# HG changeset patch # User haftmann # Date 1310330573 -7200 # Node ID 15ea1a07a8cf1b36be0e1c4a56be0d73d708d712 # Parent 5e4a595e63fc6f4febe2584ffa0b67e5b9bfb8ea tuned proofs diff -r 5e4a595e63fc -r 15ea1a07a8cf src/HOL/Complete_Lattice.thy --- a/src/HOL/Complete_Lattice.thy Sun Jul 10 22:17:33 2011 +0200 +++ b/src/HOL/Complete_Lattice.thy Sun Jul 10 22:42:53 2011 +0200 @@ -386,18 +386,25 @@ lemma Inter_Un_subset: "\A \ \B \ \(A \ B)" by (fact Inf_inter_less) -(*lemma (in complete_lattice) Inf_union_distrib: "\(A \ B) = \A \ \B"*) +lemma (in complete_lattice) Inf_union_distrib: "\(A \ B) = \A \ \B" + by (rule antisym) (auto intro: Inf_greatest Inf_lower le_infI1 le_infI2) lemma Inter_Un_distrib: "\(A \ B) = \A \ \B" - by blast + by (fact Inf_union_distrib) + +(*lemma (in complete_lattice) Inf_top_conv [no_atp]: + "\A = \ \ (\x\A. x = \)"*) lemma Inter_UNIV_conv [simp,no_atp]: "\A = UNIV \ (\x\A. x = UNIV)" "UNIV = \A \ (\x\A. x = UNIV)" by blast+ +lemma (in complete_lattice) Inf_anti_mono: "B \ A \ \A \ \B" + by (auto intro: Inf_greatest Inf_lower) + lemma Inter_anti_mono: "B \ A \ \A \ \B" - by blast + by (fact Inf_anti_mono) subsection {* Intersections of families *}