_simps(10), rule_format, of "f a"] + have "f a \ span (f ` b)" using tha + using "2.hyps"(2) + "2.prems"(3) by auto + with th1 have False by blast + then have "x \ span b" by blast} + ultimately have xsb: "x \ span b" by blast + from "2.hyps"(3)[OF fb ifb fib xsb "2.prems"(5)] + show "x = 0" . +qed + +(* We can extend a linear mapping from basis. *) + +lemma linear_independent_extend_lemma: + assumes fi: "finite B" and ib: "independent B" + shows "\g. (\x\ span B. \y\ span B. g ((x::'a::field^'n) + y) = g x + g y) + \ (\x\ span B. \c. g (c*s x) = c *s g x) + \ (\x\ B. g x = f x)" +using ib fi +proof(induct rule: finite_induct[OF fi]) + case 1 thus ?case by (auto simp add: span_empty) +next + case (2 a b) + from "2.prems" "2.hyps" have ibf: "independent b" "finite b" + by (simp_all add: independent_insert) + from "2.hyps"(3)[OF ibf] obtain g where + g: "\x\span b. \y\span b. g (x + y) = g x + g y" + "\x\span b. \c. g (c *s x) = c *s g x" "\x\b. g x = f x" by blast + let ?h = "\z. SOME k. (z - k *s a) \ span b" + {fix z assume z: "z \ span (insert a b)" + have th0: "z - ?h z *s a \ span b" + apply (rule someI_ex) + unfolding span_breakdown_eq[symmetric] + using z . + {fix k assume k: "z - k *s a \ span b" + have eq: "z - ?h z *s a - (z - k*s a) = (k - ?h z) *s a" + by (simp add: ring_simps vector_sadd_rdistrib[symmetric]) + from span_sub[OF th0 k] + have khz: "(k - ?h z) *s a \ span b" by (simp add: eq) + {assume "k \ ?h z" hence k0: "k - ?h z \ 0" by simp + from k0 span_mul[OF khz, of "1 /(k - ?h z)"] + have "a \ span b" by (simp add: vector_smult_assoc) + with "2.prems"(1) "2.hyps"(2) have False + by (auto simp add: dependent_def)} + then have "k = ?h z" by blast} + with th0 have "z - ?h z *s a \ span b \ (\k. z - k *s a \ span b \ k = ?h z)" by blast} + note h = this + let ?g = "\z. ?h z *s f a + g (z - ?h z *s a)" + {fix x y assume x: "x \ span (insert a b)" and y: "y \ span (insert a b)" + have tha: "\(x::'a^'n) y a k l. (x + y) - (k + l) *s a = (x - k *s a) + (y - l *s a)" + by (vector ring_simps) + have addh: "?h (x + y) = ?h x + ?h y" + apply (rule conjunct2[OF h, rule_format, symmetric]) + apply (rule span_add[OF x y]) + unfolding tha + by (metis span_add x y conjunct1[OF h, rule_format]) + have "?g (x + y) = ?g x + ?g y" + unfolding addh tha + g(1)[rule_format,OF conjunct1[OF h, OF x] conjunct1[OF h, OF y]] + by (simp add: vector_sadd_rdistrib)} + moreover + {fix x:: "'a^'n" and c:: 'a assume x: "x \ span (insert a b)" + have tha: "\(x::'a^'n) c k a. c *s x - (c * k) *s a = c *s (x - k *s a)" + by (vector ring_simps) + have hc: "?h (c *s x) = c * ?h x" + apply (rule conjunct2[OF h, rule_format, symmetric]) + apply (metis span_mul x) + by (metis tha span_mul x conjunct1[OF h]) + have "?g (c *s x) = c*s ?g x" + unfolding hc tha g(2)[rule_format, OF conjunct1[OF h, OF x]] + by (vector ring_simps)} + moreover + {fix x assume x: "x \ (insert a b)" + {assume xa: "x = a" + have ha1: "1 = ?h a" + apply (rule conjunct2[OF h, rule_format]) + apply (metis span_superset insertI1) + using conjunct1[OF h, OF span_superset, OF insertI1] + by (auto simp add: span_0) + + from xa ha1[symmetric] have "?g x = f x" + apply simp + using g(2)[rule_format, OF span_0, of 0] + by simp} + moreover + {assume xb: "x \ b" + have h0: "0 = ?h x" + apply (rule conjunct2[OF h, rule_format]) + apply (metis span_superset insertI1 xb x) + apply simp + apply (metis span_superset xb) + done + have "?g x = f x" + by (simp add: h0[symmetric] g(3)[rule_format, OF xb])} + ultimately have "?g x = f x" using x by blast } + ultimately show ?case apply - apply (rule exI[where x="?g"]) by blast +qed + +lemma linear_independent_extend: + assumes iB: "independent (B:: (real ^'n) set)" + shows "\g. linear g \ (\x\B. g x = f x)" +proof- + from maximal_independent_subset_extend[of B "UNIV"] iB + obtain C where C: "B \ C" "independent C" "\x. x \ span C" by auto + + from C(2) independent_bound[of C] linear_independent_extend_lemma[of C f] + obtain g where g: "(\x\ span C. \y\ span C. g (x + y) = g x + g y) + \ (\x\ span C. \c. g (c*s x) = c *s g x) + \ (\x\ C. g x = f x)" by blast + from g show ?thesis unfolding linear_def using C + apply clarsimp by blast +qed + +(* Can construct an isomorphism between spaces of same dimension. *) + +lemma card_le_inj: assumes fA: "finite A" and fB: "finite B" + and c: "card A \ card B" shows "(\f. f ` A \ B \ inj_on f A)" +using fB c +proof(induct arbitrary: B rule: finite_induct[OF fA]) + case 1 thus ?case by simp +next + case (2 x s t) + thus ?case + proof(induct rule: finite_induct[OF "2.prems"(1)]) + case 1 then show ?case by simp + next + case (2 y t) + from "2.prems"(1,2,5) "2.hyps"(1,2) have cst:"card s \ card t" by simp + from "2.prems"(3) [OF "2.hyps"(1) cst] obtain f where + f: "f ` s \ t \ inj_on f s" by blast + from f "2.prems"(2) "2.hyps"(2) show ?case + apply - + apply (rule exI[where x = "\z. if z = x then y else f z"]) + by (auto simp add: inj_on_def) + qed +qed + +lemma card_subset_eq: assumes fB: "finite B" and AB: "A \ B" and + c: "card A = card B" + shows "A = B" +proof- + from fB AB have fA: "finite A" by (auto intro: finite_subset) + from fA fB have fBA: "finite (B - A)" by auto + have e: "A \ (B - A) = {}" by blast + have eq: "A \ (B - A) = B" using AB by blast + from card_Un_disjoint[OF fA fBA e, unfolded eq c] + have "card (B - A) = 0" by arith + hence "B - A = {}" unfolding card_eq_0_iff using fA fB by simp + with AB show "A = B" by blast +qed + +lemma subspace_isomorphism: + assumes s: "subspace (S:: (real ^'n) set)" and t: "subspace T" + and d: "dim S = dim T" + shows "\f. linear f \ f ` S = T \ inj_on f S" +proof- + from basis_exists[of S] obtain B where + B: "B \ S" "independent B" "S \ span B" "B hassize dim S" by blast + from basis_exists[of T] obtain C where + C: "C \ T" "independent C" "T \ span C" "C hassize dim T" by blast + from B(4) C(4) card_le_inj[of B C] d obtain f where + f: "f ` B \ C" "inj_on f B" unfolding hassize_def by auto + from linear_independent_extend[OF B(2)] obtain g where + g: "linear g" "\x\ B. g x = f x" by blast + from B(4) have fB: "finite B" by (simp add: hassize_def) + from C(4) have fC: "finite C" by (simp add: hassize_def) + from inj_on_iff_eq_card[OF fB, of f] f(2) + have "card (f ` B) = card B" by simp + with B(4) C(4) have ceq: "card (f ` B) = card C" using d + by (simp add: hassize_def) + have "g ` B = f ` B" using g(2) + by (auto simp add: image_iff) + also have "\ = C" using card_subset_eq[OF fC f(1) ceq] . + finally have gBC: "g ` B = C" . + have gi: "inj_on g B" using f(2) g(2) + by (auto simp add: inj_on_def) + note g0 = linear_indep_image_lemma[OF g(1) fB, unfolded gBC, OF C(2) gi] + {fix x y assume x: "x \ S" and y: "y \ S" and gxy:"g x = g y" + from B(3) x y have x': "x \ span B" and y': "y \ span B" by blast+ + from gxy have th0: "g (x - y) = 0" by (simp add: linear_sub[OF g(1)]) + have th1: "x - y \ span B" using x' y' by (metis span_sub) + have "x=y" using g0[OF th1 th0] by simp } + then have giS: "inj_on g S" + unfolding inj_on_def by blast + from span_subspace[OF B(1,3) s] + have "g ` S = span (g ` B)" by (simp add: span_linear_image[OF g(1)]) + also have "\ = span C" unfolding gBC .. + also have "\ = T" using span_subspace[OF C(1,3) t] . + finally have gS: "g ` S = T" . + from g(1) gS giS show ?thesis by blast +qed + +(* linear functions are equal on a subspace if they are on a spanning set. *) + +lemma subspace_kernel: + assumes lf: "linear (f::'a::semiring_1 ^'n \ _)" + shows "subspace {x. f x = 0}" +apply (simp add: subspace_def) +by (simp add: linear_add[OF lf] linear_cmul[OF lf] linear_0[OF lf]) + +lemma linear_eq_0_span: + assumes lf: "linear f" and f0: "\x\B. f x = 0" + shows "\x \ span B. f x = (0::'a::semiring_1 ^'n)" +proof + fix x assume x: "x \ span B" + let ?P = "\x. f x = 0" + from subspace_kernel[OF lf] have "subspace ?P" unfolding Collect_def . + with x f0 span_induct[of B "?P" x] show "f x = 0" by blast +qed + +lemma linear_eq_0: + assumes lf: "linear f" and SB: "S \ span B" and f0: "\x\B. f x = 0" + shows "\x \ S. f x = (0::'a::semiring_1^'n)" + by (metis linear_eq_0_span[OF lf] subset_eq SB f0) + +lemma linear_eq: + assumes lf: "linear (f::'a::ring_1^'n \ _)" and lg: "linear g" and S: "S \ span B" + and fg: "\ x\ B. f x = g x" + shows "\x\ S. f x = g x" +proof- + let ?h = "\x. f x - g x" + from fg have fg': "\x\ B. ?h x = 0" by simp + from linear_eq_0[OF linear_compose_sub[OF lf lg] S fg'] + show ?thesis by simp +qed + +lemma linear_eq_stdbasis: + assumes lf: "linear (f::'a::ring_1^'m \ 'a^'n)" and lg: "linear g" + and fg: "\i \ {1 .. dimindex(UNIV :: 'm set)}. f (basis i) = g(basis i)" + shows "f = g" +proof- + let ?U = "UNIV :: 'm set" + let ?I = "{basis i:: 'a^'m|i. i \ {1 .. dimindex ?U}}" + {fix x assume x: "x \ (UNIV :: ('a^'m) set)" + from equalityD2[OF span_stdbasis] + have IU: " (UNIV :: ('a^'m) set) \ span ?I" by blast + from linear_eq[OF lf lg IU] fg x + have "f x = g x" unfolding Collect_def Ball_def mem_def by metis} + then show ?thesis by (auto intro: ext) +qed + +(* Similar results for bilinear functions. *) + +lemma bilinear_eq: + assumes bf: "bilinear (f:: 'a::ring^'m \ 'a^'n \ 'a^'p)" + and bg: "bilinear g" + and SB: "S \ span B" and TC: "T \ span C" + and fg: "\x\ B. \y\ C. f x y = g x y" + shows "\x\S. \y\T. f x y = g x y " +proof- + let ?P = "\x. \y\ span C. f x y = g x y" + from bf bg have sp: "subspace ?P" + unfolding bilinear_def linear_def subspace_def bf bg + by(auto simp add: span_0 mem_def bilinear_lzero[OF bf] bilinear_lzero[OF bg] span_add Ball_def intro: bilinear_ladd[OF bf]) + + have "\x \ span B. \y\ span C. f x y = g x y" + apply - + apply (rule ballI) + apply (rule span_induct[of B ?P]) + defer + apply (rule sp) + apply assumption + apply (clarsimp simp add: Ball_def) + apply (rule_tac P="\y. f xa y = g xa y" and S=C in span_induct) + using fg + apply (auto simp add: subspace_def) + using bf bg unfolding bilinear_def linear_def + by(auto simp add: span_0 mem_def bilinear_rzero[OF bf] bilinear_rzero[OF bg] span_add Ball_def intro: bilinear_ladd[OF bf]) + then show ?thesis using SB TC by (auto intro: ext) +qed + +lemma bilinear_eq_stdbasis: + assumes bf: "bilinear (f:: 'a::ring_1^'m \ 'a^'n \ 'a^'p)" + and bg: "bilinear g" + and fg: "\i\ {1 .. dimindex (UNIV :: 'm set)}. \j\ {1 .. dimindex (UNIV :: 'n set)}. f (basis i) (basis j) = g (basis i) (basis j)" + shows "f = g" +proof- + from fg have th: "\x \ {basis i| i. i\ {1 .. dimindex (UNIV :: 'm set)}}. \y\ {basis j |j. j \ {1 .. dimindex (UNIV :: 'n set)}}. f x y = g x y" by blast + from bilinear_eq[OF bf bg equalityD2[OF span_stdbasis] equalityD2[OF span_stdbasis] th] show ?thesis by (blast intro: ext) +qed + +(* Detailed theorems about left and right invertibility in general case. *) + +lemma left_invertible_transp: + "(\(B::'a^'n^'m). B ** transp (A::'a^'n^'m) = mat (1::'a::comm_semiring_1)) \ (\(B::'a^'m^'n). A ** B = mat 1)" + by (metis matrix_transp_mul transp_mat transp_transp) + +lemma right_invertible_transp: + "(\(B::'a^'n^'m). transp (A::'a^'n^'m) ** B = mat (1::'a::comm_semiring_1)) \ (\(B::'a^'m^'n). B ** A = mat 1)" + by (metis matrix_transp_mul transp_mat transp_transp) + +lemma linear_injective_left_inverse: + assumes lf: "linear (f::real ^'n \ real ^'m)" and fi: "inj f" + shows "\g. linear g \ g o f = id" +proof- + from linear_independent_extend[OF independent_injective_image, OF independent_stdbasis, OF lf fi] + obtain h:: "real ^'m \ real ^'n" where h: "linear h" " \x \ f ` {basis i|i. i \ {1 .. dimindex (UNIV::'n set)}}. h x = inv f x" by blast + from h(2) + have th: "\i\{1..dimindex (UNIV::'n set)}. (h \ f) (basis i) = id (basis i)" + using inv_o_cancel[OF fi, unfolded stupid_ext[symmetric] id_def o_def] + apply auto + apply (erule_tac x="basis i" in allE) + by auto + + from linear_eq_stdbasis[OF linear_compose[OF lf h(1)] linear_id th] + have "h o f = id" . + then show ?thesis using h(1) by blast +qed + +lemma linear_surjective_right_inverse: + assumes lf: "linear (f:: real ^'m \ real ^'n)" and sf: "surj f" + shows "\g. linear g \ f o g = id" +proof- + from linear_independent_extend[OF independent_stdbasis] + obtain h:: "real ^'n \ real ^'m" where + h: "linear h" "\ x\ {basis i| i. i\ {1 .. dimindex (UNIV :: 'n set)}}. h x = inv f x" by blast + from h(2) + have th: "\i\{1..dimindex (UNIV::'n set)}. (f o h) (basis i) = id (basis i)" + using sf + apply (auto simp add: surj_iff o_def stupid_ext[symmetric]) + apply (erule_tac x="basis i" in allE) + by auto + + from linear_eq_stdbasis[OF linear_compose[OF h(1) lf] linear_id th] + have "f o h = id" . + then show ?thesis using h(1) by blast +qed + +lemma matrix_left_invertible_injective: +"(\B. (B::real^'m^'n) ** (A::real^'n^'m) = mat 1) \ (\x y. A *v x = A *v y \ x = y)" +proof- + {fix B:: "real^'m^'n" and x y assume B: "B ** A = mat 1" and xy: "A *v x = A*v y" + from xy have "B*v (A *v x) = B *v (A*v y)" by simp + hence "x = y" + unfolding matrix_vector_mul_assoc B matrix_vector_mul_lid .} + moreover + {assume A: "\x y. A *v x = A *v y \ x = y" + hence i: "inj (op *v A)" unfolding inj_on_def by auto + from linear_injective_left_inverse[OF matrix_vector_mul_linear i] + obtain g where g: "linear g" "g o op *v A = id" by blast + have "matrix g ** A = mat 1" + unfolding matrix_eq matrix_vector_mul_lid matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)] + using g(2) by (simp add: o_def id_def stupid_ext) + then have "\B. (B::real ^'m^'n) ** A = mat 1" by blast} + ultimately show ?thesis by blast +qed + +lemma matrix_left_invertible_ker: + "(\B. (B::real ^'m^'n) ** (A::real^'n^'m) = mat 1) \ (\x. A *v x = 0 \ x = 0)" + unfolding matrix_left_invertible_injective + using linear_injective_0[OF matrix_vector_mul_linear, of A] + by (simp add: inj_on_def) + +lemma matrix_right_invertible_surjective: +"(\B. (A::real^'n^'m) ** (B::real^'m^'n) = mat 1) \ surj (\x. A *v x)" +proof- + {fix B :: "real ^'m^'n" assume AB: "A ** B = mat 1" + {fix x :: "real ^ 'm" + have "A *v (B *v x) = x" + by (simp add: matrix_vector_mul_lid matrix_vector_mul_assoc AB)} + hence "surj (op *v A)" unfolding surj_def by metis } + moreover + {assume sf: "surj (op *v A)" + from linear_surjective_right_inverse[OF matrix_vector_mul_linear sf] + obtain g:: "real ^'m \ real ^'n" where g: "linear g" "op *v A o g = id" + by blast + + have "A ** (matrix g) = mat 1" + unfolding matrix_eq matrix_vector_mul_lid + matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)] + using g(2) unfolding o_def stupid_ext[symmetric] id_def + . + hence "\B. A ** (B::real^'m^'n) = mat 1" by blast + } + ultimately show ?thesis unfolding surj_def by blast +qed + +lemma matrix_left_invertible_independent_columns: + fixes A :: "real^'n^'m" + shows "(\(B::real ^'m^'n). B ** A = mat 1) \ (\c. setsum (\i. c i *s column i A) {1 .. dimindex(UNIV :: 'n set)} = 0 \ (\i\ {1 .. dimindex (UNIV :: 'n set)}. c i = 0))" + (is "?lhs \ ?rhs") +proof- + let ?U = "{1 .. dimindex(UNIV :: 'n set)}" + {assume k: "\x. A *v x = 0 \ x = 0" + {fix c i assume c: "setsum (\i. c i *s column i A) ?U = 0" + and i: "i \ ?U" + let ?x = "\ i. c i" + have th0:"A *v ?x = 0" + using c + unfolding matrix_mult_vsum Cart_eq + by (auto simp add: vector_component zero_index setsum_component Cart_lambda_beta) + from k[rule_format, OF th0] i + have "c i = 0" by (vector Cart_eq)} + hence ?rhs by blast} + moreover + {assume H: ?rhs + {fix x assume x: "A *v x = 0" + let ?c = "\i. ((x$i ):: real)" + from H[rule_format, of ?c, unfolded matrix_mult_vsum[symmetric], OF x] + have "x = 0" by vector}} + ultimately show ?thesis unfolding matrix_left_invertible_ker by blast +qed + +lemma matrix_right_invertible_independent_rows: + fixes A :: "real^'n^'m" + shows "(\(B::real^'m^'n). A ** B = mat 1) \ (\c. setsum (\i. c i *s row i A) {1 .. dimindex(UNIV :: 'm set)} = 0 \ (\i\ {1 .. dimindex (UNIV :: 'm set)}. c i = 0))" + unfolding left_invertible_transp[symmetric] + matrix_left_invertible_independent_columns + by (simp add: column_transp) + +lemma matrix_right_invertible_span_columns: + "(\(B::real ^'n^'m). (A::real ^'m^'n) ** B = mat 1) \ span (columns A) = UNIV" (is "?lhs = ?rhs") +proof- + let ?U = "{1 .. dimindex (UNIV :: 'm set)}" + have fU: "finite ?U" by simp + have lhseq: "?lhs \ (\y. \(x::real^'m). setsum (\i. (x$i) *s column i A) ?U = y)" + unfolding matrix_right_invertible_surjective matrix_mult_vsum surj_def + apply (subst eq_commute) .. + have rhseq: "?rhs \ (\x. x \ span (columns A))" by blast + {assume h: ?lhs + {fix x:: "real ^'n" + from h[unfolded lhseq, rule_format, of x] obtain y:: "real ^'m" + where y: "setsum (\i. (y$i) *s column i A) ?U = x" by blast + have "x \ span (columns A)" + unfolding y[symmetric] + apply (rule span_setsum[OF fU]) + apply clarify + apply (rule span_mul) + apply (rule span_superset) + unfolding columns_def + by blast} + then have ?rhs unfolding rhseq by blast} + moreover + {assume h:?rhs + let ?P = "\(y::real ^'n). \(x::real^'m). setsum (\i. (x$i) *s column i A) ?U = y" + {fix y have "?P y" + proof(rule span_induct_alt[of ?P "columns A"]) + show "\x\real ^ 'm. setsum (\i. (x$i) *s column i A) ?U = 0" + apply (rule exI[where x=0]) + by (simp add: zero_index vector_smult_lzero) + next + fix c y1 y2 assume y1: "y1 \ columns A" and y2: "?P y2" + from y1 obtain i where i: "i \ ?U" "y1 = column i A" + unfolding columns_def by blast + from y2 obtain x:: "real ^'m" where + x: "setsum (\i. (x$i) *s column i A) ?U = y2" by blast + let ?x = "(\ j. if j = i then c + (x$i) else (x$j))::real^'m" + show "?P (c*s y1 + y2)" + proof(rule exI[where x= "?x"], vector, auto simp add: i x[symmetric]Cart_lambda_beta setsum_component cond_value_iff right_distrib cond_application_beta vector_component cong del: if_weak_cong, simp only: One_nat_def[symmetric]) + fix j + have th: "\xa \ ?U. (if xa = i then (c + (x$i)) * ((column xa A)$j) + else (x$xa) * ((column xa A$j))) = (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))" using i(1) + by (simp add: ring_simps) + have "setsum (\xa. if xa = i then (c + (x$i)) * ((column xa A)$j) + else (x$xa) * ((column xa A$j))) ?U = setsum (\xa. (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))) ?U" + apply (rule setsum_cong[OF refl]) + using th by blast + also have "\ = setsum (\xa. if xa = i then c * ((column i A)$j) else 0) ?U + setsum (\xa. ((x$xa) * ((column xa A)$j))) ?U" + by (simp add: setsum_addf) + also have "\ = c * ((column i A)$j) + setsum (\xa. ((x$xa) * ((column xa A)$j))) ?U" + unfolding setsum_delta[OF fU] + using i(1) by simp + finally show "setsum (\xa. if xa = i then (c + (x$i)) * ((column xa A)$j) + else (x$xa) * ((column xa A$j))) ?U = c * ((column i A)$j) + setsum (\xa. ((x$xa) * ((column xa A)$j))) ?U" . + qed + next + show "y \ span (columns A)" unfolding h by blast + qed} + then have ?lhs unfolding lhseq ..} + ultimately show ?thesis by blast +qed + +lemma matrix_left_invertible_span_rows: + "(\(B::real^'m^'n). B ** (A::real^'n^'m) = mat 1) \ span (rows A) = UNIV" + unfolding right_invertible_transp[symmetric] + unfolding columns_transp[symmetric] + unfolding matrix_right_invertible_span_columns + .. + +(* An injective map real^'n->real^'n is also surjective. *) + +lemma linear_injective_imp_surjective: + assumes lf: "linear (f:: real ^'n \ real ^'n)" and fi: "inj f" + shows "surj f" +proof- + let ?U = "UNIV :: (real ^'n) set" + from basis_exists[of ?U] obtain B + where B: "B \ ?U" "independent B" "?U \ span B" "B hassize dim ?U" + by blast + from B(4) have d: "dim ?U = card B" by (simp add: hassize_def) + have th: "?U \ span (f ` B)" + apply (rule card_ge_dim_independent) + apply blast + apply (rule independent_injective_image[OF B(2) lf fi]) + apply (rule order_eq_refl) + apply (rule sym) + unfolding d + apply (rule card_image) + apply (rule subset_inj_on[OF fi]) + by blast + from th show ?thesis + unfolding span_linear_image[OF lf] surj_def + using B(3) by blast +qed + +(* And vice versa. *) + +lemma surjective_iff_injective_gen: + assumes fS: "finite S" and fT: "finite T" and c: "card S = card T" + and ST: "f ` S \ T" + shows "(\y \ T. \x \ S. f x = y) \ inj_on f S" (is "?lhs \ ?rhs") +proof- + {assume h: "?lhs" + {fix x y assume x: "x \ S" and y: "y \ S" and f: "f x = f y" + from x fS have S0: "card S \ 0" by auto + {assume xy: "x \ y" + have th: "card S \ card (f ` (S - {y}))" + unfolding c + apply (rule card_mono) + apply (rule finite_imageI) + using fS apply simp + using h xy x y f unfolding subset_eq image_iff + apply auto + apply (case_tac "xa = f x") + apply (rule bexI[where x=x]) + apply auto + done + also have " \ \ card (S -{y})" + apply (rule card_image_le) + using fS by simp + also have "\ \ card S - 1" using y fS by simp + finally have False using S0 by arith } + then have "x = y" by blast} + then have ?rhs unfolding inj_on_def by blast} + moreover + {assume h: ?rhs + have "f ` S = T" + apply (rule card_subset_eq[OF fT ST]) + unfolding card_image[OF h] using c . + then have ?lhs by blast} + ultimately show ?thesis by blast +qed + +lemma linear_surjective_imp_injective: + assumes lf: "linear (f::real ^'n => real ^'n)" and sf: "surj f" + shows "inj f" +proof- + let ?U = "UNIV :: (real ^'n) set" + from basis_exists[of ?U] obtain B + where B: "B \ ?U" "independent B" "?U \ span B" "B hassize dim ?U" + by blast + {fix x assume x: "x \ span B" and fx: "f x = 0" + from B(4) have fB: "finite B" by (simp add: hassize_def) + from B(4) have d: "dim ?U = card B" by (simp add: hassize_def) + have fBi: "independent (f ` B)" + apply (rule card_le_dim_spanning[of "f ` B" ?U]) + apply blast + using sf B(3) + unfolding span_linear_image[OF lf] surj_def subset_eq image_iff + apply blast + using fB apply (blast intro: finite_imageI) + unfolding d + apply (rule card_image_le) + apply (rule fB) + done + have th0: "dim ?U \ card (f ` B)" + apply (rule span_card_ge_dim) + apply blast + unfolding span_linear_image[OF lf] + apply (rule subset_trans[where B = "f ` UNIV"]) + using sf unfolding surj_def apply blast + apply (rule image_mono) + apply (rule B(3)) + apply (metis finite_imageI fB) + done + + moreover have "card (f ` B) \ card B" + by (rule card_image_le, rule fB) + ultimately have th1: "card B = card (f ` B)" unfolding d by arith + have fiB: "inj_on f B" + unfolding surjective_iff_injective_gen[OF fB finite_imageI[OF fB] th1 subset_refl, symmetric] by blast + from linear_indep_image_lemma[OF lf fB fBi fiB x] fx + have "x = 0" by blast} + note th = this + from th show ?thesis unfolding linear_injective_0[OF lf] + using B(3) by blast +qed + +(* Hence either is enough for isomorphism. *) + +lemma left_right_inverse_eq: + assumes fg: "f o g = id" and gh: "g o h = id" + shows "f = h" +proof- + have "f = f o (g o h)" unfolding gh by simp + also have "\ = (f o g) o h" by (simp add: o_assoc) + finally show "f = h" unfolding fg by simp +qed + +lemma isomorphism_expand: + "f o g = id \ g o f = id \ (\x. f(g x) = x) \ (\x. g(f x) = x)" + by (simp add: expand_fun_eq o_def id_def) + +lemma linear_injective_isomorphism: + assumes lf: "linear (f :: real^'n \ real ^'n)" and fi: "inj f" + shows "\f'. linear f' \ (\x. f' (f x) = x) \ (\x. f (f' x) = x)" +unfolding isomorphism_expand[symmetric] +using linear_surjective_right_inverse[OF lf linear_injective_imp_surjective[OF lf fi]] linear_injective_left_inverse[OF lf fi] +by (metis left_right_inverse_eq) + +lemma linear_surjective_isomorphism: + assumes lf: "linear (f::real ^'n \ real ^'n)" and sf: "surj f" + shows "\f'. linear f' \ (\x. f' (f x) = x) \ (\x. f (f' x) = x)" +unfolding isomorphism_expand[symmetric] +using linear_surjective_right_inverse[OF lf sf] linear_injective_left_inverse[OF lf linear_surjective_imp_injective[OF lf sf]] +by (metis left_right_inverse_eq) + +(* Left and right inverses are the same for R^N->R^N. *) + +lemma linear_inverse_left: + assumes lf: "linear (f::real ^'n \ real ^'n)" and lf': "linear f'" + shows "f o f' = id \ f' o f = id" +proof- + {fix f f':: "real ^'n \ real ^'n" + assume lf: "linear f" "linear f'" and f: "f o f' = id" + from f have sf: "surj f" + + apply (auto simp add: o_def stupid_ext[symmetric] id_def surj_def) + by metis + from linear_surjective_isomorphism[OF lf(1) sf] lf f + have "f' o f = id" unfolding stupid_ext[symmetric] o_def id_def + by metis} + then show ?thesis using lf lf' by metis +qed + +(* Moreover, a one-sided inverse is automatically linear. *) + +lemma left_inverse_linear: + assumes lf: "linear (f::real ^'n \ real ^'n)" and gf: "g o f = id" + shows "linear g" +proof- + from gf have fi: "inj f" apply (auto simp add: inj_on_def o_def id_def stupid_ext[symmetric]) + by metis + from linear_injective_isomorphism[OF lf fi] + obtain h:: "real ^'n \ real ^'n" where + h: "linear h" "\x. h (f x) = x" "\x. f (h x) = x" by blast + have "h = g" apply (rule ext) using gf h(2,3) + apply (simp add: o_def id_def stupid_ext[symmetric]) + by metis + with h(1) show ?thesis by blast +qed + +lemma right_inverse_linear: + assumes lf: "linear (f:: real ^'n \ real ^'n)" and gf: "f o g = id" + shows "linear g" +proof- + from gf have fi: "surj f" apply (auto simp add: surj_def o_def id_def stupid_ext[symmetric]) + by metis + from linear_surjective_isomorphism[OF lf fi] + obtain h:: "real ^'n \ real ^'n" where + h: "linear h" "\x. h (f x) = x" "\x. f (h x) = x" by blast + have "h = g" apply (rule ext) using gf h(2,3) + apply (simp add: o_def id_def stupid_ext[symmetric]) + by metis + with h(1) show ?thesis by blast +qed + +(* The same result in terms of square matrices. *) + +lemma matrix_left_right_inverse: + fixes A A' :: "real ^'n^'n" + shows "A ** A' = mat 1 \ A' ** A = mat 1" +proof- + {fix A A' :: "real ^'n^'n" assume AA': "A ** A' = mat 1" + have sA: "surj (op *v A)" + unfolding surj_def + apply clarify + apply (rule_tac x="(A' *v y)" in exI) + by (simp add: matrix_vector_mul_assoc AA' matrix_vector_mul_lid) + from linear_surjective_isomorphism[OF matrix_vector_mul_linear sA] + obtain f' :: "real ^'n \ real ^'n" + where f': "linear f'" "\x. f' (A *v x) = x" "\x. A *v f' x = x" by blast + have th: "matrix f' ** A = mat 1" + by (simp add: matrix_eq matrix_works[OF f'(1)] matrix_vector_mul_assoc[symmetric] matrix_vector_mul_lid f'(2)[rule_format]) + hence "(matrix f' ** A) ** A' = mat 1 ** A'" by simp + hence "matrix f' = A'" by (simp add: matrix_mul_assoc[symmetric] AA' matrix_mul_rid matrix_mul_lid) + hence "matrix f' ** A = A' ** A" by simp + hence "A' ** A = mat 1" by (simp add: th)} + then show ?thesis by blast +qed + +(* Considering an n-element vector as an n-by-1 or 1-by-n matrix. *) + +definition "rowvector v = (\ i j. (v$j))" + +definition "columnvector v = (\ i j. (v$i))" + +lemma transp_columnvector: + "transp(columnvector v) = rowvector v" + by (simp add: transp_def rowvector_def columnvector_def Cart_eq Cart_lambda_beta) + +lemma transp_rowvector: "transp(rowvector v) = columnvector v" + by (simp add: transp_def columnvector_def rowvector_def Cart_eq Cart_lambda_beta) + +lemma dot_rowvector_columnvector: + "columnvector (A *v v) = A ** columnvector v" + by (vector columnvector_def matrix_matrix_mult_def matrix_vector_mult_def) + +lemma dot_matrix_product: "(x::'a::semiring_1^'n) \ y = (((rowvector x ::'a^'n^1) ** (columnvector y :: 'a^1^'n))$1)$1" + apply (vector matrix_matrix_mult_def rowvector_def columnvector_def dot_def) + by (simp add: Cart_lambda_beta) + +lemma dot_matrix_vector_mul: + fixes A B :: "real ^'n ^'n" and x y :: "real ^'n" + shows "(A *v x) \ (B *v y) = + (((rowvector x :: real^'n^1) ** ((transp A ** B) ** (columnvector y :: real ^1^'n)))$1)$1" +unfolding dot_matrix_product transp_columnvector[symmetric] + dot_rowvector_columnvector matrix_transp_mul matrix_mul_assoc .. + +(* Infinity norm. *) + +definition "infnorm (x::real^'n) = rsup {abs(x$i) |i. i\ {1 .. dimindex(UNIV :: 'n set)}}" + +lemma numseg_dimindex_nonempty: "\i. i \ {1 .. dimindex (UNIV :: 'n set)}" + using dimindex_ge_1 by auto + +lemma infnorm_set_image: + "{abs(x$i) |i. i\ {1 .. dimindex(UNIV :: 'n set)}} = + (\i. abs(x$i)) ` {1 .. dimindex(UNIV :: 'n set)}" by blast + +lemma infnorm_set_lemma: + shows "finite {abs((x::'a::abs ^'n)$i) |i. i\ {1 .. dimindex(UNIV :: 'n set)}}" + and "{abs(x$i) |i. i\ {1 .. dimindex(UNIV :: 'n set)}} \ {}" + unfolding infnorm_set_image + using dimindex_ge_1[of "UNIV :: 'n set"] + by (auto intro: finite_imageI) + +lemma infnorm_pos_le: "0 \ infnorm x" + unfolding infnorm_def + unfolding rsup_finite_ge_iff[ OF infnorm_set_lemma] + unfolding infnorm_set_image + using dimindex_ge_1 + by auto + +lemma infnorm_triangle: "infnorm ((x::real^'n) + y) \ infnorm x + infnorm y" +proof- + have th: "\x y (z::real). x - y <= z \ x - z <= y" by arith + have th1: "\S f. f ` S = { f i| i. i \ S}" by blast + have th2: "\x (y::real). abs(x + y) - abs(x) <= abs(y)" by arith + show ?thesis + unfolding infnorm_def + unfolding rsup_finite_le_iff[ OF infnorm_set_lemma] + apply (subst diff_le_eq[symmetric]) + unfolding rsup_finite_ge_iff[ OF infnorm_set_lemma] + unfolding infnorm_set_image bex_simps + apply (subst th) + unfolding th1 + unfolding rsup_finite_ge_iff[ OF infnorm_set_lemma] + + unfolding infnorm_set_image ball_simps bex_simps + apply (simp add: vector_add_component) + apply (metis numseg_dimindex_nonempty th2) + done +qed + +lemma infnorm_eq_0: "infnorm x = 0 \ (x::real ^'n) = 0" +proof- + have "infnorm x <= 0 \ x = 0" + unfolding infnorm_def + unfolding rsup_finite_le_iff[OF infnorm_set_lemma] + unfolding infnorm_set_image ball_simps + by vector + then show ?thesis using infnorm_pos_le[of x] by simp +qed + +lemma infnorm_0: "infnorm 0 = 0" + by (simp add: infnorm_eq_0) + +lemma infnorm_neg: "infnorm (- x) = infnorm x" + unfolding infnorm_def + apply (rule cong[of "rsup" "rsup"]) + apply blast + apply (rule set_ext) + apply (auto simp add: vector_component abs_minus_cancel) + apply (rule_tac x="i" in exI) + apply (simp add: vector_component) + done + +lemma infnorm_sub: "infnorm (x - y) = infnorm (y - x)" +proof- + have "y - x = - (x - y)" by simp + then show ?thesis by (metis infnorm_neg) +qed + +lemma real_abs_sub_infnorm: "\ infnorm x - infnorm y\ \ infnorm (x - y)" +proof- + have th: "\(nx::real) n ny. nx <= n + ny \ ny <= n + nx ==> \nx - ny\ <= n" + by arith + from infnorm_triangle[of "x - y" " y"] infnorm_triangle[of "x - y" "-x"] + have ths: "infnorm x \ infnorm (x - y) + infnorm y" + "infnorm y \ infnorm (x - y) + infnorm x" + by (simp_all add: ring_simps infnorm_neg diff_def[symmetric]) + from th[OF ths] show ?thesis . +qed + +lemma real_abs_infnorm: " \infnorm x\ = infnorm x" + using infnorm_pos_le[of x] by arith + +lemma component_le_infnorm: assumes i: "i \ {1 .. dimindex (UNIV :: 'n set)}" + shows "\x$i\ \ infnorm (x::real^'n)" +proof- + let ?U = "{1 .. dimindex (UNIV :: 'n set)}" + let ?S = "{\x$i\ |i. i\ ?U}" + have fS: "finite ?S" unfolding image_Collect[symmetric] + apply (rule finite_imageI) unfolding Collect_def mem_def by simp + have S0: "?S \ {}" using numseg_dimindex_nonempty by blast + have th1: "\S f. f ` S = { f i| i. i \ S}" by blast + from rsup_finite_in[OF fS S0] rsup_finite_Ub[OF fS S0] i + show ?thesis unfolding infnorm_def isUb_def setle_def + unfolding infnorm_set_image ball_simps by auto +qed + +lemma infnorm_mul_lemma: "infnorm(a *s x) <= \a\ * infnorm x" + apply (subst infnorm_def) + unfolding rsup_finite_le_iff[OF infnorm_set_lemma] + unfolding infnorm_set_image ball_simps + apply (simp add: abs_mult vector_component del: One_nat_def) + apply (rule ballI) + apply (drule component_le_infnorm[of _ x]) + apply (rule mult_mono) + apply auto + done + +lemma infnorm_mul: "infnorm(a *s x) = abs a * infnorm x" +proof- + {assume a0: "a = 0" hence ?thesis by (simp add: infnorm_0) } + moreover + {assume a0: "a \ 0" + from a0 have th: "(1/a) *s (a *s x) = x" + by (simp add: vector_smult_assoc) + from a0 have ap: "\a\ > 0" by arith + from infnorm_mul_lemma[of "1/a" "a *s x"] + have "infnorm x \ 1/\a\ * infnorm (a*s x)" + unfolding th by simp + with ap have "\a\ * infnorm x \ \a\ * (1/\a\ * infnorm (a *s x))" by (simp add: field_simps) + then have "\a\ * infnorm x \ infnorm (a*s x)" + using ap by (simp add: field_simps) + with infnorm_mul_lemma[of a x] have ?thesis by arith } + ultimately show ?thesis by blast +qed + +lemma infnorm_pos_lt: "infnorm x > 0 \ x \ 0" + using infnorm_pos_le[of x] infnorm_eq_0[of x] by arith + +(* Prove that it differs only up to a bound from Euclidean norm. *) + +lemma infnorm_le_norm: "infnorm x \ norm x" + unfolding infnorm_def rsup_finite_le_iff[OF infnorm_set_lemma] + unfolding infnorm_set_image ball_simps + by (metis component_le_norm) +lemma card_enum: "card {1 .. n} = n" by auto +lemma norm_le_infnorm: "norm(x) <= sqrt(real (dimindex(UNIV ::'n set))) * infnorm(x::real ^'n)" +proof- + let ?d = "dimindex(UNIV ::'n set)" + have d: "?d = card {1 .. ?d}" by auto + have "real ?d \ 0" by simp + hence d2: "(sqrt (real ?d))^2 = real ?d" + by (auto intro: real_sqrt_pow2) + have th: "sqrt (real ?d) * infnorm x \ 0" + by (simp add: dimindex_ge_1 zero_le_mult_iff real_sqrt_ge_0_iff infnorm_pos_le) + have th1: "x\x \ (sqrt (real ?d) * infnorm x)^2" + unfolding power_mult_distrib d2 + apply (subst d) + apply (subst power2_abs[symmetric]) + unfolding real_of_nat_def dot_def power2_eq_square[symmetric] + apply (subst power2_abs[symmetric]) + apply (rule setsum_bounded) + apply (rule power_mono) + unfolding abs_of_nonneg[OF infnorm_pos_le] + unfolding infnorm_def rsup_finite_ge_iff[OF infnorm_set_lemma] + unfolding infnorm_set_image bex_simps + apply blast + by (rule abs_ge_zero) + from real_le_lsqrt[OF dot_pos_le th th1] + show ?thesis unfolding real_vector_norm_def real_of_real_def id_def . +qed + +(* Equality in Cauchy-Schwarz and triangle inequalities. *) + +lemma norm_cauchy_schwarz_eq: "(x::real ^'n) \ y = norm x * norm y \ norm x *s y = norm y *s x" (is "?lhs \ ?rhs") +proof- + {assume h: "x = 0" + hence ?thesis by (simp add: norm_0)} + moreover + {assume h: "y = 0" + hence ?thesis by (simp add: norm_0)} + moreover + {assume x: "x \ 0" and y: "y \ 0" + from dot_eq_0[of "norm y *s x - norm x *s y"] + have "?rhs \ (norm y * (norm y * norm x * norm x - norm x * (x \ y)) - norm x * (norm y * (y \ x) - norm x * norm y * norm y) = 0)" + using x y + unfolding dot_rsub dot_lsub dot_lmult dot_rmult + unfolding norm_pow_2[symmetric] power2_eq_square diff_eq_0_iff_eq apply (simp add: dot_sym) + apply (simp add: ring_simps) + apply metis + done + also have "\ \ (2 * norm x * norm y * (norm x * norm y - x \ y) = 0)" using x y + by (simp add: ring_simps dot_sym) + also have "\ \ ?lhs" using x y + apply (simp add: norm_eq_0) + by metis + finally have ?thesis by blast} + ultimately show ?thesis by blast +qed + +lemma norm_cauchy_schwarz_abs_eq: "abs(x \ y) = norm x * norm y \ + norm x *s y = norm y *s x \ norm(x) *s y = - norm y *s x" (is "?lhs \ ?rhs") +proof- + have th: "\(x::real) a. a \ 0 \ abs x = a \ x = a \ x = - a" by arith + have "?rhs \ norm x *s y = norm y *s x \ norm (- x) *s y = norm y *s (- x)" + apply (simp add: norm_neg) by vector + also have "\ \(x \ y = norm x * norm y \ + (-x) \ y = norm x * norm y)" + unfolding norm_cauchy_schwarz_eq[symmetric] + unfolding norm_neg + norm_mul by blast + also have "\ \ ?lhs" + unfolding th[OF mult_nonneg_nonneg, OF norm_pos_le[of x] norm_pos_le[of y]] dot_lneg + by arith + finally show ?thesis .. +qed + +lemma norm_triangle_eq: "norm(x + y) = norm x + norm y \ norm x *s y = norm y *s x" +proof- + {assume x: "x =0 \ y =0" + hence ?thesis by (cases "x=0", simp_all add: norm_0)} + moreover + {assume x: "x \ 0" and y: "y \ 0" + hence "norm x \ 0" "norm y \ 0" + by (simp_all add: norm_eq_0) + hence n: "norm x > 0" "norm y > 0" + using norm_pos_le[of x] norm_pos_le[of y] + by arith+ + have th: "\(a::real) b c. a + b + c \ 0 ==> (a = b + c \ a^2 = (b + c)^2)" by algebra + have "norm(x + y) = norm x + norm y \ norm(x + y)^ 2 = (norm x + norm y) ^2" + apply (rule th) using n norm_pos_le[of "x + y"] + by arith + also have "\ \ norm x *s y = norm y *s x" + unfolding norm_cauchy_schwarz_eq[symmetric] + unfolding norm_pow_2 dot_ladd dot_radd + by (simp add: norm_pow_2[symmetric] power2_eq_square dot_sym ring_simps) + finally have ?thesis .} + ultimately show ?thesis by blast +qed + +(* Collinearity.*) + +definition "collinear S \ (\u. \x \ S. \ y \ S. \c. x - y = c *s u)" + +lemma collinear_empty: "collinear {}" by (simp add: collinear_def) + +lemma collinear_sing: "collinear {(x::'a::ring_1^'n)}" + apply (simp add: collinear_def) + apply (rule exI[where x=0]) + by simp + +lemma collinear_2: "collinear {(x::'a::ring_1^'n),y}" + apply (simp add: collinear_def) + apply (rule exI[where x="x - y"]) + apply auto + apply (rule exI[where x=0], simp) + apply (rule exI[where x=1], simp) + apply (rule exI[where x="- 1"], simp add: vector_sneg_minus1[symmetric]) + apply (rule exI[where x=0], simp) + done + +lemma collinear_lemma: "collinear {(0::real^'n),x,y} \ x = 0 \ y = 0 \ (\c. y = c *s x)" (is "?lhs \ ?rhs") +proof- + {assume "x=0 \ y = 0" hence ?thesis + by (cases "x = 0", simp_all add: collinear_2 insert_commute)} + moreover + {assume x: "x \ 0" and y: "y \ 0" + {assume h: "?lhs" + then obtain u where u: "\ x\ {0,x,y}. \y\ {0,x,y}. \c. x - y = c *s u" unfolding collinear_def by blast + from u[rule_format, of x 0] u[rule_format, of y 0] + obtain cx and cy where + cx: "x = cx*s u" and cy: "y = cy*s u" + by auto + from cx x have cx0: "cx \ 0" by auto + from cy y have cy0: "cy \ 0" by auto + let ?d = "cy / cx" + from cx cy cx0 have "y = ?d *s x" + by (simp add: vector_smult_assoc) + hence ?rhs using x y by blast} + moreover + {assume h: "?rhs" + then obtain c where c: "y = c*s x" using x y by blast + have ?lhs unfolding collinear_def c + apply (rule exI[where x=x]) + apply auto + apply (rule exI[where x=0], simp) + apply (rule exI[where x="- 1"], simp only: vector_smult_lneg vector_smult_lid) + apply (rule exI[where x= "-c"], simp only: vector_smult_lneg) + apply (rule exI[where x=1], simp) + apply (rule exI[where x=0], simp) + apply (rule exI[where x="1 - c"], simp add: vector_smult_lneg vector_sub_rdistrib) + apply (rule exI[where x="c - 1"], simp add: vector_smult_lneg vector_sub_rdistrib) + apply (rule exI[where x=0], simp) + done} + ultimately have ?thesis by blast} + ultimately show ?thesis by blast +qed + +lemma norm_cauchy_schwarz_equal: "abs(x \ y) = norm x * norm y \ collinear {(0::real^'n),x,y}" +unfolding norm_cauchy_schwarz_abs_eq +apply (cases "x=0", simp_all add: collinear_2 norm_0) +apply (cases "y=0", simp_all add: collinear_2 norm_0 insert_commute) +unfolding collinear_lemma +apply simp +apply (subgoal_tac "norm x \ 0") +apply (subgoal_tac "norm y \ 0") +apply (rule iffI) +apply (cases "norm x *s y = norm y *s x") +apply (rule exI[where x="(1/norm x) * norm y"]) +apply (drule sym) +unfolding vector_smult_assoc[symmetric] +apply (simp add: vector_smult_assoc field_simps) +apply (rule exI[where x="(1/norm x) * - norm y"]) +apply clarify +apply (drule sym) +unfolding vector_smult_assoc[symmetric] +apply (simp add: vector_smult_assoc field_simps) +apply (erule exE) +apply (erule ssubst) +unfolding vector_smult_assoc +unfolding norm_mul +apply (subgoal_tac "norm x * c = \c\ * norm x \ norm x * c = - \c\ * norm x") +apply (case_tac "c <= 0", simp add: ring_simps) +apply (simp add: ring_simps) +apply (case_tac "c <= 0", simp add: ring_simps) +apply (simp add: ring_simps) +apply (simp add: norm_eq_0) +apply (simp add: norm_eq_0) +done + +end \ No newline at end of file diff -r 14d9891c917b -r 55ddff2ed906 src/HOL/Library/Finite_Cartesian_Product.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Finite_Cartesian_Product.thy Mon Feb 09 22:15:37 2009 +0100 @@ -0,0 +1,269 @@ +(* Title: HOL/Library/Finite_Cartesian_Product + ID: $Id: Finite_Cartesian_Product.thy,v 1.5 2009/01/29 22:59:46 chaieb Exp $ + Author: Amine Chaieb, University of Cambridge +*) + +header {* Definition of finite Cartesian product types. *} + +theory Finite_Cartesian_Product + (* imports Plain SetInterval ATP_Linkup *) +imports Main +begin + + (* FIXME : ATP_Linkup is only needed for metis at a few places. We could dispense of that by changing the proofs*) +subsection{* Dimention of sets *} + +definition "dimindex (S:: 'a set) = (if finite (UNIV::'a set) then card (UNIV:: 'a set) else 1)" + +syntax "_type_dimindex" :: "type => nat" ("(1DIM/(1'(_')))") +translations "DIM(t)" => "CONST dimindex (UNIV :: t set)" + +lemma dimindex_nonzero: "dimindex S \ 0" +unfolding dimindex_def +by (simp add: neq0_conv[symmetric] del: neq0_conv) + +lemma dimindex_ge_1: "dimindex S \ 1" + using dimindex_nonzero[of S] by arith +lemma dimindex_univ: "dimindex (S :: 'a set) = DIM('a)" by (simp add: dimindex_def) + +definition hassize (infixr "hassize" 12) where + "(S hassize n) = (finite S \ card S = n)" + +lemma dimindex_unique: " (UNIV :: 'a set) hassize n ==> DIM('a) = n" +by (simp add: dimindex_def hassize_def) + + +section{* An indexing type parametrized by base type. *} + +typedef 'a finite_image = "{1 .. DIM('a)}" + using dimindex_ge_1 by auto + +lemma finite_image_image: "(UNIV :: 'a finite_image set) = Abs_finite_image ` {1 .. DIM('a)}" +apply (auto simp add: Abs_finite_image_inverse image_def finite_image_def) +apply (rule_tac x="Rep_finite_image x" in bexI) +apply (simp_all add: Rep_finite_image_inverse Rep_finite_image) +using Rep_finite_image[where ?'a = 'a] +unfolding finite_image_def +apply simp +done + +text{* Dimension of such a type, and indexing over it. *} + +lemma inj_on_Abs_finite_image: + "inj_on (Abs_finite_image:: _ \ 'a finite_image) {1 .. DIM('a)}" +by (auto simp add: inj_on_def finite_image_def Abs_finite_image_inject[where ?'a='a]) + +lemma has_size_finite_image: "(UNIV:: 'a finite_image set) hassize dimindex (S :: 'a set)" + unfolding hassize_def finite_image_image card_image[OF inj_on_Abs_finite_image[where ?'a='a]] by (auto simp add: dimindex_def) + +lemma hassize_image_inj: assumes f: "inj_on f S" and S: "S hassize n" + shows "f ` S hassize n" + using f S card_image[OF f] + by (simp add: hassize_def inj_on_def) + +lemma card_finite_image: "card (UNIV:: 'a finite_image set) = dimindex(S:: 'a set)" +using has_size_finite_image +unfolding hassize_def by blast + +lemma finite_finite_image: "finite (UNIV:: 'a finite_image set)" +using has_size_finite_image +unfolding hassize_def by blast + +lemma dimindex_finite_image: "dimindex (S:: 'a finite_image set) = dimindex(T:: 'a set)" +unfolding card_finite_image[of T, symmetric] +by (auto simp add: dimindex_def finite_finite_image) + +lemma Abs_finite_image_works: + fixes i:: "'a finite_image" + shows " \!n \ {1 .. DIM('a)}. Abs_finite_image n = i" + unfolding Bex1_def Ex1_def + apply (rule_tac x="Rep_finite_image i" in exI) + using Rep_finite_image_inverse[where ?'a = 'a] + Rep_finite_image[where ?'a = 'a] + Abs_finite_image_inverse[where ?'a='a, symmetric] + by (auto simp add: finite_image_def) + +lemma Abs_finite_image_inj: + "i \ {1 .. DIM('a)} \ j \ {1 .. DIM('a)} + \ (((Abs_finite_image i ::'a finite_image) = Abs_finite_image j) \ (i = j))" + using Abs_finite_image_works[where ?'a = 'a] + by (auto simp add: atLeastAtMost_iff Bex1_def) + +lemma forall_Abs_finite_image: + "(\k:: 'a finite_image. P k) \ (\i \ {1 .. DIM('a)}. P(Abs_finite_image i))" +unfolding Ball_def atLeastAtMost_iff Ex1_def +using Abs_finite_image_works[where ?'a = 'a, unfolded atLeastAtMost_iff Bex1_def] +by metis + +subsection {* Finite Cartesian products, with indexing and lambdas. *} + +typedef (Cart) + ('a, 'b) "^" (infixl "^" 15) + = "{f:: 'b finite_image \ 'a . True}" by simp + +abbreviation dimset:: "('a ^ 'n) \ nat set" where + "dimset a \ {1 .. DIM('n)}" + +definition Cart_nth :: "'a ^ 'b \ nat \ 'a" (infixl "$" 90) where + "x$i = Rep_Cart x (Abs_finite_image i)" + +lemma stupid_ext: "(\x. f x = g x) \ (f = g)" + apply auto + apply (rule ext) + apply auto + done +lemma Cart_eq: "((x:: 'a ^ 'b) = y) \ (\i\ dimset x. x$i = y$i)" + unfolding Cart_nth_def forall_Abs_finite_image[symmetric, where P = "\i. Rep_Cart x i = Rep_Cart y i"] stupid_ext + using Rep_Cart_inject[of x y] .. + +consts Cart_lambda :: "(nat \ 'a) \ 'a ^ 'b" +notation (xsymbols) Cart_lambda (binder "\" 10) + +defs Cart_lambda_def: "Cart_lambda g == (SOME (f:: 'a ^ 'b). \i \ {1 .. DIM('b)}. f$i = g i)" + +lemma Cart_lambda_beta: " \ i\ {1 .. DIM('b)}. (Cart_lambda g:: 'a ^ 'b)$i = g i" + unfolding Cart_lambda_def +proof (rule someI_ex) + let ?p = "\(i::nat) (k::'b finite_image). i \ {1 .. DIM('b)} \ (Abs_finite_image i = k)" + let ?f = "Abs_Cart (\k. g (THE i. ?p i k)):: 'a ^ 'b" + let ?P = "\f i. f$i = g i" + let ?Q = "\(f::'a ^ 'b). \ i \ {1 .. DIM('b)}. ?P f i" + {fix i + assume i: "i \ {1 .. DIM('b)}" + let ?j = "THE j. ?p j (Abs_finite_image i)" + from theI'[where P = "\j. ?p (j::nat) (Abs_finite_image i :: 'b finite_image)", OF Abs_finite_image_works[of "Abs_finite_image i :: 'b finite_image", unfolded Bex1_def]] + have j: "?j \ {1 .. DIM('b)}" "(Abs_finite_image ?j :: 'b finite_image) = Abs_finite_image i" by blast+ + from i j Abs_finite_image_inject[of i ?j, where ?'a = 'b] + have th: "?j = i" by (simp add: finite_image_def) + have "?P ?f i" + using th + by (simp add: Cart_nth_def Abs_Cart_inverse Rep_Cart_inverse Cart_def) } + hence th0: "?Q ?f" .. + with th0 show "\f. ?Q f" unfolding Ex1_def by auto +qed + +lemma Cart_lambda_beta': "i\ {1 .. DIM('b)} \ (Cart_lambda g:: 'a ^ 'b)$i = g i" + using Cart_lambda_beta by blast + +lemma Cart_lambda_unique: + fixes f :: "'a ^ 'b" + shows "(\i\ {1 .. DIM('b)}. f$i = g i) \ Cart_lambda g = f" + by (auto simp add: Cart_eq Cart_lambda_beta) + +lemma Cart_lambda_eta: "(\ i. (g$i)) = g" by (simp add: Cart_eq Cart_lambda_beta) + +text{* A non-standard sum to "paste" Cartesian products. *} + +typedef ('a,'b) finite_sum = "{1 .. DIM('a) + DIM('b)}" + apply (rule exI[where x="1"]) + using dimindex_ge_1[of "UNIV :: 'a set"] dimindex_ge_1[of "UNIV :: 'b set"] + by auto + +definition pastecart :: "'a ^ 'm \ 'a ^ 'n \ 'a ^ ('m,'n) finite_sum" where + "pastecart f g = (\ i. (if i <= DIM('m) then f$i else g$(i - DIM('m))))" + +definition fstcart:: "'a ^('m, 'n) finite_sum \ 'a ^ 'm" where + "fstcart f = (\ i. (f$i))" + +definition sndcart:: "'a ^('m, 'n) finite_sum \ 'a ^ 'n" where + "sndcart f = (\ i. (f$(i + DIM('m))))" + +lemma finite_sum_image: "(UNIV::('a,'b) finite_sum set) = Abs_finite_sum ` {1 .. DIM('a) + DIM('b)}" +apply (auto simp add: image_def) +apply (rule_tac x="Rep_finite_sum x" in bexI) +apply (simp add: Rep_finite_sum_inverse) +using Rep_finite_sum[unfolded finite_sum_def, where ?'a = 'a and ?'b = 'b] +apply (simp add: Rep_finite_sum) +done + +lemma inj_on_Abs_finite_sum: "inj_on (Abs_finite_sum :: _ \ ('a,'b) finite_sum) {1 .. DIM('a) + DIM('b)}" + using Abs_finite_sum_inject[where ?'a = 'a and ?'b = 'b] + by (auto simp add: inj_on_def finite_sum_def) + +lemma dimindex_has_size_finite_sum: + "(UNIV::('m,'n) finite_sum set) hassize (DIM('m) + DIM('n))" + by (simp add: finite_sum_image hassize_def card_image[OF inj_on_Abs_finite_sum[where ?'a = 'm and ?'b = 'n]] del: One_nat_def) + +lemma dimindex_finite_sum: "DIM(('m,'n) finite_sum) = DIM('m) + DIM('n)" + using dimindex_has_size_finite_sum[where ?'n = 'n and ?'m = 'm, unfolded hassize_def] + by (simp add: dimindex_def) + +lemma fstcart_pastecart: "fstcart (pastecart (x::'a ^'m ) (y:: 'a ^ 'n)) = x" + by (simp add: pastecart_def fstcart_def Cart_eq Cart_lambda_beta dimindex_finite_sum) + +lemma sndcart_pastecart: "sndcart (pastecart (x::'a ^'m ) (y:: 'a ^ 'n)) = y" + by (simp add: pastecart_def sndcart_def Cart_eq Cart_lambda_beta dimindex_finite_sum) + +lemma pastecart_fst_snd: "pastecart (fstcart z) (sndcart z) = z" +proof - + {fix i + assume H: "i \ DIM('b) + DIM('c)" + "\ i \ DIM('b)" + from H have ith: "i - DIM('b) \ {1 .. DIM('c)}" + apply simp by arith + from H have th0: "i - DIM('b) + DIM('b) = i" + by simp + have "(\ i. (z$(i + DIM('b))) :: 'a ^ 'c)$(i - DIM('b)) = z$i" + unfolding Cart_lambda_beta'[where g = "\ i. z$(i + DIM('b))", OF ith] th0 ..} +thus ?thesis by (auto simp add: pastecart_def fstcart_def sndcart_def Cart_eq Cart_lambda_beta dimindex_finite_sum) +qed + +lemma pastecart_eq: "(x = y) \ (fstcart x = fstcart y) \ (sndcart x = sndcart y)" + using pastecart_fst_snd[of x] pastecart_fst_snd[of y] by metis + +lemma forall_pastecart: "(\p. P p) \ (\x y. P (pastecart x y))" + by (metis pastecart_fst_snd fstcart_pastecart sndcart_pastecart) + +lemma exists_pastecart: "(\p. P p) \ (\x y. P (pastecart x y))" + by (metis pastecart_fst_snd fstcart_pastecart sndcart_pastecart) + +text{* The finiteness lemma. *} + +lemma finite_cart: + "\i \ {1 .. DIM('n)}. finite {x. P i x} + \ finite {v::'a ^ 'n . (\i \ {1 .. DIM('n)}. P i (v$i))}" +proof- + assume f: "\i \ {1 .. DIM('n)}. finite {x. P i x}" + {fix n + assume n: "n \ DIM('n)" + have "finite {v:: 'a ^ 'n . (\i\ {1 .. DIM('n)}. i \ n \ P i (v$i)) + \ (\i\ {1 .. DIM('n)}. n < i \ v$i = (SOME x. False))}" + using n + proof(induct n) + case 0 + have th0: "{v . (\i \ {1 .. DIM('n)}. v$i = (SOME x. False))} = + {(\ i. (SOME x. False)::'a ^ 'n)}" by (auto simp add: Cart_lambda_beta Cart_eq) + with "0.prems" show ?case by auto + next + case (Suc n) + let ?h = "\(x::'a,v:: 'a ^ 'n). (\ i. if i = Suc n then x else v$i):: 'a ^ 'n" + let ?T = "{v\'a ^ 'n. + (\i\nat\{1\nat..DIM('n)}. i \ Suc n \ P i (v$i)) \ + (\i\nat\{1\nat..DIM('n)}. + Suc n < i \ v$i = (SOME x\'a. False))}" + let ?S = "{x::'a . P (Suc n) x} \ {v:: 'a^'n. (\i \ {1 .. DIM('n)}. i <= n \ P i (v$i)) \ (\i \ {1 .. DIM('n)}. n < i \ v$i = (SOME x. False))}" + have th0: " ?T \ (?h ` ?S)" + using Suc.prems + apply (auto simp add: image_def) + apply (rule_tac x = "x$(Suc n)" in exI) + apply (rule conjI) + apply (rotate_tac) + apply (erule ballE[where x="Suc n"]) + apply simp + apply simp + apply (rule_tac x= "\ i. if i = Suc n then (SOME x:: 'a. False) else (x:: 'a ^ 'n)$i:: 'a ^ 'n" in exI) + by (simp add: Cart_eq Cart_lambda_beta) + have th1: "finite ?S" + apply (rule finite_cartesian_product) + using f Suc.hyps Suc.prems by auto + from finite_imageI[OF th1] have th2: "finite (?h ` ?S)" . + from finite_subset[OF th0 th2] show ?case by blast + qed} + + note th = this + from this[of "DIM('n)"] f + show ?thesis by auto +qed + + +end diff -r 14d9891c917b -r 55ddff2ed906 src/HOL/Library/Glbs.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Glbs.thy Mon Feb 09 22:15:37 2009 +0100 @@ -0,0 +1,85 @@ +(* Title: Glbs + ID: $Id: + Author: Amine Chaieb, University of Cambridge +*) + +header{*Definitions of Lower Bounds and Greatest Lower Bounds, analogous to Lubs*} + +theory Glbs +imports Lubs +begin + +definition + greatestP :: "['a =>bool,'a::ord] => bool" where + "greatestP P x = (P x & Collect P *<= x)" + +definition + isLb :: "['a set, 'a set, 'a::ord] => bool" where + "isLb R S x = (x <=* S & x: R)" + +definition + isGlb :: "['a set, 'a set, 'a::ord] => bool" where + "isGlb R S x = greatestP (isLb R S) x" + +definition + lbs :: "['a set, 'a::ord set] => 'a set" where + "lbs R S = Collect (isLb R S)" + +subsection{*Rules about the Operators @{term greatestP}, @{term isLb} + and @{term isGlb}*} + +lemma leastPD1: "greatestP P x ==> P x" +by (simp add: greatestP_def) + +lemma greatestPD2: "greatestP P x ==> Collect P *<= x" +by (simp add: greatestP_def) + +lemma greatestPD3: "[| greatestP P x; y: Collect P |] ==> x >= y" +by (blast dest!: greatestPD2 setleD) + +lemma isGlbD1: "isGlb R S x ==> x <=* S" +by (simp add: isGlb_def isLb_def greatestP_def) + +lemma isGlbD1a: "isGlb R S x ==> x: R" +by (simp add: isGlb_def isLb_def greatestP_def) + +lemma isGlb_isLb: "isGlb R S x ==> isLb R S x" +apply (simp add: isLb_def) +apply (blast dest: isGlbD1 isGlbD1a) +done + +lemma isGlbD2: "[| isGlb R S x; y : S |] ==> y >= x" +by (blast dest!: isGlbD1 setgeD) + +lemma isGlbD3: "isGlb R S x ==> greatestP(isLb R S) x" +by (simp add: isGlb_def) + +lemma isGlbI1: "greatestP(isLb R S) x ==> isGlb R S x" +by (simp add: isGlb_def) + +lemma isGlbI2: "[| isLb R S x; Collect (isLb R S) *<= x |] ==> isGlb R S x" +by (simp add: isGlb_def greatestP_def) + +lemma isLbD: "[| isLb R S x; y : S |] ==> y >= x" +by (simp add: isLb_def setge_def) + +lemma isLbD2: "isLb R S x ==> x <=* S " +by (simp add: isLb_def) + +lemma isLbD2a: "isLb R S x ==> x: R" +by (simp add: isLb_def) + +lemma isLbI: "[| x <=* S ; x: R |] ==> isLb R S x" +by (simp add: isLb_def) + +lemma isGlb_le_isLb: "[| isGlb R S x; isLb R S y |] ==> x >= y" +apply (simp add: isGlb_def) +apply (blast intro!: greatestPD3) +done + +lemma isGlb_ubs: "isGlb R S x ==> lbs R S *<= x" +apply (simp add: lbs_def isGlb_def) +apply (erule greatestPD2) +done + +end diff -r 14d9891c917b -r 55ddff2ed906 src/HOL/Library/Infinite_Set.thy --- a/src/HOL/Library/Infinite_Set.thy Mon Feb 09 22:14:33 2009 +0100 +++ b/src/HOL/Library/Infinite_Set.thy Mon Feb 09 22:15:37 2009 +0100 @@ -6,7 +6,7 @@ header {* Infinite Sets and Related Concepts *} theory Infinite_Set -imports Plain "~~/src/HOL/SetInterval" "~~/src/HOL/Hilbert_Choice" +imports Main "~~/src/HOL/SetInterval" "~~/src/HOL/Hilbert_Choice" begin diff -r 14d9891c917b -r 55ddff2ed906 src/HOL/Library/Library.thy --- a/src/HOL/Library/Library.thy Mon Feb 09 22:14:33 2009 +0100 +++ b/src/HOL/Library/Library.thy Mon Feb 09 22:15:37 2009 +0100 @@ -15,6 +15,7 @@ Continuity ContNotDenum Countable + Determinants Efficient_Nat Enum Eval_Witness diff -r 14d9891c917b -r 55ddff2ed906 src/HOL/Library/Permutations.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Permutations.thy Mon Feb 09 22:15:37 2009 +0100 @@ -0,0 +1,862 @@ +(* Title: Library/Permutations + ID: $Id: + Author: Amine Chaieb, University of Cambridge +*) + +header {* Permutations, both general and specifically on finite sets.*} + +theory Permutations +imports Main Finite_Cartesian_Product Parity +begin + + (* Why should I import Main just to solve the Typerep problem! *) + +definition permutes (infixr "permutes" 41) where + "(p permutes S) \ (\x. x \ S \ p x = x) \ (\y. \!x. p x = y)" + +(* ------------------------------------------------------------------------- *) +(* Transpositions. *) +(* ------------------------------------------------------------------------- *) + +declare swap_self[simp] +lemma swapid_sym: "Fun.swap a b id = Fun.swap b a id" + by (auto simp add: expand_fun_eq swap_def fun_upd_def) +lemma swap_id_refl: "Fun.swap a a id = id" by simp +lemma swap_id_sym: "Fun.swap a b id = Fun.swap b a id" + by (rule ext, simp add: swap_def) +lemma swap_id_idempotent[simp]: "Fun.swap a b id o Fun.swap a b id = id" + by (rule ext, auto simp add: swap_def) + +lemma inv_unique_comp: assumes fg: "f o g = id" and gf: "g o f = id" + shows "inv f = g" + using fg gf inv_equality[of g f] by (auto simp add: expand_fun_eq) + +lemma inverse_swap_id: "inv (Fun.swap a b id) = Fun.swap a b id" + by (rule inv_unique_comp, simp_all) + +lemma swap_id_eq: "Fun.swap a b id x = (if x = a then b else if x = b then a else x)" + by (simp add: swap_def) + +(* ------------------------------------------------------------------------- *) +(* Basic consequences of the definition. *) +(* ------------------------------------------------------------------------- *) + +lemma permutes_in_image: "p permutes S \ p x \ S \ x \ S" + unfolding permutes_def by metis + +lemma permutes_image: assumes pS: "p permutes S" shows "p ` S = S" + using pS + unfolding permutes_def + apply - + apply (rule set_ext) + apply (simp add: image_iff) + apply metis + done + +lemma permutes_inj: "p permutes S ==> inj p " + unfolding permutes_def inj_on_def by blast + +lemma permutes_surj: "p permutes s ==> surj p" + unfolding permutes_def surj_def by metis + +lemma permutes_inv_o: assumes pS: "p permutes S" + shows " p o inv p = id" + and "inv p o p = id" + using permutes_inj[OF pS] permutes_surj[OF pS] + unfolding inj_iff[symmetric] surj_iff[symmetric] by blast+ + + +lemma permutes_inverses: + fixes p :: "'a \ 'a" + assumes pS: "p permutes S" + shows "p (inv p x) = x" + and "inv p (p x) = x" + using permutes_inv_o[OF pS, unfolded expand_fun_eq o_def] by auto + +lemma permutes_subset: "p permutes S \ S \ T ==> p permutes T" + unfolding permutes_def by blast + +lemma permutes_empty[simp]: "p permutes {} \ p = id" + unfolding expand_fun_eq permutes_def apply simp by metis + +lemma permutes_sing[simp]: "p permutes {a} \ p = id" + unfolding expand_fun_eq permutes_def apply simp by metis + +lemma permutes_univ: "p permutes UNIV \ (\y. \!x. p x = y)" + unfolding permutes_def by simp + +lemma permutes_inv_eq: "p permutes S ==> inv p y = x \ p x = y" + unfolding permutes_def inv_def apply auto + apply (erule allE[where x=y]) + apply (erule allE[where x=y]) + apply (rule someI_ex) apply blast + apply (rule some1_equality) + apply blast + apply blast + done + +lemma permutes_swap_id: "a \ S \ b \ S ==> Fun.swap a b id permutes S" + unfolding permutes_def swap_def fun_upd_def apply auto apply metis done + +lemma permutes_superset: "p permutes S \ (\x \ S - T. p x = x) \ p permutes T" +apply (simp add: Ball_def permutes_def Diff_iff) by metis + +(* ------------------------------------------------------------------------- *) +(* Group properties. *) +(* ------------------------------------------------------------------------- *) + +lemma permutes_id: "id permutes S" unfolding permutes_def by simp + +lemma permutes_compose: "p permutes S \ q permutes S ==> q o p permutes S" + unfolding permutes_def o_def by metis + +lemma permutes_inv: assumes pS: "p permutes S" shows "inv p permutes S" + using pS unfolding permutes_def permutes_inv_eq[OF pS] by metis + +lemma permutes_inv_inv: assumes pS: "p permutes S" shows "inv (inv p) = p" + unfolding expand_fun_eq permutes_inv_eq[OF pS] permutes_inv_eq[OF permutes_inv[OF pS]] + by blast + +(* ------------------------------------------------------------------------- *) +(* The number of permutations on a finite set. *) +(* ------------------------------------------------------------------------- *) + +lemma permutes_insert_lemma: + assumes pS: "p permutes (insert a S)" + shows "Fun.swap a (p a) id o p permutes S" + apply (rule permutes_superset[where S = "insert a S"]) + apply (rule permutes_compose[OF pS]) + apply (rule permutes_swap_id, simp) + using permutes_in_image[OF pS, of a] apply simp + apply (auto simp add: Ball_def Diff_iff swap_def) + done + +lemma permutes_insert: "{p. p permutes (insert a S)} = + (\(b,p). Fun.swap a b id o p) ` {(b,p). b \ insert a S \ p \ {p. p permutes S}}" +proof- + + {fix p + {assume pS: "p permutes insert a S" + let ?b = "p a" + let ?q = "Fun.swap a (p a) id o p" + have th0: "p = Fun.swap a ?b id o ?q" unfolding expand_fun_eq o_assoc by simp + have th1: "?b \ insert a S " unfolding permutes_in_image[OF pS] by simp + from permutes_insert_lemma[OF pS] th0 th1 + have "\ b q. p = Fun.swap a b id o q \ b \ insert a S \ q permutes S" by blast} + moreover + {fix b q assume bq: "p = Fun.swap a b id o q" "b \ insert a S" "q permutes S" + from permutes_subset[OF bq(3), of "insert a S"] + have qS: "q permutes insert a S" by auto + have aS: "a \ insert a S" by simp + from bq(1) permutes_compose[OF qS permutes_swap_id[OF aS bq(2)]] + have "p permutes insert a S" by simp } + ultimately have "p permutes insert a S \ (\ b q. p = Fun.swap a b id o q \ b \ insert a S \ q permutes S)" by blast} + thus ?thesis by auto +qed + +lemma hassize_insert: "a \ F \ insert a F hassize n \ F hassize (n - 1)" + by (auto simp add: hassize_def) + +lemma hassize_permutations: assumes Sn: "S hassize n" + shows "{p. p permutes S} hassize (fact n)" +proof- + from Sn have fS:"finite S" by (simp add: hassize_def) + + have "\n. (S hassize n) \ ({p. p permutes S} hassize (fact n))" + proof(rule finite_induct[where F = S]) + from fS show "finite S" . + next + show "\n. ({} hassize n) \ ({p. p permutes {}} hassize fact n)" + by (simp add: hassize_def permutes_empty) + next + fix x F + assume fF: "finite F" and xF: "x \ F" + and H: "\n. (F hassize n) \ ({p. p permutes F} hassize fact n)" + {fix n assume H0: "insert x F hassize n" + let ?xF = "{p. p permutes insert x F}" + let ?pF = "{p. p permutes F}" + let ?pF' = "{(b, p). b \ insert x F \ p \ ?pF}" + let ?g = "(\(b, p). Fun.swap x b id \ p)" + from permutes_insert[of x F] + have xfgpF': "?xF = ?g ` ?pF'" . + from hassize_insert[OF xF H0] have Fs: "F hassize (n - 1)" . + from H Fs have pFs: "?pF hassize fact (n - 1)" by blast + hence pF'f: "finite ?pF'" using H0 unfolding hassize_def + apply (simp only: Collect_split Collect_mem_eq) + apply (rule finite_cartesian_product) + apply simp_all + done + + have ginj: "inj_on ?g ?pF'" + proof- + { + fix b p c q assume bp: "(b,p) \ ?pF'" and cq: "(c,q) \ ?pF'" + and eq: "?g (b,p) = ?g (c,q)" + from bp cq have ths: "b \ insert x F" "c \ insert x F" "x \ insert x F" "p permutes F" "q permutes F" by auto + from ths(4) xF eq have "b = ?g (b,p) x" unfolding permutes_def + by (auto simp add: swap_def fun_upd_def expand_fun_eq) + also have "\ = ?g (c,q) x" using ths(5) xF eq + by (auto simp add: swap_def fun_upd_def expand_fun_eq) + also have "\ = c"using ths(5) xF unfolding permutes_def + by (auto simp add: swap_def fun_upd_def expand_fun_eq) + finally have bc: "b = c" . + hence "Fun.swap x b id = Fun.swap x c id" by simp + with eq have "Fun.swap x b id o p = Fun.swap x b id o q" by simp + hence "Fun.swap x b id o (Fun.swap x b id o p) = Fun.swap x b id o (Fun.swap x b id o q)" by simp + hence "p = q" by (simp add: o_assoc) + with bc have "(b,p) = (c,q)" by simp } + thus ?thesis unfolding inj_on_def by blast + qed + from xF H0 have n0: "n \ 0 " by (auto simp add: hassize_def) + hence "\m. n = Suc m" by arith + then obtain m where n[simp]: "n = Suc m" by blast + from pFs H0 have xFc: "card ?xF = fact n" + unfolding xfgpF' card_image[OF ginj] hassize_def + apply (simp only: Collect_split Collect_mem_eq card_cartesian_product) + by simp + from finite_imageI[OF pF'f, of ?g] have xFf: "finite ?xF" unfolding xfgpF' by simp + have "?xF hassize fact n" + using xFf xFc + unfolding hassize_def xFf by blast } + thus "\n. (insert x F hassize n) \ ({p. p permutes insert x F} hassize fact n)" + by blast + qed + with Sn show ?thesis by blast +qed + +lemma finite_permutations: "finite S ==> finite {p. p permutes S}" + using hassize_permutations[of S] unfolding hassize_def by blast + +(* ------------------------------------------------------------------------- *) +(* Permutations of index set for iterated operations. *) +(* ------------------------------------------------------------------------- *) + +lemma (in ab_semigroup_mult) fold_image_permute: assumes fS: "finite S" and pS: "p permutes S" + shows "fold_image times f z S = fold_image times (f o p) z S" + using fold_image_reindex[OF fS subset_inj_on[OF permutes_inj[OF pS], of S, simplified], of f z] + unfolding permutes_image[OF pS] . +lemma (in ab_semigroup_add) fold_image_permute: assumes fS: "finite S" and pS: "p permutes S" + shows "fold_image plus f z S = fold_image plus (f o p) z S" +proof- + interpret ab_semigroup_mult plus apply unfold_locales apply (simp add: add_assoc) + apply (simp add: add_commute) done + from fold_image_reindex[OF fS subset_inj_on[OF permutes_inj[OF pS], of S, simplified], of f z] + show ?thesis + unfolding permutes_image[OF pS] . +qed + +lemma setsum_permute: assumes pS: "p permutes S" + shows "setsum f S = setsum (f o p) S" + unfolding setsum_def using fold_image_permute[of S p f 0] pS by clarsimp + +lemma setsum_permute_natseg:assumes pS: "p permutes {m .. n}" + shows "setsum f {m .. n} = setsum (f o p) {m .. n}" + using setsum_permute[OF pS, of f ] pS by blast + +lemma setprod_permute: assumes pS: "p permutes S" + shows "setprod f S = setprod (f o p) S" + unfolding setprod_def + using ab_semigroup_mult_class.fold_image_permute[of S p f 1] pS by clarsimp + +lemma setprod_permute_natseg:assumes pS: "p permutes {m .. n}" + shows "setprod f {m .. n} = setprod (f o p) {m .. n}" + using setprod_permute[OF pS, of f ] pS by blast + +(* ------------------------------------------------------------------------- *) +(* Various combinations of transpositions with 2, 1 and 0 common elements. *) +(* ------------------------------------------------------------------------- *) + +lemma swap_id_common:" a \ c \ b \ c \ Fun.swap a b id o Fun.swap a c id = Fun.swap b c id o Fun.swap a b id" by (simp add: expand_fun_eq swap_def) + +lemma swap_id_common': "~(a = b) \ ~(a = c) \ Fun.swap a c id o Fun.swap b c id = Fun.swap b c id o Fun.swap a b id" by (simp add: expand_fun_eq swap_def) + +lemma swap_id_independent: "~(a = c) \ ~(a = d) \ ~(b = c) \ ~(b = d) ==> Fun.swap a b id o Fun.swap c d id = Fun.swap c d id o Fun.swap a b id" + by (simp add: swap_def expand_fun_eq) + +(* ------------------------------------------------------------------------- *) +(* Permutations as transposition sequences. *) +(* ------------------------------------------------------------------------- *) + + +inductive swapidseq :: "nat \ ('a \ 'a) \ bool" where + id[simp]: "swapidseq 0 id" +| comp_Suc: "swapidseq n p \ a \ b \ swapidseq (Suc n) (Fun.swap a b id o p)" + +declare id[unfolded id_def, simp] +definition "permutation p \ (\n. swapidseq n p)" + +(* ------------------------------------------------------------------------- *) +(* Some closure properties of the set of permutations, with lengths. *) +(* ------------------------------------------------------------------------- *) + +lemma permutation_id[simp]: "permutation id"unfolding permutation_def + by (rule exI[where x=0], simp) +declare permutation_id[unfolded id_def, simp] + +lemma swapidseq_swap: "swapidseq (if a = b then 0 else 1) (Fun.swap a b id)" + apply clarsimp + using comp_Suc[of 0 id a b] by simp + +lemma permutation_swap_id: "permutation (Fun.swap a b id)" + apply (cases "a=b", simp_all) + unfolding permutation_def using swapidseq_swap[of a b] by blast + +lemma swapidseq_comp_add: "swapidseq n p \ swapidseq m q ==> swapidseq (n + m) (p o q)" + proof (induct n p arbitrary: m q rule: swapidseq.induct) + case (id m q) thus ?case by simp + next + case (comp_Suc n p a b m q) + have th: "Suc n + m = Suc (n + m)" by arith + show ?case unfolding th o_assoc[symmetric] + apply (rule swapidseq.comp_Suc) using comp_Suc.hyps(2)[OF comp_Suc.prems] comp_Suc.hyps(3) by blast+ +qed + +lemma permutation_compose: "permutation p \ permutation q ==> permutation(p o q)" + unfolding permutation_def using swapidseq_comp_add[of _ p _ q] by metis + +lemma swapidseq_endswap: "swapidseq n p \ a \ b ==> swapidseq (Suc n) (p o Fun.swap a b id)" + apply (induct n p rule: swapidseq.induct) + using swapidseq_swap[of a b] + by (auto simp add: o_assoc[symmetric] intro: swapidseq.comp_Suc) + +lemma swapidseq_inverse_exists: "swapidseq n p ==> \q. swapidseq n q \ p o q = id \ q o p = id" +proof(induct n p rule: swapidseq.induct) + case id thus ?case by (rule exI[where x=id], simp) +next + case (comp_Suc n p a b) + from comp_Suc.hyps obtain q where q: "swapidseq n q" "p \ q = id" "q \ p = id" by blast + let ?q = "q o Fun.swap a b id" + note H = comp_Suc.hyps + from swapidseq_swap[of a b] H(3) have th0: "swapidseq 1 (Fun.swap a b id)" by simp + from swapidseq_comp_add[OF q(1) th0] have th1:"swapidseq (Suc n) ?q" by simp + have "Fun.swap a b id o p o ?q = Fun.swap a b id o (p o q) o Fun.swap a b id" by (simp add: o_assoc) + also have "\ = id" by (simp add: q(2)) + finally have th2: "Fun.swap a b id o p o ?q = id" . + have "?q \ (Fun.swap a b id \ p) = q \ (Fun.swap a b id o Fun.swap a b id) \ p" by (simp only: o_assoc) + hence "?q \ (Fun.swap a b id \ p) = id" by (simp add: q(3)) + with th1 th2 show ?case by blast +qed + + +lemma swapidseq_inverse: assumes H: "swapidseq n p" shows "swapidseq n (inv p)" + using swapidseq_inverse_exists[OF H] inv_unique_comp[of p] by auto + +lemma permutation_inverse: "permutation p ==> permutation (inv p)" + using permutation_def swapidseq_inverse by blast + +(* ------------------------------------------------------------------------- *) +(* The identity map only has even transposition sequences. *) +(* ------------------------------------------------------------------------- *) + +lemma symmetry_lemma:"(\a b c d. P a b c d ==> P a b d c) \ + (\a b c d. a \ b \ c \ d \ (a = c \ b = d \ a = c \ b \ d \ a \ c \ b = d \ a \ c \ a \ d \ b \ c \ b \ d) ==> P a b c d) + ==> (\a b c d. a \ b --> c \ d \ P a b c d)" by metis + +lemma swap_general: "a \ b \ c \ d \ Fun.swap a b id o Fun.swap c d id = id \ + (\x y z. x \ a \ y \ a \ z \ a \ x \ y \ Fun.swap a b id o Fun.swap c d id = Fun.swap x y id o Fun.swap a z id)" +proof- + assume H: "a\b" "c\d" +have "a \ b \ c \ d \ +( Fun.swap a b id o Fun.swap c d id = id \ + (\x y z. x \ a \ y \ a \ z \ a \ x \ y \ Fun.swap a b id o Fun.swap c d id = Fun.swap x y id o Fun.swap a z id))" + apply (rule symmetry_lemma[where a=a and b=b and c=c and d=d]) + apply (simp_all only: swapid_sym) + apply (case_tac "a = c \ b = d", clarsimp simp only: swapid_sym swap_id_idempotent) + apply (case_tac "a = c \ b \ d") + apply (rule disjI2) + apply (rule_tac x="b" in exI) + apply (rule_tac x="d" in exI) + apply (rule_tac x="b" in exI) + apply (clarsimp simp add: expand_fun_eq swap_def) + apply (case_tac "a \ c \ b = d") + apply (rule disjI2) + apply (rule_tac x="c" in exI) + apply (rule_tac x="d" in exI) + apply (rule_tac x="c" in exI) + apply (clarsimp simp add: expand_fun_eq swap_def) + apply (rule disjI2) + apply (rule_tac x="c" in exI) + apply (rule_tac x="d" in exI) + apply (rule_tac x="b" in exI) + apply (clarsimp simp add: expand_fun_eq swap_def) + done +with H show ?thesis by metis +qed + +lemma swapidseq_id_iff[simp]: "swapidseq 0 p \ p = id" + using swapidseq.cases[of 0 p "p = id"] + by auto + +lemma swapidseq_cases: "swapidseq n p \ (n=0 \ p = id \ (\a b q m. n = Suc m \ p = Fun.swap a b id o q \ swapidseq m q \ a\ b))" + apply (rule iffI) + apply (erule swapidseq.cases[of n p]) + apply simp + apply (rule disjI2) + apply (rule_tac x= "a" in exI) + apply (rule_tac x= "b" in exI) + apply (rule_tac x= "pa" in exI) + apply (rule_tac x= "na" in exI) + apply simp + apply auto + apply (rule comp_Suc, simp_all) + done +lemma fixing_swapidseq_decrease: + assumes spn: "swapidseq n p" and ab: "a\b" and pa: "(Fun.swap a b id o p) a = a" + shows "n \ 0 \ swapidseq (n - 1) (Fun.swap a b id o p)" + using spn ab pa +proof(induct n arbitrary: p a b) + case 0 thus ?case by (auto simp add: swap_def fun_upd_def) +next + case (Suc n p a b) + from Suc.prems(1) swapidseq_cases[of "Suc n" p] obtain + c d q m where cdqm: "Suc n = Suc m" "p = Fun.swap c d id o q" "swapidseq m q" "c \ d" "n = m" + by auto + {assume H: "Fun.swap a b id o Fun.swap c d id = id" + + have ?case apply (simp only: cdqm o_assoc H) + by (simp add: cdqm)} + moreover + { fix x y z + assume H: "x\a" "y\a" "z \a" "x \y" + "Fun.swap a b id o Fun.swap c d id = Fun.swap x y id o Fun.swap a z id" + from H have az: "a \ z" by simp + + {fix h have "(Fun.swap x y id o h) a = a \ h a = a" + using H by (simp add: swap_def)} + note th3 = this + from cdqm(2) have "Fun.swap a b id o p = Fun.swap a b id o (Fun.swap c d id o q)" by simp + hence "Fun.swap a b id o p = Fun.swap x y id o (Fun.swap a z id o q)" by (simp add: o_assoc H) + hence "(Fun.swap a b id o p) a = (Fun.swap x y id o (Fun.swap a z id o q)) a" by simp + hence "(Fun.swap x y id o (Fun.swap a z id o q)) a = a" unfolding Suc by metis + hence th1: "(Fun.swap a z id o q) a = a" unfolding th3 . + from Suc.hyps[OF cdqm(3)[ unfolded cdqm(5)[symmetric]] az th1] + have th2: "swapidseq (n - 1) (Fun.swap a z id o q)" "n \ 0" by blast+ + have th: "Suc n - 1 = Suc (n - 1)" using th2(2) by auto + have ?case unfolding cdqm(2) H o_assoc th + apply (simp only: Suc_not_Zero simp_thms o_assoc[symmetric]) + apply (rule comp_Suc) + using th2 H apply blast+ + done} + ultimately show ?case using swap_general[OF Suc.prems(2) cdqm(4)] by metis +qed + +lemma swapidseq_identity_even: + assumes "swapidseq n (id :: 'a \ 'a)" shows "even n" + using `swapidseq n id` +proof(induct n rule: nat_less_induct) + fix n + assume H: "\m 'a) \ even m" "swapidseq n (id :: 'a \ 'a)" + {assume "n = 0" hence "even n" by arith} + moreover + {fix a b :: 'a and q m + assume h: "n = Suc m" "(id :: 'a \ 'a) = Fun.swap a b id \ q" "swapidseq m q" "a \ b" + from fixing_swapidseq_decrease[OF h(3,4), unfolded h(2)[symmetric]] + have m: "m \ 0" "swapidseq (m - 1) (id :: 'a \ 'a)" by auto + from h m have mn: "m - 1 < n" by arith + from H(1)[rule_format, OF mn m(2)] h(1) m(1) have "even n" apply arith done} + ultimately show "even n" using H(2)[unfolded swapidseq_cases[of n id]] by auto +qed + +(* ------------------------------------------------------------------------- *) +(* Therefore we have a welldefined notion of parity. *) +(* ------------------------------------------------------------------------- *) + +definition "evenperm p = even (SOME n. swapidseq n p)" + +lemma swapidseq_even_even: assumes + m: "swapidseq m p" and n: "swapidseq n p" + shows "even m \ even n" +proof- + from swapidseq_inverse_exists[OF n] + obtain q where q: "swapidseq n q" "p \ q = id" "q \ p = id" by blast + + from swapidseq_identity_even[OF swapidseq_comp_add[OF m q(1), unfolded q]] + show ?thesis by arith +qed + +lemma evenperm_unique: assumes p: "swapidseq n p" and n:"even n = b" + shows "evenperm p = b" + unfolding n[symmetric] evenperm_def + apply (rule swapidseq_even_even[where p = p]) + apply (rule someI[where x = n]) + using p by blast+ + +(* ------------------------------------------------------------------------- *) +(* And it has the expected composition properties. *) +(* ------------------------------------------------------------------------- *) + +lemma evenperm_id[simp]: "evenperm id = True" + apply (rule evenperm_unique[where n = 0]) by simp_all + +lemma evenperm_swap: "evenperm (Fun.swap a b id) = (a = b)" +apply (rule evenperm_unique[where n="if a = b then 0 else 1"]) +by (simp_all add: swapidseq_swap) + +lemma evenperm_comp: + assumes p: "permutation p" and q:"permutation q" + shows "evenperm (p o q) = (evenperm p = evenperm q)" +proof- + from p q obtain + n m where n: "swapidseq n p" and m: "swapidseq m q" + unfolding permutation_def by blast + note nm = swapidseq_comp_add[OF n m] + have th: "even (n + m) = (even n \ even m)" by arith + from evenperm_unique[OF n refl] evenperm_unique[OF m refl] + evenperm_unique[OF nm th] + show ?thesis by blast +qed + +lemma evenperm_inv: assumes p: "permutation p" + shows "evenperm (inv p) = evenperm p" +proof- + from p obtain n where n: "swapidseq n p" unfolding permutation_def by blast + from evenperm_unique[OF swapidseq_inverse[OF n] evenperm_unique[OF n refl, symmetric]] + show ?thesis . +qed + +(* ------------------------------------------------------------------------- *) +(* A more abstract characterization of permutations. *) +(* ------------------------------------------------------------------------- *) + + +lemma bij_iff: "bij f \ (\x. \!y. f y = x)" + unfolding bij_def inj_on_def surj_def + apply auto + apply metis + apply metis + done + +lemma permutation_bijective: + assumes p: "permutation p" + shows "bij p" +proof- + from p obtain n where n: "swapidseq n p" unfolding permutation_def by blast + from swapidseq_inverse_exists[OF n] obtain q where + q: "swapidseq n q" "p \ q = id" "q \ p = id" by blast + thus ?thesis unfolding bij_iff apply (auto simp add: expand_fun_eq) apply metis done +qed + +lemma permutation_finite_support: assumes p: "permutation p" + shows "finite {x. p x \ x}" +proof- + from p obtain n where n: "swapidseq n p" unfolding permutation_def by blast + from n show ?thesis + proof(induct n p rule: swapidseq.induct) + case id thus ?case by simp + next + case (comp_Suc n p a b) + let ?S = "insert a (insert b {x. p x \ x})" + from comp_Suc.hyps(2) have fS: "finite ?S" by simp + from `a \ b` have th: "{x. (Fun.swap a b id o p) x \ x} \ ?S" + by (auto simp add: swap_def) + from finite_subset[OF th fS] show ?case . +qed +qed + +lemma bij_inv_eq_iff: "bij p ==> x = inv p y \ p x = y" + using surj_f_inv_f[of p] inv_f_f[of f] by (auto simp add: bij_def) + +lemma bij_swap_comp: + assumes bp: "bij p" shows "Fun.swap a b id o p = Fun.swap (inv p a) (inv p b) p" + using surj_f_inv_f[OF bij_is_surj[OF bp]] + by (simp add: expand_fun_eq swap_def bij_inv_eq_iff[OF bp]) + +lemma bij_swap_ompose_bij: "bij p \ bij (Fun.swap a b id o p)" +proof- + assume H: "bij p" + show ?thesis + unfolding bij_swap_comp[OF H] bij_swap_iff + using H . +qed + +lemma permutation_lemma: + assumes fS: "finite S" and p: "bij p" and pS: "\x. x\ S \ p x = x" + shows "permutation p" +using fS p pS +proof(induct S arbitrary: p rule: finite_induct) + case (empty p) thus ?case by simp +next + case (insert a F p) + let ?r = "Fun.swap a (p a) id o p" + let ?q = "Fun.swap a (p a) id o ?r " + have raa: "?r a = a" by (simp add: swap_def) + from bij_swap_ompose_bij[OF insert(4)] + have br: "bij ?r" . + + from insert raa have th: "\x. x \ F \ ?r x = x" + apply (clarsimp simp add: swap_def) + apply (erule_tac x="x" in allE) + apply auto + unfolding bij_iff apply metis + done + from insert(3)[OF br th] + have rp: "permutation ?r" . + have "permutation ?q" by (simp add: permutation_compose permutation_swap_id rp) + thus ?case by (simp add: o_assoc) +qed + +lemma permutation: "permutation p \ bij p \ finite {x. p x \ x}" + (is "?lhs \ ?b \ ?f") +proof + assume p: ?lhs + from p permutation_bijective permutation_finite_support show "?b \ ?f" by auto +next + assume bf: "?b \ ?f" + hence bf: "?f" "?b" by blast+ + from permutation_lemma[OF bf] show ?lhs by blast +qed + +lemma permutation_inverse_works: assumes p: "permutation p" + shows "inv p o p = id" "p o inv p = id" +using permutation_bijective[OF p] surj_iff bij_def inj_iff by auto + +lemma permutation_inverse_compose: + assumes p: "permutation p" and q: "permutation q" + shows "inv (p o q) = inv q o inv p" +proof- + note ps = permutation_inverse_works[OF p] + note qs = permutation_inverse_works[OF q] + have "p o q o (inv q o inv p) = p o (q o inv q) o inv p" by (simp add: o_assoc) + also have "\ = id" by (simp add: ps qs) + finally have th0: "p o q o (inv q o inv p) = id" . + have "inv q o inv p o (p o q) = inv q o (inv p o p) o q" by (simp add: o_assoc) + also have "\ = id" by (simp add: ps qs) + finally have th1: "inv q o inv p o (p o q) = id" . + from inv_unique_comp[OF th0 th1] show ?thesis . +qed + +(* ------------------------------------------------------------------------- *) +(* Relation to "permutes". *) +(* ------------------------------------------------------------------------- *) + +lemma permutation_permutes: "permutation p \ (\S. finite S \ p permutes S)" +unfolding permutation permutes_def bij_iff[symmetric] +apply (rule iffI, clarify) +apply (rule exI[where x="{x. p x \ x}"]) +apply simp +apply clarsimp +apply (rule_tac B="S" in finite_subset) +apply auto +done + +(* ------------------------------------------------------------------------- *) +(* Hence a sort of induction principle composing by swaps. *) +(* ------------------------------------------------------------------------- *) + +lemma permutes_induct: "finite S \ P id \ (\ a b p. a \ S \ b \ S \ P p \ P p \ permutation p ==> P (Fun.swap a b id o p)) + ==> (\p. p permutes S ==> P p)" +proof(induct S rule: finite_induct) + case empty thus ?case by auto +next + case (insert x F p) + let ?r = "Fun.swap x (p x) id o p" + let ?q = "Fun.swap x (p x) id o ?r" + have qp: "?q = p" by (simp add: o_assoc) + from permutes_insert_lemma[OF insert.prems(3)] insert have Pr: "P ?r" by blast + from permutes_in_image[OF insert.prems(3), of x] + have pxF: "p x \ insert x F" by simp + have xF: "x \ insert x F" by simp + have rp: "permutation ?r" + unfolding permutation_permutes using insert.hyps(1) + permutes_insert_lemma[OF insert.prems(3)] by blast + from insert.prems(2)[OF xF pxF Pr Pr rp] + show ?case unfolding qp . +qed + +(* ------------------------------------------------------------------------- *) +(* Sign of a permutation as a real number. *) +(* ------------------------------------------------------------------------- *) + +definition "sign p = (if evenperm p then (1::int) else -1)" + +lemma sign_nz: "sign p \ 0" by (simp add: sign_def) +lemma sign_id: "sign id = 1" by (simp add: sign_def) +lemma sign_inverse: "permutation p ==> sign (inv p) = sign p" + by (simp add: sign_def evenperm_inv) +lemma sign_compose: "permutation p \ permutation q ==> sign (p o q) = sign(p) * sign(q)" by (simp add: sign_def evenperm_comp) +lemma sign_swap_id: "sign (Fun.swap a b id) = (if a = b then 1 else -1)" + by (simp add: sign_def evenperm_swap) +lemma sign_idempotent: "sign p * sign p = 1" by (simp add: sign_def) + +(* ------------------------------------------------------------------------- *) +(* More lemmas about permutations. *) +(* ------------------------------------------------------------------------- *) + +lemma permutes_natset_le: + assumes p: "p permutes (S:: nat set)" and le: "\i \ S. p i <= i" shows "p = id" +proof- + {fix n + have "p n = n" + using p le + proof(induct n arbitrary: S rule: nat_less_induct) + fix n S assume H: "\ m< n. \S. p permutes S \ (\i\S. p i \ i) \ p m = m" + "p permutes S" "\i \S. p i \ i" + {assume "n \ S" + with H(2) have "p n = n" unfolding permutes_def by metis} + moreover + {assume ns: "n \ S" + from H(3) ns have "p n < n \ p n = n" by auto + moreover{assume h: "p n < n" + from H h have "p (p n) = p n" by metis + with permutes_inj[OF H(2)] have "p n = n" unfolding inj_on_def by blast + with h have False by arith} + ultimately have "p n = n" by blast } + ultimately show "p n = n" by blast + qed} + thus ?thesis by (auto simp add: expand_fun_eq) +qed + +lemma permutes_natset_ge: + assumes p: "p permutes (S:: nat set)" and le: "\i \ S. p i \ i" shows "p = id" +proof- + {fix i assume i: "i \ S" + from i permutes_in_image[OF permutes_inv[OF p]] have "inv p i \ S" by simp + with le have "p (inv p i) \ inv p i" by blast + with permutes_inverses[OF p] have "i \ inv p i" by simp} + then have th: "\i\S. inv p i \ i" by blast + from permutes_natset_le[OF permutes_inv[OF p] th] + have "inv p = inv id" by simp + then show ?thesis + apply (subst permutes_inv_inv[OF p, symmetric]) + apply (rule inv_unique_comp) + apply simp_all + done +qed + +lemma image_inverse_permutations: "{inv p |p. p permutes S} = {p. p permutes S}" +apply (rule set_ext) +apply auto + using permutes_inv_inv permutes_inv apply auto + apply (rule_tac x="inv x" in exI) + apply auto + done + +lemma image_compose_permutations_left: + assumes q: "q permutes S" shows "{q o p | p. p permutes S} = {p . p permutes S}" +apply (rule set_ext) +apply auto +apply (rule permutes_compose) +using q apply auto +apply (rule_tac x = "inv q o x" in exI) +by (simp add: o_assoc permutes_inv permutes_compose permutes_inv_o) + +lemma image_compose_permutations_right: + assumes q: "q permutes S" + shows "{p o q | p. p permutes S} = {p . p permutes S}" +apply (rule set_ext) +apply auto +apply (rule permutes_compose) +using q apply auto +apply (rule_tac x = "x o inv q" in exI) +by (simp add: o_assoc permutes_inv permutes_compose permutes_inv_o o_assoc[symmetric]) + +lemma permutes_in_seg: "p permutes {1 ..n} \ i \ {1..n} ==> 1 <= p i \ p i <= n" + +apply (simp add: permutes_def) +apply metis +done + +term setsum +lemma setsum_permutations_inverse: "setsum f {p. p permutes {m..n}} = setsum (\p. f(inv p)) {p. p permutes {m..n}}" (is "?lhs = ?rhs") +proof- + let ?S = "{p . p permutes {m .. n}}" +have th0: "inj_on inv ?S" +proof(auto simp add: inj_on_def) + fix q r + assume q: "q permutes {m .. n}" and r: "r permutes {m .. n}" and qr: "inv q = inv r" + hence "inv (inv q) = inv (inv r)" by simp + with permutes_inv_inv[OF q] permutes_inv_inv[OF r] + show "q = r" by metis +qed + have th1: "inv ` ?S = ?S" using image_inverse_permutations by blast + have th2: "?rhs = setsum (f o inv) ?S" by (simp add: o_def) + from setsum_reindex[OF th0, of f] show ?thesis unfolding th1 th2 . +qed + +lemma setum_permutations_compose_left: + assumes q: "q permutes {m..n}" + shows "setsum f {p. p permutes {m..n}} = + setsum (\p. f(q o p)) {p. p permutes {m..n}}" (is "?lhs = ?rhs") +proof- + let ?S = "{p. p permutes {m..n}}" + have th0: "?rhs = setsum (f o (op o q)) ?S" by (simp add: o_def) + have th1: "inj_on (op o q) ?S" + apply (auto simp add: inj_on_def) + proof- + fix p r + assume "p permutes {m..n}" and r:"r permutes {m..n}" and rp: "q \ p = q \ r" + hence "inv q o q o p = inv q o q o r" by (simp add: o_assoc[symmetric]) + with permutes_inj[OF q, unfolded inj_iff] + + show "p = r" by simp + qed + have th3: "(op o q) ` ?S = ?S" using image_compose_permutations_left[OF q] by auto + from setsum_reindex[OF th1, of f] + show ?thesis unfolding th0 th1 th3 . +qed + +lemma sum_permutations_compose_right: + assumes q: "q permutes {m..n}" + shows "setsum f {p. p permutes {m..n}} = + setsum (\p. f(p o q)) {p. p permutes {m..n}}" (is "?lhs = ?rhs") +proof- + let ?S = "{p. p permutes {m..n}}" + have th0: "?rhs = setsum (f o (\p. p o q)) ?S" by (simp add: o_def) + have th1: "inj_on (\p. p o q) ?S" + apply (auto simp add: inj_on_def) + proof- + fix p r + assume "p permutes {m..n}" and r:"r permutes {m..n}" and rp: "p o q = r o q" + hence "p o (q o inv q) = r o (q o inv q)" by (simp add: o_assoc) + with permutes_surj[OF q, unfolded surj_iff] + + show "p = r" by simp + qed + have th3: "(\p. p o q) ` ?S = ?S" using image_compose_permutations_right[OF q] by auto + from setsum_reindex[OF th1, of f] + show ?thesis unfolding th0 th1 th3 . +qed + +(* ------------------------------------------------------------------------- *) +(* Sum over a set of permutations (could generalize to iteration). *) +(* ------------------------------------------------------------------------- *) + +lemma setsum_over_permutations_insert: + assumes fS: "finite S" and aS: "a \ S" + shows "setsum f {p. p permutes (insert a S)} = setsum (\b. setsum (\q. f (Fun.swap a b id o q)) {p. p permutes S}) (insert a S)" +proof- + have th0: "\f a b. (\(b,p). f (Fun.swap a b id o p)) = f o (\(b,p). Fun.swap a b id o p)" + by (simp add: expand_fun_eq) + have th1: "\P Q. P \ Q = {(a,b). a \ P \ b \ Q}" by blast + have th2: "\P Q. P \ (P \ Q) \ P \ Q" by blast + show ?thesis + unfolding permutes_insert + unfolding setsum_cartesian_product + unfolding th1[symmetric] + unfolding th0 + proof(rule setsum_reindex) + let ?f = "(\(b, y). Fun.swap a b id \ y)" + let ?P = "{p. p permutes S}" + {fix b c p q assume b: "b \ insert a S" and c: "c \ insert a S" + and p: "p permutes S" and q: "q permutes S" + and eq: "Fun.swap a b id o p = Fun.swap a c id o q" + from p q aS have pa: "p a = a" and qa: "q a = a" + unfolding permutes_def by metis+ + from eq have "(Fun.swap a b id o p) a = (Fun.swap a c id o q) a" by simp + hence bc: "b = c" + apply (simp add: permutes_def pa qa o_def fun_upd_def swap_def id_def cong del: if_weak_cong) + apply (cases "a = b", auto) + by (cases "b = c", auto) + from eq[unfolded bc] have "(\p. Fun.swap a c id o p) (Fun.swap a c id o p) = (\p. Fun.swap a c id o p) (Fun.swap a c id o q)" by simp + hence "p = q" unfolding o_assoc swap_id_idempotent + by (simp add: o_def) + with bc have "b = c \ p = q" by blast + } + + then show "inj_on ?f (insert a S \ ?P)" + unfolding inj_on_def + apply clarify by metis + qed +qed + +end diff -r 14d9891c917b -r 55ddff2ed906 src/HOL/Library/normarith.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/normarith.ML Mon Feb 09 22:15:37 2009 +0100 @@ -0,0 +1,1189 @@ +(* A functor for finite mappings based on Tables *) +signature FUNC = +sig + type 'a T + type key + val apply : 'a T -> key -> 'a + val applyd :'a T -> (key -> 'a) -> key -> 'a + val combine : ('a -> 'a -> 'a) -> ('a -> bool) -> 'a T -> 'a T -> 'a T + val defined : 'a T -> key -> bool + val dom : 'a T -> key list + val fold : (key * 'a -> 'b -> 'b) -> 'a T -> 'b -> 'b + val graph : 'a T -> (key * 'a) list + val is_undefined : 'a T -> bool + val mapf : ('a -> 'b) -> 'a T -> 'b T + val tryapplyd : 'a T -> key -> 'a -> 'a + val undefine : key -> 'a T -> 'a T + val undefined : 'a T + val update : key * 'a -> 'a T -> 'a T + val updatep : (key * 'a -> bool) -> key * 'a -> 'a T -> 'a T + val choose : 'a T -> key * 'a + val onefunc : key * 'a -> 'a T + val get_first: (key*'a -> 'a option) -> 'a T -> 'a option + val fns: + {key_ord: key*key -> order, + apply : 'a T -> key -> 'a, + applyd :'a T -> (key -> 'a) -> key -> 'a, + combine : ('a -> 'a -> 'a) -> ('a -> bool) -> 'a T -> 'a T -> 'a T, + defined : 'a T -> key -> bool, + dom : 'a T -> key list, + fold : (key * 'a -> 'b -> 'b) -> 'a T -> 'b -> 'b, + graph : 'a T -> (key * 'a) list, + is_undefined : 'a T -> bool, + mapf : ('a -> 'b) -> 'a T -> 'b T, + tryapplyd : 'a T -> key -> 'a -> 'a, + undefine : key -> 'a T -> 'a T, + undefined : 'a T, + update : key * 'a -> 'a T -> 'a T, + updatep : (key * 'a -> bool) -> key * 'a -> 'a T -> 'a T, + choose : 'a T -> key * 'a, + onefunc : key * 'a -> 'a T, + get_first: (key*'a -> 'a option) -> 'a T -> 'a option} +end; + +functor FuncFun(Key: KEY) : FUNC= +struct + +type key = Key.key; +structure Tab = TableFun(Key); +type 'a T = 'a Tab.table; + +val undefined = Tab.empty; +val is_undefined = Tab.is_empty; +val mapf = Tab.map; +val fold = Tab.fold; +val graph = Tab.dest; +val dom = Tab.keys; +fun applyd f d x = case Tab.lookup f x of + SOME y => y + | NONE => d x; + +fun apply f x = applyd f (fn _ => raise Tab.UNDEF x) x; +fun tryapplyd f a d = applyd f (K d) a; +val defined = Tab.defined; +fun undefine x t = (Tab.delete x t handle UNDEF => t); +val update = Tab.update; +fun updatep p (k,v) t = if p (k, v) then t else update (k,v) t +fun combine f z a b = + let + fun h (k,v) t = case Tab.lookup t k of + NONE => Tab.update (k,v) t + | SOME v' => let val w = f v v' + in if z w then Tab.delete k t else Tab.update (k,w) t end; + in Tab.fold h a b end; + +fun choose f = case Tab.max_key f of + SOME k => (k,valOf (Tab.lookup f k)) + | NONE => error "FuncFun.choose : Completely undefined function" + +fun onefunc kv = update kv undefined + +local +fun find f (k,v) NONE = f (k,v) + | find f (k,v) r = r +in +fun get_first f t = fold (find f) t NONE +end + +val fns = + {key_ord = Key.ord, + apply = apply, + applyd = applyd, + combine = combine, + defined = defined, + dom = dom, + fold = fold, + graph = graph, + is_undefined = is_undefined, + mapf = mapf, + tryapplyd = tryapplyd, + undefine = undefine, + undefined = undefined, + update = update, + updatep = updatep, + choose = choose, + onefunc = onefunc, + get_first = get_first} + +end; + +structure Intfunc = FuncFun(type key = int val ord = int_ord); +structure Symfunc = FuncFun(type key = string val ord = fast_string_ord); +structure Termfunc = FuncFun(type key = term val ord = TermOrd.fast_term_ord); +structure Ctermfunc = FuncFun(type key = cterm val ord = (fn (s,t) => TermOrd.fast_term_ord(term_of s, term_of t))); +structure Ratfunc = FuncFun(type key = Rat.rat val ord = Rat.ord); + + (* Some conversions-related stuff which has been forbidden entrance into Pure/conv.ML*) +structure Conv2 = +struct + open Conv +fun instantiate_cterm' ty tms = Drule.cterm_rule (Drule.instantiate' ty tms) +fun is_comb t = case (term_of t) of _$_ => true | _ => false; +fun is_abs t = case (term_of t) of Abs _ => true | _ => false; + +fun end_itlist f l = + case l of + [] => error "end_itlist" + | [x] => x + | (h::t) => f h (end_itlist f t); + + fun absc cv ct = case term_of ct of + Abs (v,_, _) => + let val (x,t) = Thm.dest_abs (SOME v) ct + in Thm.abstract_rule ((fst o dest_Free o term_of) x) x (cv t) + end + | _ => all_conv ct; + +fun cache_conv conv = + let + val tab = ref Termtab.empty + fun cconv t = + case Termtab.lookup (!tab) (term_of t) of + SOME th => th + | NONE => let val th = conv t + in ((tab := Termtab.insert Thm.eq_thm (term_of t, th) (!tab)); th) end + in cconv end; +fun is_binop ct ct' = ct aconvc (Thm.dest_fun (Thm.dest_fun ct')) + handle CTERM _ => false; + +local + fun thenqc conv1 conv2 tm = + case try conv1 tm of + SOME th1 => (case try conv2 (Thm.rhs_of th1) of SOME th2 => Thm.transitive th1 th2 | NONE => th1) + | NONE => conv2 tm + + fun thencqc conv1 conv2 tm = + let val th1 = conv1 tm + in (case try conv2 (Thm.rhs_of th1) of SOME th2 => Thm.transitive th1 th2 | NONE => th1) + end + fun comb_qconv conv tm = + let val (l,r) = Thm.dest_comb tm + in (case try conv l of + SOME th1 => (case try conv r of SOME th2 => Thm.combination th1 th2 + | NONE => Drule.fun_cong_rule th1 r) + | NONE => Drule.arg_cong_rule l (conv r)) + end + fun repeatqc conv tm = thencqc conv (repeatqc conv) tm + fun sub_qconv conv tm = if is_abs tm then absc conv tm else comb_qconv conv tm + fun once_depth_qconv conv tm = + (conv else_conv (sub_qconv (once_depth_qconv conv))) tm + fun depth_qconv conv tm = + thenqc (sub_qconv (depth_qconv conv)) + (repeatqc conv) tm + fun redepth_qconv conv tm = + thenqc (sub_qconv (redepth_qconv conv)) + (thencqc conv (redepth_qconv conv)) tm + fun top_depth_qconv conv tm = + thenqc (repeatqc conv) + (thencqc (sub_qconv (top_depth_qconv conv)) + (thencqc conv (top_depth_qconv conv))) tm + fun top_sweep_qconv conv tm = + thenqc (repeatqc conv) + (sub_qconv (top_sweep_qconv conv)) tm +in +val (once_depth_conv, depth_conv, rdepth_conv, top_depth_conv, top_sweep_conv) = + (fn c => try_conv (once_depth_qconv c), + fn c => try_conv (depth_qconv c), + fn c => try_conv (redepth_qconv c), + fn c => try_conv (top_depth_qconv c), + fn c => try_conv (top_sweep_qconv c)); +end; +end; + + + (* Some useful derived rules *) +fun deduct_antisym_rule tha thb = + equal_intr (implies_intr (cprop_of thb) tha) + (implies_intr (cprop_of tha) thb); + +fun prove_hyp tha thb = + if exists (curry op aconv (concl_of tha)) (#hyps (rep_thm thb)) + then equal_elim (symmetric (deduct_antisym_rule tha thb)) tha else thb; + + + +signature REAL_ARITH = +sig + datatype positivstellensatz = + Axiom_eq of int + | Axiom_le of int + | Axiom_lt of int + | Rational_eq of Rat.rat + | Rational_le of Rat.rat + | Rational_lt of Rat.rat + | Square of cterm + | Eqmul of cterm * positivstellensatz + | Sum of positivstellensatz * positivstellensatz + | Product of positivstellensatz * positivstellensatz; + +val gen_gen_real_arith : + Proof.context -> (Rat.rat -> Thm.cterm) * conv * conv * conv * + conv * conv * conv * conv * conv * conv * + ( (thm list * thm list * thm list -> positivstellensatz -> thm) -> + thm list * thm list * thm list -> thm) -> conv +val real_linear_prover : + (thm list * thm list * thm list -> positivstellensatz -> thm) -> + thm list * thm list * thm list -> thm + +val gen_real_arith : Proof.context -> + (Rat.rat -> cterm) * conv * conv * conv * conv * conv * conv * conv * + ( (thm list * thm list * thm list -> positivstellensatz -> thm) -> + thm list * thm list * thm list -> thm) -> conv +val gen_prover_real_arith : Proof.context -> + ((thm list * thm list * thm list -> positivstellensatz -> thm) -> + thm list * thm list * thm list -> thm) -> conv +val real_arith : Proof.context -> conv +end + +structure RealArith (* : REAL_ARITH *)= +struct + + open Conv Thm Conv2;; +(* ------------------------------------------------------------------------- *) +(* Data structure for Positivstellensatz refutations. *) +(* ------------------------------------------------------------------------- *) + +datatype positivstellensatz = + Axiom_eq of int + | Axiom_le of int + | Axiom_lt of int + | Rational_eq of Rat.rat + | Rational_le of Rat.rat + | Rational_lt of Rat.rat + | Square of cterm + | Eqmul of cterm * positivstellensatz + | Sum of positivstellensatz * positivstellensatz + | Product of positivstellensatz * positivstellensatz; + (* Theorems used in the procedure *) + +fun conjunctions th = case try Conjunction.elim th of + SOME (th1,th2) => (conjunctions th1) @ conjunctions th2 + | NONE => [th]; + +val pth = @{lemma "(((x::real) < y) == (y - x > 0)) &&& ((x <= y) == (y - x >= 0)) + &&& ((x = y) == (x - y = 0)) &&& ((~(x < y)) == (x - y >= 0)) &&& ((~(x <= y)) == (x - y > 0)) + &&& ((~(x = y)) == (x - y > 0 | -(x - y) > 0))" + by (atomize (full), auto simp add: less_diff_eq le_diff_eq not_less)} |> +conjunctions; + +val pth_final = @{lemma "(~p ==> False) ==> p" by blast} +val pth_add = + @{lemma "(x = (0::real) ==> y = 0 ==> x + y = 0 ) &&& ( x = 0 ==> y >= 0 ==> x + y >= 0) + &&& (x = 0 ==> y > 0 ==> x + y > 0) &&& (x >= 0 ==> y = 0 ==> x + y >= 0) + &&& (x >= 0 ==> y >= 0 ==> x + y >= 0) &&& (x >= 0 ==> y > 0 ==> x + y > 0) + &&& (x > 0 ==> y = 0 ==> x + y > 0) &&& (x > 0 ==> y >= 0 ==> x + y > 0) + &&& (x > 0 ==> y > 0 ==> x + y > 0)" by simp_all} |> conjunctions ; + +val pth_mul = + @{lemma "(x = (0::real) ==> y = 0 ==> x * y = 0) &&& (x = 0 ==> y >= 0 ==> x * y = 0) &&& + (x = 0 ==> y > 0 ==> x * y = 0) &&& (x >= 0 ==> y = 0 ==> x * y = 0) &&& + (x >= 0 ==> y >= 0 ==> x * y >= 0 ) &&& ( x >= 0 ==> y > 0 ==> x * y >= 0 ) &&& + (x > 0 ==> y = 0 ==> x * y = 0 ) &&& ( x > 0 ==> y >= 0 ==> x * y >= 0 ) &&& + (x > 0 ==> y > 0 ==> x * y > 0)" + by (auto intro: mult_mono[where a="0::real" and b="x" and d="y" and c="0", simplified] + mult_strict_mono[where b="x" and d="y" and a="0" and c="0", simplified])} |> conjunctions; + +val pth_emul = @{lemma "y = (0::real) ==> x * y = 0" by simp}; +val pth_square = @{lemma "x * x >= (0::real)" by simp}; + +val weak_dnf_simps = List.take (simp_thms, 34) + @ conjunctions @{lemma "((P & (Q | R)) = ((P&Q) | (P&R))) &&& ((Q | R) & P) = ((Q&P) | (R&P)) &&& (P & Q) = (Q & P) &&& ((P | Q) = (Q | P))" by blast+}; + +val nnfD_simps = conjunctions @{lemma "((~(P & Q)) = (~P | ~Q)) &&& ((~(P | Q)) = (~P & ~Q) ) &&& ((P --> Q) = (~P | Q) ) &&& ((P = Q) = ((P & Q) | (~P & ~ Q))) &&& ((~(P = Q)) = ((P & ~ Q) | (~P & Q)) ) &&& ((~ ~(P)) = P)" by blast+} + +val choice_iff = @{lemma "(ALL x. EX y. P x y) = (EX f. ALL x. P x (f x))" by metis}; +val prenex_simps = map (fn th => th RS sym) ([@{thm "all_conj_distrib"}, @{thm "ex_disj_distrib"}] @ @{thms "all_simps"(1-4)} @ @{thms "ex_simps"(1-4)}); + +val real_abs_thms1 = conjunctions @{lemma + "((-1 * abs(x::real) >= r) = (-1 * x >= r & 1 * x >= r)) &&& + ((-1 * abs(x) + a >= r) = (a + -1 * x >= r & a + 1 * x >= r)) &&& + ((a + -1 * abs(x) >= r) = (a + -1 * x >= r & a + 1 * x >= r)) &&& + ((a + -1 * abs(x) + b >= r) = (a + -1 * x + b >= r & a + 1 * x + b >= r)) &&& + ((a + b + -1 * abs(x) >= r) = (a + b + -1 * x >= r & a + b + 1 * x >= r)) &&& + ((a + b + -1 * abs(x) + c >= r) = (a + b + -1 * x + c >= r & a + b + 1 * x + c >= r)) &&& + ((-1 * max x y >= r) = (-1 * x >= r & -1 * y >= r)) &&& + ((-1 * max x y + a >= r) = (a + -1 * x >= r & a + -1 * y >= r)) &&& + ((a + -1 * max x y >= r) = (a + -1 * x >= r & a + -1 * y >= r)) &&& + ((a + -1 * max x y + b >= r) = (a + -1 * x + b >= r & a + -1 * y + b >= r)) &&& + ((a + b + -1 * max x y >= r) = (a + b + -1 * x >= r & a + b + -1 * y >= r)) &&& + ((a + b + -1 * max x y + c >= r) = (a + b + -1 * x + c >= r & a + b + -1 * y + c >= r)) &&& + ((1 * min x y >= r) = (1 * x >= r & 1 * y >= r)) &&& + ((1 * min x y + a >= r) = (a + 1 * x >= r & a + 1 * y >= r)) &&& + ((a + 1 * min x y >= r) = (a + 1 * x >= r & a + 1 * y >= r)) &&& + ((a + 1 * min x y + b >= r) = (a + 1 * x + b >= r & a + 1 * y + b >= r) )&&& + ((a + b + 1 * min x y >= r) = (a + b + 1 * x >= r & a + b + 1 * y >= r)) &&& + ((a + b + 1 * min x y + c >= r) = (a + b + 1 * x + c >= r & a + b + 1 * y + c >= r)) &&& + ((min x y >= r) = (x >= r & y >= r)) &&& + ((min x y + a >= r) = (a + x >= r & a + y >= r)) &&& + ((a + min x y >= r) = (a + x >= r & a + y >= r)) &&& + ((a + min x y + b >= r) = (a + x + b >= r & a + y + b >= r)) &&& + ((a + b + min x y >= r) = (a + b + x >= r & a + b + y >= r) )&&& + ((a + b + min x y + c >= r) = (a + b + x + c >= r & a + b + y + c >= r)) &&& + ((-1 * abs(x) > r) = (-1 * x > r & 1 * x > r)) &&& + ((-1 * abs(x) + a > r) = (a + -1 * x > r & a + 1 * x > r)) &&& + ((a + -1 * abs(x) > r) = (a + -1 * x > r & a + 1 * x > r)) &&& + ((a + -1 * abs(x) + b > r) = (a + -1 * x + b > r & a + 1 * x + b > r)) &&& + ((a + b + -1 * abs(x) > r) = (a + b + -1 * x > r & a + b + 1 * x > r)) &&& + ((a + b + -1 * abs(x) + c > r) = (a + b + -1 * x + c > r & a + b + 1 * x + c > r)) &&& + ((-1 * max x y > r) = ((-1 * x > r) & -1 * y > r)) &&& + ((-1 * max x y + a > r) = (a + -1 * x > r & a + -1 * y > r)) &&& + ((a + -1 * max x y > r) = (a + -1 * x > r & a + -1 * y > r)) &&& + ((a + -1 * max x y + b > r) = (a + -1 * x + b > r & a + -1 * y + b > r)) &&& + ((a + b + -1 * max x y > r) = (a + b + -1 * x > r & a + b + -1 * y > r)) &&& + ((a + b + -1 * max x y + c > r) = (a + b + -1 * x + c > r & a + b + -1 * y + c > r)) &&& + ((min x y > r) = (x > r & y > r)) &&& + ((min x y + a > r) = (a + x > r & a + y > r)) &&& + ((a + min x y > r) = (a + x > r & a + y > r)) &&& + ((a + min x y + b > r) = (a + x + b > r & a + y + b > r)) &&& + ((a + b + min x y > r) = (a + b + x > r & a + b + y > r)) &&& + ((a + b + min x y + c > r) = (a + b + x + c > r & a + b + y + c > r))" + by auto}; + +val abs_split' = @{lemma "P (abs (x::'a::ordered_idom)) == (x >= 0 & P x | x < 0 & P (-x))" + by (atomize (full)) (auto split add: abs_split)}; + +val max_split = @{lemma "P (max x y) == ((x::'a::linorder) <= y & P y | x > y & P x)" + by (atomize (full)) (cases "x <= y", auto simp add: max_def)}; + +val min_split = @{lemma "P (min x y) == ((x::'a::linorder) <= y & P x | x > y & P y)" + by (atomize (full)) (cases "x <= y", auto simp add: min_def)}; + + + (* Miscalineous *) +fun literals_conv bops uops cv = + let fun h t = + case (term_of t) of + b$_$_ => if member (op aconv) bops b then binop_conv h t else cv t + | u$_ => if member (op aconv) uops u then arg_conv h t else cv t + | _ => cv t + in h end; + +fun cterm_of_rat x = +let val (a, b) = Rat.quotient_of_rat x +in + if b = 1 then Numeral.mk_cnumber @{ctyp "real"} a + else Thm.capply (Thm.capply @{cterm "op / :: real => _"} + (Numeral.mk_cnumber @{ctyp "real"} a)) + (Numeral.mk_cnumber @{ctyp "real"} b) +end; + + fun dest_ratconst t = case term_of t of + Const(@{const_name divide}, _)$a$b => Rat.rat_of_quotient(HOLogic.dest_number a |> snd, HOLogic.dest_number b |> snd) + | _ => Rat.rat_of_int (HOLogic.dest_number (term_of t) |> snd) + fun is_ratconst t = can dest_ratconst t + +fun find_term p t = if p t then t else + case t of + a$b => (find_term p a handle TERM _ => find_term p b) + | Abs (_,_,t') => find_term p t' + | _ => raise TERM ("find_term",[t]); + +fun find_cterm p t = if p t then t else + case term_of t of + a$b => (find_cterm p (Thm.dest_fun t) handle CTERM _ => find_cterm p (Thm.dest_arg t)) + | Abs (_,_,t') => find_cterm p (Thm.dest_abs NONE t |> snd) + | _ => raise CTERM ("find_cterm",[t]); + + + (* A general real arithmetic prover *) + +fun gen_gen_real_arith ctxt (mk_numeric, + numeric_eq_conv,numeric_ge_conv,numeric_gt_conv, + poly_conv,poly_neg_conv,poly_add_conv,poly_mul_conv, + absconv1,absconv2,prover) = +let + open Conv Thm; + val pre_ss = HOL_basic_ss addsimps simp_thms@ ex_simps@ all_simps@[@{thm not_all},@{thm not_ex},ex_disj_distrib, all_conj_distrib, @{thm if_bool_eq_disj}] + val prenex_ss = HOL_basic_ss addsimps prenex_simps + val skolemize_ss = HOL_basic_ss addsimps [choice_iff] + val presimp_conv = Simplifier.rewrite (Simplifier.context ctxt pre_ss) + val prenex_conv = Simplifier.rewrite (Simplifier.context ctxt prenex_ss) + val skolemize_conv = Simplifier.rewrite (Simplifier.context ctxt skolemize_ss) + val weak_dnf_ss = HOL_basic_ss addsimps weak_dnf_simps + val weak_dnf_conv = Simplifier.rewrite (Simplifier.context ctxt weak_dnf_ss) + fun eqT_elim th = equal_elim (symmetric th) @{thm TrueI} + fun oprconv cv ct = + let val g = Thm.dest_fun2 ct + in if g aconvc @{cterm "op <= :: real => _"} + orelse g aconvc @{cterm "op < :: real => _"} + then arg_conv cv ct else arg1_conv cv ct + end + + fun real_ineq_conv th ct = + let + val th' = (instantiate (match (lhs_of th, ct)) th + handle MATCH => raise CTERM ("real_ineq_conv", [ct])) + in transitive th' (oprconv poly_conv (Thm.rhs_of th')) + end + val [real_lt_conv, real_le_conv, real_eq_conv, + real_not_lt_conv, real_not_le_conv, _] = + map real_ineq_conv pth + fun match_mp_rule ths ths' = + let + fun f ths ths' = case ths of [] => raise THM("match_mp_rule",0,ths) + | th::ths => (ths' MRS th handle THM _ => f ths ths') + in f ths ths' end + fun mul_rule th th' = fconv_rule (arg_conv (oprconv poly_mul_conv)) + (match_mp_rule pth_mul [th, th']) + fun add_rule th th' = fconv_rule (arg_conv (oprconv poly_add_conv)) + (match_mp_rule pth_add [th, th']) + fun emul_rule ct th = fconv_rule (arg_conv (oprconv poly_mul_conv)) + (instantiate' [] [SOME ct] (th RS pth_emul)) + fun square_rule t = fconv_rule (arg_conv (oprconv poly_mul_conv)) + (instantiate' [] [SOME t] pth_square) + + fun hol_of_positivstellensatz(eqs,les,lts) = + let + fun translate prf = case prf of + Axiom_eq n => nth eqs n + | Axiom_le n => nth les n + | Axiom_lt n => nth lts n + | Rational_eq x => eqT_elim(numeric_eq_conv(capply @{cterm Trueprop} + (capply (capply @{cterm "op =::real => _"} (mk_numeric x)) + @{cterm "0::real"}))) + | Rational_le x => eqT_elim(numeric_ge_conv(capply @{cterm Trueprop} + (capply (capply @{cterm "op <=::real => _"} + @{cterm "0::real"}) (mk_numeric x)))) + | Rational_lt x => eqT_elim(numeric_gt_conv(capply @{cterm Trueprop} + (capply (capply @{cterm "op <::real => _"} @{cterm "0::real"}) + (mk_numeric x)))) + | Square t => square_rule t + | Eqmul(t,p) => emul_rule t (translate p) + | Sum(p1,p2) => add_rule (translate p1) (translate p2) + | Product(p1,p2) => mul_rule (translate p1) (translate p2) + in fn prf => + fconv_rule (first_conv [numeric_ge_conv, numeric_gt_conv, numeric_eq_conv, all_conv]) + (translate prf) + end + + val init_conv = presimp_conv then_conv + nnf_conv then_conv skolemize_conv then_conv prenex_conv then_conv + weak_dnf_conv + + val concl = dest_arg o cprop_of + fun is_binop opr ct = (dest_fun2 ct aconvc opr handle CTERM _ => false) + val is_req = is_binop @{cterm "op =:: real => _"} + val is_ge = is_binop @{cterm "op <=:: real => _"} + val is_gt = is_binop @{cterm "op <:: real => _"} + val is_conj = is_binop @{cterm "op &"} + val is_disj = is_binop @{cterm "op |"} + fun conj_pair th = (th RS @{thm conjunct1}, th RS @{thm conjunct2}) + fun disj_cases th th1 th2 = + let val (p,q) = dest_binop (concl th) + val c = concl th1 + val _ = if c aconvc (concl th2) then () else error "disj_cases : conclusions not alpha convertible" + in implies_elim (implies_elim (implies_elim (instantiate' [] (map SOME [p,q,c]) @{thm disjE}) th) (implies_intr (capply @{cterm Trueprop} p) th1)) (implies_intr (capply @{cterm Trueprop} q) th2) + end + fun overall dun ths = case ths of + [] => + let + val (eq,ne) = List.partition (is_req o concl) dun + val (le,nl) = List.partition (is_ge o concl) ne + val lt = filter (is_gt o concl) nl + in prover hol_of_positivstellensatz (eq,le,lt) end + | th::oths => + let + val ct = concl th + in + if is_conj ct then + let + val (th1,th2) = conj_pair th in + overall dun (th1::th2::oths) end + else if is_disj ct then + let + val th1 = overall dun (assume (capply @{cterm Trueprop} (dest_arg1 ct))::oths) + val th2 = overall dun (assume (capply @{cterm Trueprop} (dest_arg ct))::oths) + in disj_cases th th1 th2 end + else overall (th::dun) oths + end + fun dest_binary b ct = if is_binop b ct then dest_binop ct + else raise CTERM ("dest_binary",[b,ct]) + val dest_eq = dest_binary @{cterm "op = :: real => _"} + val neq_th = nth pth 5 + fun real_not_eq_conv ct = + let + val (l,r) = dest_eq (dest_arg ct) + val th = instantiate ([],[(@{cpat "?x::real"},l),(@{cpat "?y::real"},r)]) neq_th + val th_p = poly_conv(dest_arg(dest_arg1(Thm.rhs_of th))) + val th_x = Drule.arg_cong_rule @{cterm "uminus :: real => _"} th_p + val th_n = fconv_rule (arg_conv poly_neg_conv) th_x + val th' = Drule.binop_cong_rule @{cterm "op |"} + (Drule.arg_cong_rule (capply @{cterm "op <::real=>_"} @{cterm "0::real"}) th_p) + (Drule.arg_cong_rule (capply @{cterm "op <::real=>_"} @{cterm "0::real"}) th_n) + in transitive th th' + end + fun equal_implies_1_rule PQ = + let + val P = lhs_of PQ + in implies_intr P (equal_elim PQ (assume P)) + end + (* FIXME!!! Copied from groebner.ml *) + val strip_exists = + let fun h (acc, t) = + case (term_of t) of + Const("Ex",_)$Abs(x,T,p) => h (dest_abs NONE (dest_arg t) |>> (fn v => v::acc)) + | _ => (acc,t) + in fn t => h ([],t) + end + fun name_of x = case term_of x of + Free(s,_) => s + | Var ((s,_),_) => s + | _ => "x" + + fun mk_forall x th = Drule.arg_cong_rule (instantiate_cterm' [SOME (ctyp_of_term x)] [] @{cpat "All :: (?'a => bool) => _" }) (abstract_rule (name_of x) x th) + + val specl = fold_rev (fn x => fn th => instantiate' [] [SOME x] (th RS spec)); + + fun ext T = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat Ex} + fun mk_ex v t = Thm.capply (ext (ctyp_of_term v)) (Thm.cabs v t) + + fun choose v th th' = case concl_of th of + @{term Trueprop} $ (Const("Ex",_)$_) => + let + val p = (funpow 2 Thm.dest_arg o cprop_of) th + val T = (hd o Thm.dest_ctyp o ctyp_of_term) p + val th0 = fconv_rule (Thm.beta_conversion true) + (instantiate' [SOME T] [SOME p, (SOME o Thm.dest_arg o cprop_of) th'] exE) + val pv = (Thm.rhs_of o Thm.beta_conversion true) + (Thm.capply @{cterm Trueprop} (Thm.capply p v)) + val th1 = forall_intr v (implies_intr pv th') + in implies_elim (implies_elim th0 th) th1 end + | _ => raise THM ("choose",0,[th, th']) + + fun simple_choose v th = + choose v (assume ((Thm.capply @{cterm Trueprop} o mk_ex v) ((Thm.dest_arg o hd o #hyps o Thm.crep_thm) th))) th + + val strip_forall = + let fun h (acc, t) = + case (term_of t) of + Const("All",_)$Abs(x,T,p) => h (dest_abs NONE (dest_arg t) |>> (fn v => v::acc)) + | _ => (acc,t) + in fn t => h ([],t) + end + + fun f ct = + let + val nnf_norm_conv' = + nnf_conv then_conv + literals_conv [@{term "op &"}, @{term "op |"}] [] + (cache_conv + (first_conv [real_lt_conv, real_le_conv, + real_eq_conv, real_not_lt_conv, + real_not_le_conv, real_not_eq_conv, all_conv])) + fun absremover ct = (literals_conv [@{term "op &"}, @{term "op |"}] [] + (try_conv (absconv1 then_conv binop_conv (arg_conv poly_conv))) then_conv + try_conv (absconv2 then_conv nnf_norm_conv' then_conv binop_conv absremover)) ct + val nct = capply @{cterm Trueprop} (capply @{cterm "Not"} ct) + val th0 = (init_conv then_conv arg_conv nnf_norm_conv') nct + val tm0 = dest_arg (Thm.rhs_of th0) + val th = if tm0 aconvc @{cterm False} then equal_implies_1_rule th0 else + let + val (evs,bod) = strip_exists tm0 + val (avs,ibod) = strip_forall bod + val th1 = Drule.arg_cong_rule @{cterm Trueprop} (fold mk_forall avs (absremover ibod)) + val th2 = overall [] [specl avs (assume (Thm.rhs_of th1))] + val th3 = fold simple_choose evs (prove_hyp (equal_elim th1 (assume (capply @{cterm Trueprop} bod))) th2) + in Drule.implies_intr_hyps (prove_hyp (equal_elim th0 (assume nct)) th3) + end + in implies_elim (instantiate' [] [SOME ct] pth_final) th + end +in f +end; + +(* A linear arithmetic prover *) +local + val linear_add = Ctermfunc.combine (curry op +/) (fn z => z =/ Rat.zero) + fun linear_cmul c = Ctermfunc.mapf (fn x => c */ x) + val one_tm = @{cterm "1::real"} + fun contradictory p (e,_) = ((Ctermfunc.is_undefined e) andalso not(p Rat.zero)) orelse + ((gen_eq_set (op aconvc) (Ctermfunc.dom e, [one_tm])) andalso not(p(Ctermfunc.apply e one_tm))) + + fun linear_ineqs vars (les,lts) = + case find_first (contradictory (fn x => x >/ Rat.zero)) lts of + SOME r => r + | NONE => + (case find_first (contradictory (fn x => x >/ Rat.zero)) les of + SOME r => r + | NONE => + if null vars then error "linear_ineqs: no contradiction" else + let + val ineqs = les @ lts + fun blowup v = + length(filter (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero =/ Rat.zero) ineqs) + + length(filter (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero >/ Rat.zero) ineqs) * + length(filter (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero int_ord (i,j)) + (map (fn v => (v,blowup v)) vars))) + fun addup (e1,p1) (e2,p2) acc = + let + val c1 = Ctermfunc.tryapplyd e1 v Rat.zero + val c2 = Ctermfunc.tryapplyd e2 v Rat.zero + in if c1 */ c2 >=/ Rat.zero then acc else + let + val e1' = linear_cmul (Rat.abs c2) e1 + val e2' = linear_cmul (Rat.abs c1) e2 + val p1' = Product(Rational_lt(Rat.abs c2),p1) + val p2' = Product(Rational_lt(Rat.abs c1),p2) + in (linear_add e1' e2',Sum(p1',p2'))::acc + end + end + val (les0,les1) = + List.partition (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero =/ Rat.zero) les + val (lts0,lts1) = + List.partition (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero =/ Rat.zero) lts + val (lesp,lesn) = + List.partition (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero >/ Rat.zero) les1 + val (ltsp,ltsn) = + List.partition (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero >/ Rat.zero) lts1 + val les' = fold_rev (fn ep1 => fold_rev (addup ep1) lesp) lesn les0 + val lts' = fold_rev (fn ep1 => fold_rev (addup ep1) (lesp@ltsp)) ltsn + (fold_rev (fn ep1 => fold_rev (addup ep1) (lesn@ltsn)) ltsp lts0) + in linear_ineqs (remove (op aconvc) v vars) (les',lts') + end) + + fun linear_eqs(eqs,les,lts) = + case find_first (contradictory (fn x => x =/ Rat.zero)) eqs of + SOME r => r + | NONE => (case eqs of + [] => + let val vars = remove (op aconvc) one_tm + (fold_rev (curry (gen_union (op aconvc)) o Ctermfunc.dom o fst) (les@lts) []) + in linear_ineqs vars (les,lts) end + | (e,p)::es => + if Ctermfunc.is_undefined e then linear_eqs (es,les,lts) else + let + val (x,c) = Ctermfunc.choose (Ctermfunc.undefine one_tm e) + fun xform (inp as (t,q)) = + let val d = Ctermfunc.tryapplyd t x Rat.zero in + if d =/ Rat.zero then inp else + let + val k = (Rat.neg d) */ Rat.abs c // c + val e' = linear_cmul k e + val t' = linear_cmul (Rat.abs c) t + val p' = Eqmul(cterm_of_rat k,p) + val q' = Product(Rational_lt(Rat.abs c),q) + in (linear_add e' t',Sum(p',q')) + end + end + in linear_eqs(map xform es,map xform les,map xform lts) + end) + + fun linear_prover (eq,le,lt) = + let + val eqs = map2 (fn p => fn n => (p,Axiom_eq n)) eq (0 upto (length eq - 1)) + val les = map2 (fn p => fn n => (p,Axiom_le n)) le (0 upto (length le - 1)) + val lts = map2 (fn p => fn n => (p,Axiom_lt n)) lt (0 upto (length lt - 1)) + in linear_eqs(eqs,les,lts) + end + + fun lin_of_hol ct = + if ct aconvc @{cterm "0::real"} then Ctermfunc.undefined + else if not (is_comb ct) then Ctermfunc.onefunc (ct, Rat.one) + else if is_ratconst ct then Ctermfunc.onefunc (one_tm, dest_ratconst ct) + else + let val (lop,r) = Thm.dest_comb ct + in if not (is_comb lop) then Ctermfunc.onefunc (ct, Rat.one) + else + let val (opr,l) = Thm.dest_comb lop + in if opr aconvc @{cterm "op + :: real =>_"} + then linear_add (lin_of_hol l) (lin_of_hol r) + else if opr aconvc @{cterm "op * :: real =>_"} + andalso is_ratconst l then Ctermfunc.onefunc (r, dest_ratconst l) + else Ctermfunc.onefunc (ct, Rat.one) + end + end + + fun is_alien ct = case term_of ct of + Const(@{const_name "real"}, _)$ n => + if can HOLogic.dest_number n then false else true + | _ => false + open Thm +in +fun real_linear_prover translator (eq,le,lt) = + let + val lhs = lin_of_hol o dest_arg1 o dest_arg o cprop_of + val rhs = lin_of_hol o dest_arg o dest_arg o cprop_of + val eq_pols = map lhs eq + val le_pols = map rhs le + val lt_pols = map rhs lt + val aliens = filter is_alien + (fold_rev (curry (gen_union (op aconvc)) o Ctermfunc.dom) + (eq_pols @ le_pols @ lt_pols) []) + val le_pols' = le_pols @ map (fn v => Ctermfunc.onefunc (v,Rat.one)) aliens + val (_,proof) = linear_prover (eq_pols,le_pols',lt_pols) + val le' = le @ map (fn a => instantiate' [] [SOME (dest_arg a)] @{thm real_of_nat_ge_zero}) aliens + in (translator (eq,le',lt) proof) : thm + end +end; + +(* A less general generic arithmetic prover dealing with abs,max and min*) + +local + val absmaxmin_elim_ss1 = HOL_basic_ss addsimps real_abs_thms1 + fun absmaxmin_elim_conv1 ctxt = + Simplifier.rewrite (Simplifier.context ctxt absmaxmin_elim_ss1) + + val absmaxmin_elim_conv2 = + let + val pth_abs = instantiate' [SOME @{ctyp real}] [] abs_split' + val pth_max = instantiate' [SOME @{ctyp real}] [] max_split + val pth_min = instantiate' [SOME @{ctyp real}] [] min_split + val abs_tm = @{cterm "abs :: real => _"} + val p_tm = @{cpat "?P :: real => bool"} + val x_tm = @{cpat "?x :: real"} + val y_tm = @{cpat "?y::real"} + val is_max = is_binop @{cterm "max :: real => _"} + val is_min = is_binop @{cterm "min :: real => _"} + fun is_abs t = is_comb t andalso dest_fun t aconvc abs_tm + fun eliminate_construct p c tm = + let + val t = find_cterm p tm + val th0 = (symmetric o beta_conversion false) (capply (cabs t tm) t) + val (p,ax) = (dest_comb o Thm.rhs_of) th0 + in fconv_rule(arg_conv(binop_conv (arg_conv (beta_conversion false)))) + (transitive th0 (c p ax)) + end + + val elim_abs = eliminate_construct is_abs + (fn p => fn ax => + instantiate ([], [(p_tm,p), (x_tm, dest_arg ax)]) pth_abs) + val elim_max = eliminate_construct is_max + (fn p => fn ax => + let val (ax,y) = dest_comb ax + in instantiate ([], [(p_tm,p), (x_tm, dest_arg ax), (y_tm,y)]) + pth_max end) + val elim_min = eliminate_construct is_min + (fn p => fn ax => + let val (ax,y) = dest_comb ax + in instantiate ([], [(p_tm,p), (x_tm, dest_arg ax), (y_tm,y)]) + pth_min end) + in first_conv [elim_abs, elim_max, elim_min, all_conv] + end; +in fun gen_real_arith ctxt (mkconst,eq,ge,gt,norm,neg,add,mul,prover) = + gen_gen_real_arith ctxt (mkconst,eq,ge,gt,norm,neg,add,mul, + absmaxmin_elim_conv1 ctxt,absmaxmin_elim_conv2,prover) +end; + +(* An instance for reals*) + +fun gen_prover_real_arith ctxt prover = + let + fun simple_cterm_ord t u = TermOrd.term_ord (term_of t, term_of u) = LESS + val {add,mul,neg,pow,sub,main} = + Normalizer.semiring_normalizers_ord_wrapper ctxt + (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) + simple_cterm_ord +in gen_real_arith ctxt + (cterm_of_rat, field_comp_conv, field_comp_conv,field_comp_conv, + main,neg,add,mul, prover) +end; + +fun real_arith ctxt = gen_prover_real_arith ctxt real_linear_prover; +end + + (* Now the norm procedure for euclidean spaces *) + + +signature NORM_ARITH = +sig + val norm_arith : Proof.context -> conv + val norm_arith_tac : Proof.context -> int -> tactic +end + +structure NormArith : NORM_ARITH = +struct + + open Conv Thm Conv2; + val bool_eq = op = : bool *bool -> bool + fun dest_ratconst t = case term_of t of + Const(@{const_name divide}, _)$a$b => Rat.rat_of_quotient(HOLogic.dest_number a |> snd, HOLogic.dest_number b |> snd) + | _ => Rat.rat_of_int (HOLogic.dest_number (term_of t) |> snd) + fun is_ratconst t = can dest_ratconst t + fun augment_norm b t acc = case term_of t of + Const(@{const_name norm}, _) $ _ => insert (eq_pair bool_eq (op aconvc)) (b,dest_arg t) acc + | _ => acc + fun find_normedterms t acc = case term_of t of + @{term "op + :: real => _"}$_$_ => + find_normedterms (dest_arg1 t) (find_normedterms (dest_arg t) acc) + | @{term "op * :: real => _"}$_$n => + if not (is_ratconst (dest_arg1 t)) then acc else + augment_norm (dest_ratconst (dest_arg1 t) >=/ Rat.zero) + (dest_arg t) acc + | _ => augment_norm true t acc + + val cterm_lincomb_neg = Ctermfunc.mapf Rat.neg + fun cterm_lincomb_cmul c t = + if c =/ Rat.zero then Ctermfunc.undefined else Ctermfunc.mapf (fn x => x */ c) t + fun cterm_lincomb_add l r = Ctermfunc.combine (curry op +/) (fn x => x =/ Rat.zero) l r + fun cterm_lincomb_sub l r = cterm_lincomb_add l (cterm_lincomb_neg r) + fun cterm_lincomb_eq l r = Ctermfunc.is_undefined (cterm_lincomb_sub l r) + + val int_lincomb_neg = Intfunc.mapf Rat.neg + fun int_lincomb_cmul c t = + if c =/ Rat.zero then Intfunc.undefined else Intfunc.mapf (fn x => x */ c) t + fun int_lincomb_add l r = Intfunc.combine (curry op +/) (fn x => x =/ Rat.zero) l r + fun int_lincomb_sub l r = int_lincomb_add l (int_lincomb_neg r) + fun int_lincomb_eq l r = Intfunc.is_undefined (int_lincomb_sub l r) + +fun vector_lincomb t = case term_of t of + Const(@{const_name plus},Type("fun",[Type("Finite_Cartesian_Product.^",_),_])) $ _ $ _ => + cterm_lincomb_add (vector_lincomb (dest_arg1 t)) (vector_lincomb (dest_arg t)) + | Const(@{const_name minus},Type("fun",[Type("Finite_Cartesian_Product.^",_),_])) $ _ $ _ => + cterm_lincomb_sub (vector_lincomb (dest_arg1 t)) (vector_lincomb (dest_arg t)) + | Const(@{const_name vector_scalar_mult},Type("fun",[Type("Finite_Cartesian_Product.^",_),_]))$_$_ => + cterm_lincomb_cmul (dest_ratconst (dest_arg1 t)) (vector_lincomb (dest_arg t)) + | Const(@{const_name uminus},Type("fun",[Type("Finite_Cartesian_Product.^",_),_]))$_ => + cterm_lincomb_neg (vector_lincomb (dest_arg t)) + | Const(@{const_name vec},_)$_ => + let + val b = ((snd o HOLogic.dest_number o term_of o dest_arg) t = 0 + handle TERM _=> false) + in if b then Ctermfunc.onefunc (t,Rat.one) + else Ctermfunc.undefined + end + | _ => Ctermfunc.onefunc (t,Rat.one) + + fun vector_lincombs ts = + fold_rev + (fn t => fn fns => case AList.lookup (op aconvc) fns t of + NONE => + let val f = vector_lincomb t + in case find_first (fn (_,f') => cterm_lincomb_eq f f') fns of + SOME (_,f') => (t,f') :: fns + | NONE => (t,f) :: fns + end + | SOME _ => fns) ts [] + +fun replacenegnorms cv t = case term_of t of + @{term "op + :: real => _"}$_$_ => binop_conv (replacenegnorms cv) t +| @{term "op * :: real => _"}$_$_ => + if dest_ratconst (dest_arg1 t) reflexive t +fun flip v eq = + if Ctermfunc.defined eq v + then Ctermfunc.update (v, Rat.neg (Ctermfunc.apply eq v)) eq else eq +fun allsubsets s = case s of + [] => [[]] +|(a::t) => let val res = allsubsets t in + map (cons a) res @ res end +fun evaluate env lin = + Intfunc.fold (fn (x,c) => fn s => s +/ c */ (Intfunc.apply env x)) + lin Rat.zero + +fun solve (vs,eqs) = case (vs,eqs) of + ([],[]) => SOME (Intfunc.onefunc (0,Rat.one)) + |(_,eq::oeqs) => + (case vs inter (Intfunc.dom eq) of + [] => NONE + | v::_ => + if Intfunc.defined eq v + then + let + val c = Intfunc.apply eq v + val vdef = int_lincomb_cmul (Rat.neg (Rat.inv c)) eq + fun eliminate eqn = if not (Intfunc.defined eqn v) then eqn + else int_lincomb_add (int_lincomb_cmul (Intfunc.apply eqn v) vdef) eqn + in (case solve (vs \ v,map eliminate oeqs) of + NONE => NONE + | SOME soln => SOME (Intfunc.update (v, evaluate soln (Intfunc.undefine v vdef)) soln)) + end + else NONE) + +fun combinations k l = if k = 0 then [[]] else + case l of + [] => [] +| h::t => map (cons h) (combinations (k - 1) t) @ combinations k t + + +fun forall2 p l1 l2 = case (l1,l2) of + ([],[]) => true + | (h1::t1,h2::t2) => p h1 h2 andalso forall2 p t1 t2 + | _ => false; + + +fun vertices vs eqs = + let + fun vertex cmb = case solve(vs,cmb) of + NONE => NONE + | SOME soln => SOME (map (fn v => Intfunc.tryapplyd soln v Rat.zero) vs) + val rawvs = map_filter vertex (combinations (length vs) eqs) + val unset = filter (forall (fn c => c >=/ Rat.zero)) rawvs + in fold_rev (insert (uncurry (forall2 (curry op =/)))) unset [] + end + +fun subsumes l m = forall2 (fn x => fn y => Rat.abs x <=/ Rat.abs y) l m + +fun subsume todo dun = case todo of + [] => dun +|v::ovs => + let val dun' = if exists (fn w => subsumes w v) dun then dun + else v::(filter (fn w => not(subsumes v w)) dun) + in subsume ovs dun' + end; + +fun match_mp PQ P = P RS PQ; + +fun cterm_of_rat x = +let val (a, b) = Rat.quotient_of_rat x +in + if b = 1 then Numeral.mk_cnumber @{ctyp "real"} a + else Thm.capply (Thm.capply @{cterm "op / :: real => _"} + (Numeral.mk_cnumber @{ctyp "real"} a)) + (Numeral.mk_cnumber @{ctyp "real"} b) +end; + +fun norm_cmul_rule c th = instantiate' [] [SOME (cterm_of_rat c)] (th RS @{thm norm_cmul_rule_thm}); + +fun norm_add_rule th1 th2 = [th1, th2] MRS @{thm norm_add_rule_thm}; + + (* I think here the static context should be sufficient!! *) +fun inequality_canon_rule ctxt = + let + (* FIXME : Should be computed statically!! *) + val real_poly_conv = + Normalizer.semiring_normalize_wrapper ctxt + (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) + in fconv_rule (arg_conv ((rewr_conv @{thm ge_iff_diff_ge_0}) then_conv arg_conv (field_comp_conv then_conv real_poly_conv))) +end; + + fun absc cv ct = case term_of ct of + Abs (v,_, _) => + let val (x,t) = Thm.dest_abs (SOME v) ct + in Thm.abstract_rule ((fst o dest_Free o term_of) x) x (cv t) + end + | _ => all_conv ct; + +fun sub_conv cv ct = (comb_conv cv else_conv absc cv) ct; +fun botc1 conv ct = + ((sub_conv (botc1 conv)) then_conv (conv else_conv all_conv)) ct; + + fun rewrs_conv eqs ct = first_conv (map rewr_conv eqs) ct; + val apply_pth1 = rewr_conv @{thm pth_1}; + val apply_pth2 = rewr_conv @{thm pth_2}; + val apply_pth3 = rewr_conv @{thm pth_3}; + val apply_pth4 = rewrs_conv @{thms pth_4}; + val apply_pth5 = rewr_conv @{thm pth_5}; + val apply_pth6 = rewr_conv @{thm pth_6}; + val apply_pth7 = rewrs_conv @{thms pth_7}; + val apply_pth8 = rewr_conv @{thm pth_8} then_conv arg1_conv field_comp_conv then_conv (try_conv (rewr_conv (mk_meta_eq @{thm vector_smult_lzero}))); + val apply_pth9 = rewrs_conv @{thms pth_9} then_conv arg1_conv (arg1_conv field_comp_conv); + val apply_ptha = rewr_conv @{thm pth_a}; + val apply_pthb = rewrs_conv @{thms pth_b}; + val apply_pthc = rewrs_conv @{thms pth_c}; + val apply_pthd = try_conv (rewr_conv @{thm pth_d}); + +fun headvector t = case t of + Const(@{const_name plus}, Type("fun",[Type("Finite_Cartesian_Product.^",_),_]))$ + (Const(@{const_name vector_scalar_mult}, _)$l$v)$r => v + | Const(@{const_name vector_scalar_mult}, _)$l$v => v + | _ => error "headvector: non-canonical term" + +fun vector_cmul_conv ct = + ((apply_pth5 then_conv arg1_conv field_comp_conv) else_conv + (apply_pth6 then_conv binop_conv vector_cmul_conv)) ct + +fun vector_add_conv ct = apply_pth7 ct + handle CTERM _ => + (apply_pth8 ct + handle CTERM _ => + (case term_of ct of + Const(@{const_name plus},_)$lt$rt => + let + val l = headvector lt + val r = headvector rt + in (case TermOrd.fast_term_ord (l,r) of + LESS => (apply_pthb then_conv arg_conv vector_add_conv + then_conv apply_pthd) ct + | GREATER => (apply_pthc then_conv arg_conv vector_add_conv + then_conv apply_pthd) ct + | EQUAL => (apply_pth9 then_conv + ((apply_ptha then_conv vector_add_conv) else_conv + arg_conv vector_add_conv then_conv apply_pthd)) ct) + end + | _ => reflexive ct)) + +fun vector_canon_conv ct = case term_of ct of + Const(@{const_name plus},_)$_$_ => + let + val ((p,l),r) = Thm.dest_comb ct |>> Thm.dest_comb + val lth = vector_canon_conv l + val rth = vector_canon_conv r + val th = Drule.binop_cong_rule p lth rth + in fconv_rule (arg_conv vector_add_conv) th end + +| Const(@{const_name vector_scalar_mult}, _)$_$_ => + let + val (p,r) = Thm.dest_comb ct + val rth = Drule.arg_cong_rule p (vector_canon_conv r) + in fconv_rule (arg_conv (apply_pth4 else_conv vector_cmul_conv)) rth + end + +| Const(@{const_name minus},_)$_$_ => (apply_pth2 then_conv vector_canon_conv) ct + +| Const(@{const_name uminus},_)$_ => (apply_pth3 then_conv vector_canon_conv) ct + +| Const(@{const_name vec},_)$n => + let val n = Thm.dest_arg ct + in if is_ratconst n andalso not (dest_ratconst n =/ Rat.zero) + then reflexive ct else apply_pth1 ct + end + +| _ => apply_pth1 ct + +fun norm_canon_conv ct = case term_of ct of + Const(@{const_name norm},_)$_ => arg_conv vector_canon_conv ct + | _ => raise CTERM ("norm_canon_conv", [ct]) + +fun fold_rev2 f [] [] z = z + | fold_rev2 f (x::xs) (y::ys) z = f x y (fold_rev2 f xs ys z) + | fold_rev2 f _ _ _ = raise UnequalLengths; + +fun int_flip v eq = + if Intfunc.defined eq v + then Intfunc.update (v, Rat.neg (Intfunc.apply eq v)) eq else eq; + +local + val pth_zero = @{thm "norm_0"} + val tv_n = (hd o tl o dest_ctyp o ctyp_of_term o dest_arg o dest_arg1 o dest_arg o cprop_of) + pth_zero + val concl = dest_arg o cprop_of + fun real_vector_combo_prover ctxt translator (nubs,ges,gts) = + let + (* FIXME: Should be computed statically!!*) + val real_poly_conv = + Normalizer.semiring_normalize_wrapper ctxt + (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) + val sources = map (dest_arg o dest_arg1 o concl) nubs + val rawdests = fold_rev (find_normedterms o dest_arg o concl) (ges @ gts) [] + val _ = if not (forall fst rawdests) then error "real_vector_combo_prover: Sanity check" + else () + val dests = distinct (op aconvc) (map snd rawdests) + val srcfuns = map vector_lincomb sources + val destfuns = map vector_lincomb dests + val vvs = fold_rev (curry (gen_union op aconvc) o Ctermfunc.dom) (srcfuns @ destfuns) [] + val n = length srcfuns + val nvs = 1 upto n + val srccombs = srcfuns ~~ nvs + fun consider d = + let + fun coefficients x = + let + val inp = if Ctermfunc.defined d x then Intfunc.onefunc (0, Rat.neg(Ctermfunc.apply d x)) + else Intfunc.undefined + in fold_rev (fn (f,v) => fn g => if Ctermfunc.defined f x then Intfunc.update (v, Ctermfunc.apply f x) g else g) srccombs inp + end + val equations = map coefficients vvs + val inequalities = map (fn n => Intfunc.onefunc (n,Rat.one)) nvs + fun plausiblevertices f = + let + val flippedequations = map (fold_rev int_flip f) equations + val constraints = flippedequations @ inequalities + val rawverts = vertices nvs constraints + fun check_solution v = + let + val f = fold_rev2 (curry Intfunc.update) nvs v (Intfunc.onefunc (0, Rat.one)) + in forall (fn e => evaluate f e =/ Rat.zero) flippedequations + end + val goodverts = filter check_solution rawverts + val signfixups = map (fn n => if n mem_int f then ~1 else 1) nvs + in map (map2 (fn s => fn c => Rat.rat_of_int s */ c) signfixups) goodverts + end + val allverts = fold_rev append (map plausiblevertices (allsubsets nvs)) [] + in subsume allverts [] + end + fun compute_ineq v = + let + val ths = map_filter (fn (v,t) => if v =/ Rat.zero then NONE + else SOME(norm_cmul_rule v t)) + (v ~~ nubs) + in inequality_canon_rule ctxt (end_itlist norm_add_rule ths) + end + val ges' = map_filter (try compute_ineq) (fold_rev (append o consider) destfuns []) @ + map (inequality_canon_rule ctxt) nubs @ ges + val zerodests = filter + (fn t => null (Ctermfunc.dom (vector_lincomb t))) (map snd rawdests) + + in RealArith.real_linear_prover translator + (map (fn t => instantiate ([(tv_n,(hd o tl o dest_ctyp o ctyp_of_term) t)],[]) pth_zero) + zerodests, + map (fconv_rule (once_depth_conv (norm_canon_conv) then_conv + arg_conv (arg_conv real_poly_conv))) ges', + map (fconv_rule (once_depth_conv (norm_canon_conv) then_conv + arg_conv (arg_conv real_poly_conv))) gts) + end +in val real_vector_combo_prover = real_vector_combo_prover +end; + +local + val pth = @{thm norm_imp_pos_and_ge} + val norm_mp = match_mp pth + val concl = dest_arg o cprop_of + fun conjunct1 th = th RS @{thm conjunct1} + fun conjunct2 th = th RS @{thm conjunct2} + fun C f x y = f y x +fun real_vector_ineq_prover ctxt translator (ges,gts) = + let +(* val _ = error "real_vector_ineq_prover: pause" *) + val ntms = fold_rev find_normedterms (map (dest_arg o concl) (ges @ gts)) [] + val lctab = vector_lincombs (map snd (filter (not o fst) ntms)) + val (fxns, ctxt') = Variable.variant_fixes (replicate (length lctab) "x") ctxt + fun mk_norm t = capply (instantiate_cterm' [SOME (ctyp_of_term t)] [] @{cpat "norm :: (?'a :: norm) => real"}) t + fun mk_equals l r = capply (capply (instantiate_cterm' [SOME (ctyp_of_term l)] [] @{cpat "op == :: ?'a =>_"}) l) r + val asl = map2 (fn (t,_) => fn n => assume (mk_equals (mk_norm t) (cterm_of (ProofContext.theory_of ctxt') (Free(n,@{typ real}))))) lctab fxns + val replace_conv = try_conv (rewrs_conv asl) + val replace_rule = fconv_rule (funpow 2 arg_conv (replacenegnorms replace_conv)) + val ges' = + fold_rev (fn th => fn ths => conjunct1(norm_mp th)::ths) + asl (map replace_rule ges) + val gts' = map replace_rule gts + val nubs = map (conjunct2 o norm_mp) asl + val th1 = real_vector_combo_prover ctxt' translator (nubs,ges',gts') + val shs = filter (member (fn (t,th) => t aconvc cprop_of th) asl) (#hyps (crep_thm th1)) + val th11 = hd (Variable.export ctxt' ctxt [fold implies_intr shs th1]) + val cps = map (swap o dest_equals) (cprems_of th11) + val th12 = instantiate ([], cps) th11 + val th13 = fold (C implies_elim) (map (reflexive o snd) cps) th12; + in hd (Variable.export ctxt' ctxt [th13]) + end +in val real_vector_ineq_prover = real_vector_ineq_prover +end; + +local + val rawrule = fconv_rule (arg_conv (rewr_conv @{thm real_eq_0_iff_le_ge_0})) + fun conj_pair th = (th RS @{thm conjunct1}, th RS @{thm conjunct2}) + fun simple_cterm_ord t u = TermOrd.term_ord (term_of t, term_of u) = LESS; + (* FIXME: Lookup in the context every time!!! Fix this !!!*) + fun splitequation ctxt th acc = + let + val real_poly_neg_conv = #neg + (Normalizer.semiring_normalizers_ord_wrapper ctxt + (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) simple_cterm_ord) + val (th1,th2) = conj_pair(rawrule th) + in th1::fconv_rule (arg_conv (arg_conv real_poly_neg_conv)) th2::acc + end +in fun real_vector_prover ctxt translator (eqs,ges,gts) = + real_vector_ineq_prover ctxt translator + (fold_rev (splitequation ctxt) eqs ges,gts) +end; + + fun init_conv ctxt = + Simplifier.rewrite (Simplifier.context ctxt + (HOL_basic_ss addsimps ([@{thm vec_0}, @{thm vec_1}, @{thm dist_def}, @{thm diff_0_right}, @{thm right_minus}, @{thm diff_self}, @{thm norm_0}] @ @{thms arithmetic_simps} @ @{thms norm_pths}))) + then_conv field_comp_conv + then_conv nnf_conv + + fun pure ctxt = RealArith.gen_prover_real_arith ctxt (real_vector_prover ctxt); + fun norm_arith ctxt ct = + let + val ctxt' = Variable.declare_term (term_of ct) ctxt + val th = init_conv ctxt' ct + in equal_elim (Drule.arg_cong_rule @{cterm Trueprop} (symmetric th)) + (pure ctxt' (rhs_of th)) + end + + fun norm_arith_tac ctxt = + clarify_tac HOL_cs THEN' + ObjectLogic.full_atomize_tac THEN' + CSUBGOAL ( fn (p,i) => rtac (norm_arith ctxt (Thm.dest_arg p )) i); + +end; \ No newline at end of file diff -r 14d9891c917b -r 55ddff2ed906 src/HOL/Library/reflection.ML --- a/src/HOL/Library/reflection.ML Mon Feb 09 22:14:33 2009 +0100 +++ b/src/HOL/Library/reflection.ML Mon Feb 09 22:15:37 2009 +0100 @@ -86,6 +86,23 @@ exception REIF of string; +fun dest_listT (Type ("List.list", [T])) = T; + +fun partition P [] = ([],[]) + | partition P (x::xs) = + let val (yes,no) = partition P xs + in if P x then (x::yes,no) else (yes, x::no) end + +fun rearrange congs = +let + fun P (_, th) = + let val @{term "Trueprop"}$(Const ("op =",_) $l$_) = concl_of th + in can dest_Var l end + val (yes,no) = partition P congs + in no @ yes end + +fun genreif ctxt raw_eqs t = + let val bds = ref ([]: (typ * ((term list) * (term list))) list); fun index_of t = @@ -106,8 +123,6 @@ end) end; -fun dest_listT (Type ("List.list", [T])) = T; - fun decomp_genreif da cgns (t,ctxt) = let val thy = ProofContext.theory_of ctxt @@ -151,8 +166,6 @@ end; (* looks for the atoms equation and instantiates it with the right number *) - - fun mk_decompatom eqs (t,ctxt) = let val tT = fastype_of t @@ -229,8 +242,8 @@ (* Generic reification procedure: *) (* creates all needed cong rules and then just uses the theorem synthesis *) - fun mk_congs ctxt raw_eqs = - let +fun mk_congs ctxt raw_eqs = +let val fs = fold_rev (fn eq => insert (op =) (eq |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> fst |> strip_comb @@ -257,23 +270,6 @@ in ps ~~ (Variable.export ctxt' ctxt congs) end -fun partition P [] = ([],[]) - | partition P (x::xs) = - let val (yes,no) = partition P xs - in if P x then (x::yes,no) else (yes, x::no) end - -fun rearrange congs = -let - fun P (_, th) = - let val @{term "Trueprop"}$(Const ("op =",_) $l$_) = concl_of th - in can dest_Var l end - val (yes,no) = partition P congs - in no @ yes end - - - -fun genreif ctxt raw_eqs t = - let val congs = rearrange (mk_congs ctxt raw_eqs) val th = divide_and_conquer (decomp_genreif (mk_decompatom raw_eqs) congs) (t,ctxt) fun is_listVar (Var (_,t)) = can dest_listT t diff -r 14d9891c917b -r 55ddff2ed906 src/HOL/Plain.thy --- a/src/HOL/Plain.thy Mon Feb 09 22:14:33 2009 +0100 +++ b/src/HOL/Plain.thy Mon Feb 09 22:15:37 2009 +0100 @@ -1,7 +1,7 @@ header {* Plain HOL *} theory Plain -imports Datatype FunDef Record Extraction Divides +imports Datatype FunDef Record Extraction Divides Fact begin text {* diff -r 14d9891c917b -r 55ddff2ed906 src/Pure/General/name_space.ML --- a/src/Pure/General/name_space.ML Mon Feb 09 22:14:33 2009 +0100 +++ b/src/Pure/General/name_space.ML Mon Feb 09 22:15:37 2009 +0100 @@ -133,10 +133,19 @@ | SOME ((name :: _, _), _) => (name, false) | SOME (([], name' :: _), _) => (hidden name', true)); -fun get_accesses (NameSpace (_, tab)) name = +fun ex_mapsto_in (NameSpace (tab, _)) name xname = + (case Symtab.lookup tab xname of + SOME ((name'::_, _), _) => name' = name + | _ => false); + +fun get_accesses' valid_only (ns as (NameSpace (_, tab))) name = (case Symtab.lookup tab name of NONE => [name] - | SOME (xnames, _) => xnames); + | SOME (xnames, _) => if valid_only + then filter (ex_mapsto_in ns name) xnames + else xnames); + +val get_accesses = get_accesses' true; fun put_accesses name xnames (NameSpace (tab, xtab)) = NameSpace (tab, Symtab.update (name, (xnames, stamp ())) xtab); @@ -160,7 +169,7 @@ in if ! long_names then name else if ! short_names then base name - else ext (get_accesses space name) + else ext (get_accesses' false space name) end; @@ -194,7 +203,7 @@ space |> add_name' name name |> fold (del_name name) (if fully then names else names inter_string [base name]) - |> fold (del_name_extra name) (get_accesses space name) + |> fold (del_name_extra name) (get_accesses' false space name) end; diff -r 14d9891c917b -r 55ddff2ed906 src/Pure/Isar/find_theorems.ML --- a/src/Pure/Isar/find_theorems.ML Mon Feb 09 22:14:33 2009 +0100 +++ b/src/Pure/Isar/find_theorems.ML Mon Feb 09 22:15:37 2009 +0100 @@ -267,12 +267,7 @@ | ord => ord) | ord => ord) <> GREATER; -fun nicer (Facts.Named ((x, _), i)) (Facts.Named ((y, _), j)) = - nicer_name (x, i) (y, j) - | nicer (Facts.Fact _) (Facts.Named _) = true - | nicer (Facts.Named _) (Facts.Fact _) = false; - -fun rem_cdups xs = +fun rem_cdups nicer xs = let fun rem_c rev_seen [] = rev rev_seen | rem_c rev_seen [x] = rem_c (x :: rev_seen) [] @@ -284,10 +279,26 @@ in -fun rem_thm_dups xs = +fun nicer_shortest ctxt = let + val ns = ProofContext.theory_of ctxt + |> PureThy.facts_of + |> Facts.space_of; + + val len_sort = sort (int_ord o (pairself size)); + fun shorten s = (case len_sort (NameSpace.get_accesses ns s) of + [] => s + | s'::_ => s'); + + fun nicer (Facts.Named ((x, _), i)) (Facts.Named ((y, _), j)) = + nicer_name (shorten x, i) (shorten y, j) + | nicer (Facts.Fact _) (Facts.Named _) = true + | nicer (Facts.Named _) (Facts.Fact _) = false; + in nicer end; + +fun rem_thm_dups nicer xs = xs ~~ (1 upto length xs) |> sort (TermOrd.fast_term_ord o pairself (Thm.prop_of o #2 o #1)) - |> rem_cdups + |> rem_cdups nicer |> sort (int_ord o pairself #2) |> map #1; @@ -313,7 +324,7 @@ val matches = if rem_dups - then rem_thm_dups raw_matches + then rem_thm_dups (nicer_shortest ctxt) raw_matches else raw_matches; val len = length matches; diff -r 14d9891c917b -r 55ddff2ed906 src/Pure/facts.ML --- a/src/Pure/facts.ML Mon Feb 09 22:14:33 2009 +0100 +++ b/src/Pure/facts.ML Mon Feb 09 22:15:37 2009 +0100 @@ -20,6 +20,7 @@ val selections: string * thm list -> (ref * thm) list type T val empty: T + val space_of: T -> NameSpace.T val intern: T -> xstring -> string val extern: T -> string -> xstring val lookup: Context.generic -> T -> string -> (bool * thm list) option