# HG changeset patch # User huffman # Date 1118182588 -7200 # Node ID 17db5df51a3544adbcfc86ddf630bedc9d1f8140 # Parent bfb2f513916a3b1d703debc80363ef7856ad4894 renamed theorems less_ssum4a,b,c,d to more meaningful names diff -r bfb2f513916a -r 17db5df51a35 src/HOLCF/Ssum.ML --- a/src/HOLCF/Ssum.ML Wed Jun 08 00:07:46 2005 +0200 +++ b/src/HOLCF/Ssum.ML Wed Jun 08 00:16:28 2005 +0200 @@ -17,18 +17,20 @@ val noteq_sinlsinr = thm "noteq_sinlsinr"; val sinl_inject = thm "sinl_inject"; val sinr_inject = thm "sinr_inject"; +val sinl_eq = thm "sinl_eq"; +val sinr_eq = thm "sinr_eq"; val sinl_defined = thm "sinl_defined"; val sinr_defined = thm "sinr_defined"; val Exh_Ssum1 = thm "Exh_Ssum1"; val ssumE = thm "ssumE"; val ssumE2 = thm "ssumE2"; +val sinl_less = thm "sinl_less"; +val sinr_less = thm "sinr_less"; +val sinl_less_sinr = thm "sinl_less_sinr"; +val sinr_less_sinl = thm "sinr_less_sinl"; val sscase1 = thm "sscase1"; val sscase2 = thm "sscase2"; val sscase3 = thm "sscase3"; -val less_ssum4a = thm "less_ssum4a"; -val less_ssum4b = thm "less_ssum4b"; -val less_ssum4c = thm "less_ssum4c"; -val less_ssum4d = thm "less_ssum4d"; val sscase4 = thm "sscase4"; val Ssum_rews = [sinl_strict, sinr_strict, sinl_defined, sinr_defined, sscase1, sscase2, sscase3]; diff -r bfb2f513916a -r 17db5df51a35 src/HOLCF/Ssum.thy --- a/src/HOLCF/Ssum.thy Wed Jun 08 00:07:46 2005 +0200 +++ b/src/HOLCF/Ssum.thy Wed Jun 08 00:16:28 2005 +0200 @@ -145,16 +145,16 @@ subsection {* Ordering properties of @{term sinl} and @{term sinr} *} -lemma less_ssum4a: "(sinl\x \ sinl\y) = (x \ y)" +lemma sinl_less: "(sinl\x \ sinl\y) = (x \ y)" by (simp add: less_ssum_def Rep_Ssum_sinl cpair_less) -lemma less_ssum4b: "(sinr\x \ sinr\y) = (x \ y)" +lemma sinr_less: "(sinr\x \ sinr\y) = (x \ y)" by (simp add: less_ssum_def Rep_Ssum_sinr cpair_less) -lemma less_ssum4c: "(sinl\x \ sinr\y) = (x = \)" +lemma sinl_less_sinr: "(sinl\x \ sinr\y) = (x = \)" by (simp add: less_ssum_def Rep_Ssum_sinl Rep_Ssum_sinr cpair_less eq_UU_iff) -lemma less_ssum4d: "(sinr\x \ sinl\y) = (x = \)" +lemma sinr_less_sinl: "(sinr\x \ sinl\y) = (x = \)" by (simp add: less_ssum_def Rep_Ssum_sinl Rep_Ssum_sinr cpair_less eq_UU_iff) subsection {* Chains of strict sums *} @@ -162,15 +162,15 @@ lemma less_sinlD: "p \ sinl\x \ \y. p = sinl\y \ y \ x" apply (rule_tac p=p in ssumE) apply (rule_tac x="\" in exI, simp) -apply (simp add: less_ssum4a sinl_eq) -apply (simp add: less_ssum4d) +apply (simp add: sinl_less sinl_eq) +apply (simp add: sinr_less_sinl) done lemma less_sinrD: "p \ sinr\x \ \y. p = sinr\y \ y \ x" apply (rule_tac p=p in ssumE) apply (rule_tac x="\" in exI, simp) -apply (simp add: less_ssum4c) -apply (simp add: less_ssum4b sinr_eq) +apply (simp add: sinl_less_sinr) +apply (simp add: sinr_less sinr_eq) done lemma ssum_chain_lemma: