# HG changeset patch # User Andreas Lochbihler # Date 1429013631 -7200 # Node ID 14efa7f4ee7b440fdb166d84e77431e1c83788f5 # Parent 390de6d3a7b8eae8c1b68381e9896903e45d9120 add lemmas diff -r 390de6d3a7b8 -r 14efa7f4ee7b src/HOL/Probability/Binary_Product_Measure.thy --- a/src/HOL/Probability/Binary_Product_Measure.thy Tue Apr 14 14:13:06 2015 +0200 +++ b/src/HOL/Probability/Binary_Product_Measure.thy Tue Apr 14 14:13:51 2015 +0200 @@ -1056,6 +1056,13 @@ finally show ?thesis . qed +lemma measurable_pair_measure_countable1: + assumes "countable A" + and [measurable]: "\x. x \ A \ (\y. f (x, y)) \ measurable N K" + shows "f \ measurable (count_space A \\<^sub>M N) K" +using _ _ assms(1) +by(rule measurable_compose_countable'[where f="\a b. f (a, snd b)" and g=fst and I=A, simplified])simp_all + subsection {* Product of Borel spaces *} lemma borel_Times: diff -r 390de6d3a7b8 -r 14efa7f4ee7b src/HOL/Probability/Bochner_Integration.thy --- a/src/HOL/Probability/Bochner_Integration.thy Tue Apr 14 14:13:06 2015 +0200 +++ b/src/HOL/Probability/Bochner_Integration.thy Tue Apr 14 14:13:51 2015 +0200 @@ -1875,6 +1875,15 @@ qed qed (simp add: integrable_restrict_space) +lemma integral_empty: + assumes "space M = {}" + shows "integral\<^sup>L M f = 0" +proof - + have "(\ x. f x \M) = (\ x. 0 \M)" + by(rule integral_cong)(simp_all add: assms) + thus ?thesis by simp +qed + subsection {* Measure spaces with an associated density *} lemma integrable_density: