# HG changeset patch # User nipkow # Date 1515584103 -3600 # Node ID 172a02125bface80b6986cc0e173a2e651dfebd3 # Parent b39d596b77cef50b64038fbf2ef301dc0eef4413 tuned op's diff -r b39d596b77ce -r 172a02125bfa src/HOL/Algebra/IntRing.thy --- a/src/HOL/Algebra/IntRing.thy Tue Jan 09 20:15:36 2018 +0100 +++ b/src/HOL/Algebra/IntRing.thy Wed Jan 10 12:35:03 2018 +0100 @@ -172,27 +172,27 @@ by simp_all interpretation int (* FIXME [unfolded UNIV] *) : - partial_order "\carrier = UNIV::int set, eq = op =, le = op \\" - rewrites "carrier \carrier = UNIV::int set, eq = op =, le = op \\ = UNIV" - and "le \carrier = UNIV::int set, eq = op =, le = op \\ x y = (x \ y)" - and "lless \carrier = UNIV::int set, eq = op =, le = op \\ x y = (x < y)" + partial_order "\carrier = UNIV::int set, eq = op =, le = (op \)\" + rewrites "carrier \carrier = UNIV::int set, eq = op =, le = (op \)\ = UNIV" + and "le \carrier = UNIV::int set, eq = op =, le = (op \)\ x y = (x \ y)" + and "lless \carrier = UNIV::int set, eq = op =, le = (op \)\ x y = (x < y)" proof - - show "partial_order \carrier = UNIV::int set, eq = op =, le = op \\" + show "partial_order \carrier = UNIV::int set, eq = op =, le = (op \)\" by standard simp_all - show "carrier \carrier = UNIV::int set, eq = op =, le = op \\ = UNIV" + show "carrier \carrier = UNIV::int set, eq = op =, le = (op \)\ = UNIV" by simp - show "le \carrier = UNIV::int set, eq = op =, le = op \\ x y = (x \ y)" + show "le \carrier = UNIV::int set, eq = op =, le = (op \)\ x y = (x \ y)" by simp - show "lless \carrier = UNIV::int set, eq = op =, le = op \\ x y = (x < y)" + show "lless \carrier = UNIV::int set, eq = op =, le = (op \)\ x y = (x < y)" by (simp add: lless_def) auto qed interpretation int (* FIXME [unfolded UNIV] *) : - lattice "\carrier = UNIV::int set, eq = op =, le = op \\" - rewrites "join \carrier = UNIV::int set, eq = op =, le = op \\ x y = max x y" - and "meet \carrier = UNIV::int set, eq = op =, le = op \\ x y = min x y" + lattice "\carrier = UNIV::int set, eq = op =, le = (op \)\" + rewrites "join \carrier = UNIV::int set, eq = op =, le = (op \)\ x y = max x y" + and "meet \carrier = UNIV::int set, eq = op =, le = (op \)\ x y = min x y" proof - - let ?Z = "\carrier = UNIV::int set, eq = op =, le = op \\" + let ?Z = "\carrier = UNIV::int set, eq = op =, le = (op \)\" show "lattice ?Z" apply unfold_locales apply (simp add: least_def Upper_def) @@ -214,7 +214,7 @@ qed interpretation int (* [unfolded UNIV] *) : - total_order "\carrier = UNIV::int set, eq = op =, le = op \\" + total_order "\carrier = UNIV::int set, eq = op =, le = (op \)\" by standard clarsimp diff -r b39d596b77ce -r 172a02125bfa src/HOL/Algebra/UnivPoly.thy --- a/src/HOL/Algebra/UnivPoly.thy Tue Jan 09 20:15:36 2018 +0100 +++ b/src/HOL/Algebra/UnivPoly.thy Wed Jan 10 12:35:03 2018 +0100 @@ -1808,7 +1808,7 @@ definition INTEG :: "int ring" - where "INTEG = \carrier = UNIV, mult = op *, one = 1, zero = 0, add = op +\" + where "INTEG = \carrier = UNIV, mult = op *, one = 1, zero = 0, add = (op +)\" lemma INTEG_cring: "cring INTEG" by (unfold INTEG_def) (auto intro!: cringI abelian_groupI comm_monoidI diff -r b39d596b77ce -r 172a02125bfa src/HOL/Analysis/Cauchy_Integral_Theorem.thy --- a/src/HOL/Analysis/Cauchy_Integral_Theorem.thy Tue Jan 09 20:15:36 2018 +0100 +++ b/src/HOL/Analysis/Cauchy_Integral_Theorem.thy Wed Jan 10 12:35:03 2018 +0100 @@ -5942,7 +5942,7 @@ apply (blast intro: fg) done also have "... = u * u ^ n * deriv ((deriv ^^ n) f) (u * z)" - apply (subst complex_derivative_chain [where g = "(deriv ^^ n) f" and f = "op*u", unfolded o_def]) + apply (subst complex_derivative_chain [where g = "(deriv ^^ n) f" and f = "op* u", unfolded o_def]) apply (rule derivative_intros) using Suc.prems field_differentiable_def f fg has_field_derivative_higher_deriv t apply blast apply (simp add: deriv_linear)