# HG changeset patch # User lcp # Date 773944689 -7200 # Node ID 170de0c52a9bd2f4805460320e3ea9a6065e8ea7 # Parent 5d91bd2db00ac17dd2a033b755ff58375440cd96 minor edits diff -r 5d91bd2db00a -r 170de0c52a9b doc-src/Logics/ZF.tex --- a/doc-src/Logics/ZF.tex Mon Jul 11 18:33:28 1994 +0200 +++ b/doc-src/Logics/ZF.tex Mon Jul 11 18:38:09 1994 +0200 @@ -658,11 +658,11 @@ \tdx{the_equality} [| P(a); !!x. P(x) ==> x=a |] ==> (THE x. P(x)) = a \tdx{theI} EX! x. P(x) ==> P(THE x. P(x)) -\tdx{if_P} P ==> if(P,a,b) = a -\tdx{if_not_P} ~P ==> if(P,a,b) = b +\tdx{if_P} P ==> if(P,a,b) = a +\tdx{if_not_P} ~P ==> if(P,a,b) = b -\tdx{mem_anti_sym} [| a:b; b:a |] ==> P -\tdx{mem_anti_refl} a:a ==> P +\tdx{mem_asym} [| a:b; b:a |] ==> P +\tdx{mem_irrefl} a:a ==> P \end{ttbox} \caption{Descriptions; non-circularity} \label{zf-the} \end{figure} @@ -692,7 +692,7 @@ many examples of its use. Finally, the impossibility of having both $a\in b$ and $b\in a$ -(\tdx{mem_anti_sym}) is proved by applying the Axiom of Foundation to +(\tdx{mem_asym}) is proved by applying the Axiom of Foundation to the set $\{a,b\}$. The impossibility of $a\in a$ is a trivial consequence. See the file {\tt ZF/upair.ML} for full proofs of the rules discussed in @@ -1056,8 +1056,8 @@ \tdx{QPair_def} == a+b \tdx{qsplit_def} qsplit(c,p) == THE y. EX a b. p= & y=c(a,b) \tdx{qfsplit_def} qfsplit(R,z) == EX x y. z= & R(x,y) -\tdx{qconverse_def} qconverse(r) == {z. w:r, EX x y. w= & z=} -\tdx{QSigma_def} QSigma(A,B) == UN x:A. UN y:B(x). {} +\tdx{qconverse_def} qconverse(r) == \{z. w:r, EX x y. w= & z=\} +\tdx{QSigma_def} QSigma(A,B) == UN x:A. UN y:B(x). \{\} \tdx{qsum_def} A <+> B == (\{0\} <*> A) Un (\{1\} <*> B) \tdx{QInl_def} QInl(a) == <0;a> @@ -1083,8 +1083,8 @@ \tdx{bnd_mono_def} bnd_mono(D,h) == h(D)<=D & (ALL W X. W<=X --> X<=D --> h(W) <= h(X)) -\tdx{lfp_def} lfp(D,h) == Inter({X: Pow(D). h(X) <= X}) -\tdx{gfp_def} gfp(D,h) == Union({X: Pow(D). X <= h(X)}) +\tdx{lfp_def} lfp(D,h) == Inter(\{X: Pow(D). h(X) <= X\}) +\tdx{gfp_def} gfp(D,h) == Union(\{X: Pow(D). X <= h(X)\}) \tdx{lfp_lowerbound} [| h(A) <= A; A<=D |] ==> lfp(D,h) <= A