# HG changeset patch # User haftmann # Date 1245749487 -7200 # Node ID 159cd6b5e5d4cc82f15057f43d6f65efdc0128fe # Parent 530596c997da92bb322b204b37ba8e369ae458b8 lemma finite_image_set by Jeremy Avigad diff -r 530596c997da -r 159cd6b5e5d4 src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Mon Jun 22 14:25:22 2009 +0200 +++ b/src/HOL/Finite_Set.thy Tue Jun 23 11:31:27 2009 +0200 @@ -285,6 +285,10 @@ -- {* The image of a finite set is finite. *} by (induct set: finite) simp_all +lemma finite_image_set [simp]: + "finite {x. P x} \ finite { f x | x. P x }" + by (simp add: image_Collect [symmetric]) + lemma finite_surj: "finite A ==> B <= f ` A ==> finite B" apply (frule finite_imageI) apply (erule finite_subset, assumption)