# HG changeset patch # User blanchet # Date 1272628809 -7200 # Node ID 16ec4fe058cb70c8c835a3ef6e60b627353748a5 # Parent 9bebcb40599f3884ad79a97f8e4fefb5549f1345 minor improvements diff -r 9bebcb40599f -r 16ec4fe058cb src/HOL/Metis_Examples/Abstraction.thy --- a/src/HOL/Metis_Examples/Abstraction.thy Fri Apr 30 13:58:35 2010 +0200 +++ b/src/HOL/Metis_Examples/Abstraction.thy Fri Apr 30 14:00:09 2010 +0200 @@ -66,13 +66,11 @@ proof - assume A1: "(a, b) \ (SIGMA x:A. {y. x = f y})" have F1: "\u. {u} = op = u" by (metis singleton_conv2 Collect_def) - have F2: "\x w. (\R. w (x R)) = x -` w" by (metis vimage_Collect_eq Collect_def) - have F3: "\v w y. v \ w -` op = y \ w v = y" by (metis F1 vimage_singleton_eq) - have F4: "b \ {R. a = f R}" by (metis A1 mem_Sigma_iff) - have F5: "a \ A" by (metis A1 mem_Sigma_iff) - have "b \ f -` op = a" by (metis F2 F4 Collect_def) - hence "f b = a" by (metis F3) - thus "a \ A \ a = f b" by (metis F5) + have F2: "\y w v. v \ w -` op = y \ w v = y" + by (metis F1 vimage_singleton_eq) + have F3: "\x w. (\R. w (x R)) = x -` w" + by (metis vimage_Collect_eq Collect_def) + show "a \ A \ a = f b" by (metis A1 F2 F3 mem_Sigma_iff Collect_def) qed (* Alternative structured proof *) diff -r 9bebcb40599f -r 16ec4fe058cb src/HOL/Metis_Examples/BT.thy --- a/src/HOL/Metis_Examples/BT.thy Fri Apr 30 13:58:35 2010 +0200 +++ b/src/HOL/Metis_Examples/BT.thy Fri Apr 30 14:00:09 2010 +0200 @@ -133,7 +133,7 @@ apply (rule ext) apply (induct_tac y) apply (metis bt_map.simps(1)) -by (metis COMBI_def bt_map.simps(2)) +by (metis bt_map.simps(2)) declare [[ atp_problem_prefix = "BT__bt_map_appnd" ]]