# HG changeset patch # User berghofe # Date 1028550475 -7200 # Node ID 17fec4798b91af5bd38a381907c42f76e4a29575 # Parent 43c9ec498291f4fdf1f33e025e6102f53977cac2 Legacy ML bindings. diff -r 43c9ec498291 -r 17fec4798b91 src/HOL/Nat.ML --- a/src/HOL/Nat.ML Mon Aug 05 14:27:42 2002 +0200 +++ b/src/HOL/Nat.ML Mon Aug 05 14:27:55 2002 +0200 @@ -1,719 +1,243 @@ (* Title: HOL/Nat.ML ID: $Id$ - Author: Lawrence C Paulson and Tobias Nipkow - -Proofs about natural numbers and elementary arithmetic: addition, -multiplication, etc. Some from the Hoare example from Norbert Galm. *) -(** conversion rules for nat_rec **) +(** legacy ML bindings **) -val [nat_rec_0, nat_rec_Suc] = nat.recs; +structure nat = +struct + val distinct = thms "nat.distinct"; + val inject = thms "nat.inject"; + val exhaust = thm "nat.exhaust"; + val cases = thms "nat.cases"; + val split = thm "nat.split"; + val split_asm = thm "nat.split_asm"; + val induct = thm "nat.induct"; + val recs = thms "nat.recs"; + val simps = thms "nat.simps"; +end; + +val [nat_rec_0, nat_rec_Suc] = thms "nat.recs"; bind_thm ("nat_rec_0", nat_rec_0); bind_thm ("nat_rec_Suc", nat_rec_Suc); -(*These 2 rules ease the use of primitive recursion. NOTE USE OF == *) -val prems = Goal - "[| !!n. f(n) == nat_rec c h n |] ==> f(0) = c"; -by (simp_tac (simpset() addsimps prems) 1); -qed "def_nat_rec_0"; - -val prems = Goal - "[| !!n. f(n) == nat_rec c h n |] ==> f(Suc(n)) = h n (f n)"; -by (simp_tac (simpset() addsimps prems) 1); -qed "def_nat_rec_Suc"; - -val [nat_case_0, nat_case_Suc] = nat.cases; +val [nat_case_0, nat_case_Suc] = thms "nat.cases"; bind_thm ("nat_case_0", nat_case_0); bind_thm ("nat_case_Suc", nat_case_Suc); -Goal "n ~= 0 ==> EX m. n = Suc m"; -by (case_tac "n" 1); -by (REPEAT (Blast_tac 1)); -qed "not0_implies_Suc"; - -Goal "!!n::nat. m n ~= 0"; -by (case_tac "n" 1); -by (ALLGOALS Asm_full_simp_tac); -qed "gr_implies_not0"; - -Goal "!!n::nat. (n ~= 0) = (0 < n)"; -by (case_tac "n" 1); -by Auto_tac; -qed "neq0_conv"; -AddIffs [neq0_conv]; - -(*This theorem is useful with blast_tac: (n=0 ==> False) ==> 0 (? m. m' = Suc m)"; -by (induct_tac "m'" 1); -by Auto_tac; -qed_spec_mp "Suc_le_D"; - -(*Useful in certain inductive arguments*) -Goal "(m < Suc n) = (m=0 | (EX j. m = Suc j & j < n))"; -by (case_tac "m" 1); -by Auto_tac; -qed "less_Suc_eq_0_disj"; - -val prems = Goal "[| P 0; P(Suc 0); !!k. P k ==> P (Suc (Suc k)) |] ==> P n"; -by (rtac nat_less_induct 1); -by (case_tac "n" 1); -by (case_tac "nat" 2); -by (ALLGOALS (blast_tac (claset() addIs prems@[less_trans]))); -qed "nat_induct2"; - -(** LEAST theorems for type "nat" by specialization **) - -bind_thm("LeastI", wellorder_LeastI); -bind_thm("Least_le", wellorder_Least_le); -bind_thm("not_less_Least", wellorder_not_less_Least); - -Goal "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))"; -by (case_tac "n" 1); -by Auto_tac; -by (ftac LeastI 1); -by (dres_inst_tac [("P","%x. P (Suc x)")] LeastI 1); -by (subgoal_tac "(LEAST x. P x) <= Suc (LEAST x. P (Suc x))" 1); -by (etac Least_le 2); -by (case_tac "LEAST x. P x" 1); -by Auto_tac; -by (dres_inst_tac [("P","%x. P (Suc x)")] Least_le 1); -by (blast_tac (claset() addIs [order_antisym]) 1); -qed "Least_Suc"; - -Goal "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)"; -by (eatac (Least_Suc RS ssubst) 1 1); -by (Asm_simp_tac 1); -qed "Least_Suc2"; - - -(** min and max **) - -Goal "min 0 n = (0::nat)"; -by (rtac min_leastL 1); -by (Simp_tac 1); -qed "min_0L"; - -Goal "min n 0 = (0::nat)"; -by (rtac min_leastR 1); -by (Simp_tac 1); -qed "min_0R"; - -Goal "min (Suc m) (Suc n) = Suc (min m n)"; -by (simp_tac (simpset() addsimps [min_of_mono]) 1); -qed "min_Suc_Suc"; - -Addsimps [min_0L,min_0R,min_Suc_Suc]; - -Goal "max 0 n = (n::nat)"; -by (rtac max_leastL 1); -by (Simp_tac 1); -qed "max_0L"; - -Goal "max n 0 = (n::nat)"; -by (rtac max_leastR 1); -by (Simp_tac 1); -qed "max_0R"; - -Goal "max (Suc m) (Suc n) = Suc(max m n)"; -by (simp_tac (simpset() addsimps [max_of_mono]) 1); -qed "max_Suc_Suc"; - -Addsimps [max_0L,max_0R,max_Suc_Suc]; - - -(*** Basic rewrite rules for the arithmetic operators ***) - -(** Difference **) - -Goal "0 - n = (0::nat)"; -by (induct_tac "n" 1); -by (ALLGOALS Asm_simp_tac); -qed "diff_0_eq_0"; - -(*Must simplify BEFORE the induction! (Else we get a critical pair) - Suc(m) - Suc(n) rewrites to pred(Suc(m) - n) *) -Goal "Suc(m) - Suc(n) = m - n"; -by (Simp_tac 1); -by (induct_tac "n" 1); -by (ALLGOALS Asm_simp_tac); -qed "diff_Suc_Suc"; - -Addsimps [diff_0_eq_0, diff_Suc_Suc]; - -(* Could be (and is, below) generalized in various ways; - However, none of the generalizations are currently in the simpset, - and I dread to think what happens if I put them in *) -Goal "0 < n ==> Suc(n - Suc 0) = n"; -by (asm_simp_tac (simpset() addsplits [nat.split]) 1); -qed "Suc_pred"; -Addsimps [Suc_pred]; - -Delsimps [diff_Suc]; - - -(**** Inductive properties of the operators ****) - -(*** Addition ***) - -Goal "m + 0 = (m::nat)"; -by (induct_tac "m" 1); -by (ALLGOALS Asm_simp_tac); -qed "add_0_right"; - -Goal "m + Suc(n) = Suc(m+n)"; -by (induct_tac "m" 1); -by (ALLGOALS Asm_simp_tac); -qed "add_Suc_right"; - -Addsimps [add_0_right,add_Suc_right]; - - -(*Associative law for addition*) -Goal "(m + n) + k = m + ((n + k)::nat)"; -by (induct_tac "m" 1); -by (ALLGOALS Asm_simp_tac); -qed "add_assoc"; - -(*Commutative law for addition*) -Goal "m + n = n + (m::nat)"; -by (induct_tac "m" 1); -by (ALLGOALS Asm_simp_tac); -qed "add_commute"; - -Goal "x+(y+z)=y+((x+z)::nat)"; -by(rtac ([add_assoc,add_commute] MRS - read_instantiate[("f","op +")](thm"mk_left_commute")) 1); -qed "add_left_commute"; - -(*Addition is an AC-operator*) -bind_thms ("add_ac", [add_assoc, add_commute, add_left_commute]); - -Goal "(k + m = k + n) = (m=(n::nat))"; -by (induct_tac "k" 1); -by (Simp_tac 1); -by (Asm_simp_tac 1); -qed "add_left_cancel"; - -Goal "(m + k = n + k) = (m=(n::nat))"; -by (induct_tac "k" 1); -by (Simp_tac 1); -by (Asm_simp_tac 1); -qed "add_right_cancel"; - -Goal "(k + m <= k + n) = (m<=(n::nat))"; -by (induct_tac "k" 1); -by (Simp_tac 1); -by (Asm_simp_tac 1); -qed "add_left_cancel_le"; - -Goal "(k + m < k + n) = (m<(n::nat))"; -by (induct_tac "k" 1); -by (Simp_tac 1); -by (Asm_simp_tac 1); -qed "add_left_cancel_less"; - -Addsimps [add_left_cancel, add_right_cancel, - add_left_cancel_le, add_left_cancel_less]; - -(** Reasoning about m+0=0, etc. **) - -Goal "!!m::nat. (m+n = 0) = (m=0 & n=0)"; -by (case_tac "m" 1); -by (Auto_tac); -qed "add_is_0"; -AddIffs [add_is_0]; - -Goal "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)"; -by (case_tac "m" 1); -by (Auto_tac); -qed "add_is_1"; - -Goal "(Suc 0 = m+n) = (m = Suc 0 & n=0 | m=0 & n = Suc 0)"; -by (rtac ([eq_commute, add_is_1] MRS trans) 1); -qed "one_is_add"; - -Goal "!!m::nat. (0 n = 0"; -by (dtac (add_0_right RS ssubst) 1); -by (asm_full_simp_tac (simpset() addsimps [add_assoc] - delsimps [add_0_right]) 1); -qed "add_eq_self_zero"; - -(**** Additional theorems about "less than" ****) - -(*Deleted less_natE; instead use less_imp_Suc_add RS exE*) -Goal "m (EX k. n=Suc(m+k))"; -by (induct_tac "n" 1); -by (ALLGOALS (simp_tac (simpset() addsimps [order_le_less]))); -by (blast_tac (claset() addSEs [less_SucE] - addSIs [add_0_right RS sym, add_Suc_right RS sym]) 1); -qed_spec_mp "less_imp_Suc_add"; - -Goal "n <= ((m + n)::nat)"; -by (induct_tac "m" 1); -by (ALLGOALS Simp_tac); -by (etac le_SucI 1); -qed "le_add2"; - -Goal "n <= ((n + m)::nat)"; -by (simp_tac (simpset() addsimps add_ac) 1); -by (rtac le_add2 1); -qed "le_add1"; - -bind_thm ("less_add_Suc1", (lessI RS (le_add1 RS le_less_trans))); -bind_thm ("less_add_Suc2", (lessI RS (le_add2 RS le_less_trans))); - -Goal "(m i <= j+m"*) -bind_thm ("trans_le_add1", le_add1 RSN (2,le_trans)); - -(*"i <= j ==> i <= m+j"*) -bind_thm ("trans_le_add2", le_add2 RSN (2,le_trans)); - -(*"i < j ==> i < j+m"*) -bind_thm ("trans_less_add1", le_add1 RSN (2,less_le_trans)); - -(*"i < j ==> i < m+j"*) -bind_thm ("trans_less_add2", le_add2 RSN (2,less_le_trans)); - -Goal "i+j < (k::nat) --> i m<=(n::nat)"; -by (induct_tac "k" 1); -by (ALLGOALS (asm_simp_tac (simpset() addsimps le_simps))); -qed_spec_mp "add_leD1"; - -Goal "m+k<=n ==> k<=(n::nat)"; -by (full_simp_tac (simpset() addsimps [add_commute]) 1); -by (etac add_leD1 1); -qed_spec_mp "add_leD2"; - -Goal "m+k<=n ==> m<=n & k<=(n::nat)"; -by (blast_tac (claset() addDs [add_leD1, add_leD2]) 1); -bind_thm ("add_leE", result() RS conjE); - -(*needs !!k for add_ac to work*) -Goal "!!k:: nat. [| k m i + k < j + (k::nat)"; -by (induct_tac "k" 1); -by (ALLGOALS Asm_simp_tac); -qed "add_less_mono1"; - -(*strict, in both arguments*) -Goal "[|i < j; k < l|] ==> i + k < j + (l::nat)"; -by (rtac (add_less_mono1 RS less_trans) 1); -by (REPEAT (assume_tac 1)); -by (induct_tac "j" 1); -by (ALLGOALS Asm_simp_tac); -qed "add_less_mono"; - -(*A [clumsy] way of lifting < monotonicity to <= monotonicity *) -val [lt_mono,le] = Goal - "[| !!i j::nat. i f(i) < f(j); \ -\ i <= j \ -\ |] ==> f(i) <= (f(j)::nat)"; -by (cut_facts_tac [le] 1); -by (asm_full_simp_tac (simpset() addsimps [order_le_less]) 1); -by (blast_tac (claset() addSIs [lt_mono]) 1); -qed "less_mono_imp_le_mono"; - -(*non-strict, in 1st argument*) -Goal "i<=j ==> i + k <= j + (k::nat)"; -by (res_inst_tac [("f", "%j. j+k")] less_mono_imp_le_mono 1); -by (etac add_less_mono1 1); -by (assume_tac 1); -qed "add_le_mono1"; - -(*non-strict, in both arguments*) -Goal "[|i<=j; k<=l |] ==> i + k <= j + (l::nat)"; -by (etac (add_le_mono1 RS le_trans) 1); -by (simp_tac (simpset() addsimps [add_commute]) 1); -qed "add_le_mono"; - - -(*** Multiplication ***) - -(*right annihilation in product*) -Goal "!!m::nat. m * 0 = 0"; -by (induct_tac "m" 1); -by (ALLGOALS Asm_simp_tac); -qed "mult_0_right"; - -(*right successor law for multiplication*) -Goal "m * Suc(n) = m + (m * n)"; -by (induct_tac "m" 1); -by (ALLGOALS(asm_simp_tac (simpset() addsimps add_ac))); -qed "mult_Suc_right"; - -Addsimps [mult_0_right, mult_Suc_right]; - -Goal "(1::nat) * n = n"; -by (Asm_simp_tac 1); -qed "mult_1"; - -Goal "n * (1::nat) = n"; -by (Asm_simp_tac 1); -qed "mult_1_right"; - -(*Commutative law for multiplication*) -Goal "m * n = n * (m::nat)"; -by (induct_tac "m" 1); -by (ALLGOALS Asm_simp_tac); -qed "mult_commute"; - -(*addition distributes over multiplication*) -Goal "(m + n)*k = (m*k) + ((n*k)::nat)"; -by (induct_tac "m" 1); -by (ALLGOALS(asm_simp_tac (simpset() addsimps add_ac))); -qed "add_mult_distrib"; - -Goal "k*(m + n) = (k*m) + ((k*n)::nat)"; -by (induct_tac "m" 1); -by (ALLGOALS(asm_simp_tac (simpset() addsimps add_ac))); -qed "add_mult_distrib2"; - -(*Associative law for multiplication*) -Goal "(m * n) * k = m * ((n * k)::nat)"; -by (induct_tac "m" 1); -by (ALLGOALS (asm_simp_tac (simpset() addsimps [add_mult_distrib]))); -qed "mult_assoc"; - -Goal "x*(y*z) = y*((x*z)::nat)"; -by(rtac ([mult_assoc,mult_commute] MRS - read_instantiate[("f","op *")](thm"mk_left_commute")) 1); -qed "mult_left_commute"; - -bind_thms ("mult_ac", [mult_assoc,mult_commute,mult_left_commute]); - -Goal "!!m::nat. (m*n = 0) = (m=0 | n=0)"; -by (induct_tac "m" 1); -by (induct_tac "n" 2); -by (ALLGOALS Asm_simp_tac); -qed "mult_is_0"; -Addsimps [mult_is_0]; - - -(*** Difference ***) - -Goal "!!m::nat. m - m = 0"; -by (induct_tac "m" 1); -by (ALLGOALS Asm_simp_tac); -qed "diff_self_eq_0"; - -Addsimps [diff_self_eq_0]; - -(*Addition is the inverse of subtraction: if n<=m then n+(m-n) = m. *) -Goal "~ m n+(m-n) = (m::nat)"; -by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); -by (ALLGOALS Asm_simp_tac); -qed_spec_mp "add_diff_inverse"; - -Goal "n<=m ==> n+(m-n) = (m::nat)"; -by (asm_simp_tac (simpset() addsimps [add_diff_inverse, not_less_iff_le]) 1); -qed "le_add_diff_inverse"; - -Goal "n<=m ==> (m-n)+n = (m::nat)"; -by (asm_simp_tac (simpset() addsimps [le_add_diff_inverse, add_commute]) 1); -qed "le_add_diff_inverse2"; - -Addsimps [le_add_diff_inverse, le_add_diff_inverse2]; - - -(*** More results about difference ***) - -Goal "n <= m ==> Suc(m)-n = Suc(m-n)"; -by (etac rev_mp 1); -by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); -by (ALLGOALS Asm_simp_tac); -qed "Suc_diff_le"; - -Goal "m - n < Suc(m)"; -by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); -by (etac less_SucE 3); -by (ALLGOALS (asm_simp_tac (simpset() addsimps [less_Suc_eq]))); -qed "diff_less_Suc"; - -Goal "m - n <= (m::nat)"; -by (res_inst_tac [("m","m"), ("n","n")] diff_induct 1); -by (ALLGOALS (asm_simp_tac (simpset() addsimps [le_SucI]))); -qed "diff_le_self"; -Addsimps [diff_le_self]; - -(* j j-n < k *) -bind_thm ("less_imp_diff_less", diff_le_self RS le_less_trans); - -Goal "!!i::nat. i-j-k = i - (j+k)"; -by (res_inst_tac [("m","i"),("n","j")] diff_induct 1); -by (ALLGOALS Asm_simp_tac); -qed "diff_diff_left"; - -Goal "(Suc m - n) - Suc k = m - n - k"; -by (simp_tac (simpset() addsimps [diff_diff_left]) 1); -qed "Suc_diff_diff"; -Addsimps [Suc_diff_diff]; - -Goal "0 n - Suc i < n"; -by (case_tac "n" 1); -by Safe_tac; -by (asm_simp_tac (simpset() addsimps le_simps) 1); -qed "diff_Suc_less"; -Addsimps [diff_Suc_less]; - -(*This and the next few suggested by Florian Kammueller*) -Goal "!!i::nat. i-j-k = i-k-j"; -by (simp_tac (simpset() addsimps [diff_diff_left, add_commute]) 1); -qed "diff_commute"; - -Goal "k <= (j::nat) --> (i + j) - k = i + (j - k)"; -by (res_inst_tac [("m","j"),("n","k")] diff_induct 1); -by (ALLGOALS Asm_simp_tac); -qed_spec_mp "diff_add_assoc"; - -Goal "k <= (j::nat) --> (j + i) - k = (j - k) + i"; -by (asm_simp_tac (simpset() addsimps [add_commute, diff_add_assoc]) 1); -qed_spec_mp "diff_add_assoc2"; - -Goal "(n+m) - n = (m::nat)"; -by (induct_tac "n" 1); -by (ALLGOALS Asm_simp_tac); -qed "diff_add_inverse"; - -Goal "(m+n) - n = (m::nat)"; -by (simp_tac (simpset() addsimps [diff_add_assoc]) 1); -qed "diff_add_inverse2"; - -Goal "i <= (j::nat) ==> (j-i=k) = (j=k+i)"; -by Safe_tac; -by (ALLGOALS (asm_simp_tac (simpset() addsimps [diff_add_inverse2]))); -qed "le_imp_diff_is_add"; - -Goal "!!m::nat. (m-n = 0) = (m <= n)"; -by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); -by (ALLGOALS Asm_simp_tac); -qed "diff_is_0_eq"; -Addsimps [diff_is_0_eq, diff_is_0_eq RS iffD2]; - -Goal "!!m::nat. (0 EX k::nat. 0 (ALL n. P(Suc(n))--> P(n)) --> P(k-i)"; -by (res_inst_tac [("m","k"),("n","i")] diff_induct 1); -by (ALLGOALS (Clarify_tac THEN' Simp_tac THEN' TRY o Blast_tac)); -qed "zero_induct_lemma"; - -val prems = Goal "[| P(k); !!n. P(Suc(n)) ==> P(n) |] ==> P(0)"; -by (rtac (diff_self_eq_0 RS subst) 1); -by (rtac (zero_induct_lemma RS mp RS mp) 1); -by (REPEAT (ares_tac ([impI,allI]@prems) 1)); -qed "zero_induct"; - -Goal "(k+m) - (k+n) = m - (n::nat)"; -by (induct_tac "k" 1); -by (ALLGOALS Asm_simp_tac); -qed "diff_cancel"; - -Goal "(m+k) - (n+k) = m - (n::nat)"; -by (asm_simp_tac - (simpset() addsimps [diff_cancel, inst "n" "k" add_commute]) 1); -qed "diff_cancel2"; - -Goal "n - (n+m) = (0::nat)"; -by (induct_tac "n" 1); -by (ALLGOALS Asm_simp_tac); -qed "diff_add_0"; - - -(** Difference distributes over multiplication **) - -Goal "!!m::nat. (m - n) * k = (m * k) - (n * k)"; -by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); -by (ALLGOALS (asm_simp_tac (simpset() addsimps [diff_cancel]))); -qed "diff_mult_distrib" ; - -Goal "!!m::nat. k * (m - n) = (k * m) - (k * n)"; -val mult_commute_k = read_instantiate [("m","k")] mult_commute; -by (simp_tac (simpset() addsimps [diff_mult_distrib, mult_commute_k]) 1); -qed "diff_mult_distrib2" ; -(*NOT added as rewrites, since sometimes they are used from right-to-left*) - -bind_thms ("nat_distrib", - [add_mult_distrib, add_mult_distrib2, diff_mult_distrib, diff_mult_distrib2]); - - -(*** Monotonicity of Multiplication ***) - -Goal "i <= (j::nat) ==> i*k<=j*k"; -by (induct_tac "k" 1); -by (ALLGOALS (asm_simp_tac (simpset() addsimps [add_le_mono]))); -qed "mult_le_mono1"; - -Goal "i <= (j::nat) ==> k*i <= k*j"; -by (dtac mult_le_mono1 1); -by (asm_simp_tac (simpset() addsimps [mult_commute]) 1); -qed "mult_le_mono2"; - -(* <= monotonicity, BOTH arguments*) -Goal "[| i <= (j::nat); k <= l |] ==> i*k <= j*l"; -by (etac (mult_le_mono1 RS le_trans) 1); -by (etac mult_le_mono2 1); -qed "mult_le_mono"; - -(*strict, in 1st argument; proof is by induction on k>0*) -Goal "!!i::nat. [| i k*i < k*j"; -by (eres_inst_tac [("m1","0")] (less_imp_Suc_add RS exE) 1); -by (Asm_simp_tac 1); -by (induct_tac "x" 1); -by (ALLGOALS (asm_simp_tac (simpset() addsimps [add_less_mono]))); -qed "mult_less_mono2"; - -Goal "!!i::nat. [| i i*k < j*k"; -by (dtac mult_less_mono2 1); -by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [mult_commute]))); -qed "mult_less_mono1"; - -Goal "!!m::nat. (0 < m*n) = (0 m<=n)"; -by (simp_tac (simpset() addsimps [linorder_not_less RS sym]) 1); -by Auto_tac; -qed "mult_le_cancel2"; - -Goal "!!m::nat. (k*m <= k*n) = (0 m<=n)"; -by (simp_tac (simpset() addsimps [linorder_not_less RS sym]) 1); -by Auto_tac; -qed "mult_le_cancel1"; -Addsimps [mult_le_cancel1, mult_le_cancel2]; - -Goal "(m*k = n*k) = (m=n | (k = (0::nat)))"; -by (cut_facts_tac [less_linear] 1); -by Safe_tac; -by Auto_tac; -by (ALLGOALS (dtac mult_less_mono1 THEN' assume_tac)); -by (ALLGOALS Asm_full_simp_tac); -qed "mult_cancel2"; - -Goal "(k*m = k*n) = (m=n | (k = (0::nat)))"; -by (simp_tac (simpset() addsimps [mult_cancel2, inst "m" "k" mult_commute]) 1); -qed "mult_cancel1"; -Addsimps [mult_cancel1, mult_cancel2]; - -Goal "(Suc k * m < Suc k * n) = (m < n)"; -by (stac mult_less_cancel1 1); -by (Simp_tac 1); -qed "Suc_mult_less_cancel1"; - -Goal "(Suc k * m <= Suc k * n) = (m <= n)"; -by (stac mult_le_cancel1 1); -by (Simp_tac 1); -qed "Suc_mult_le_cancel1"; - -Goal "(Suc k * m = Suc k * n) = (m = n)"; -by (stac mult_cancel1 1); -by (Simp_tac 1); -qed "Suc_mult_cancel1"; - - -(*Lemma for gcd*) -Goal "!!m::nat. m = m*n ==> n=1 | m=0"; -by (dtac sym 1); -by (rtac disjCI 1); -by (rtac nat_less_cases 1 THEN assume_tac 2); -by (fast_tac (claset() addSEs [less_SucE] addss simpset()) 1); -by (best_tac (claset() addDs [mult_less_mono2] addss simpset()) 1); -qed "mult_eq_self_implies_10"; +val LeastI = thm "LeastI"; +val Least_Suc = thm "Least_Suc"; +val Least_Suc2 = thm "Least_Suc2"; +val Least_le = thm "Least_le"; +val One_nat_def = thm "One_nat_def"; +val Suc_Suc_eq = thm "Suc_Suc_eq"; +val Suc_def = thm "Suc_def"; +val Suc_diff_diff = thm "Suc_diff_diff"; +val Suc_diff_le = thm "Suc_diff_le"; +val Suc_inject = thm "Suc_inject"; +val Suc_leD = thm "Suc_leD"; +val Suc_leI = thm "Suc_leI"; +val Suc_le_D = thm "Suc_le_D"; +val Suc_le_eq = thm "Suc_le_eq"; +val Suc_le_lessD = thm "Suc_le_lessD"; +val Suc_le_mono = thm "Suc_le_mono"; +val Suc_lessD = thm "Suc_lessD"; +val Suc_lessE = thm "Suc_lessE"; +val Suc_lessI = thm "Suc_lessI"; +val Suc_less_SucD = thm "Suc_less_SucD"; +val Suc_less_eq = thm "Suc_less_eq"; +val Suc_mono = thm "Suc_mono"; +val Suc_mult_cancel1 = thm "Suc_mult_cancel1"; +val Suc_mult_le_cancel1 = thm "Suc_mult_le_cancel1"; +val Suc_mult_less_cancel1 = thm "Suc_mult_less_cancel1"; +val Suc_n_not_le_n = thm "Suc_n_not_le_n"; +val Suc_n_not_n = thm "Suc_n_not_n"; +val Suc_neq_Zero = thm "Suc_neq_Zero"; +val Suc_not_Zero = thm "Suc_not_Zero"; +val Suc_pred = thm "Suc_pred"; +val Zero_nat_def = thm "Zero_nat_def"; +val Zero_neq_Suc = thm "Zero_neq_Suc"; +val Zero_not_Suc = thm "Zero_not_Suc"; +val add_0 = thm "add_0"; +val add_0_right = thm "add_0_right"; +val add_Suc = thm "add_Suc"; +val add_Suc_right = thm "add_Suc_right"; +val add_ac = thms "add_ac"; +val add_assoc = thm "add_assoc"; +val add_commute = thm "add_commute"; +val add_diff_inverse = thm "add_diff_inverse"; +val add_eq_self_zero = thm "add_eq_self_zero"; +val add_gr_0 = thm "add_gr_0"; +val add_is_0 = thm "add_is_0"; +val add_is_1 = thm "add_is_1"; +val add_leD1 = thm "add_leD1"; +val add_leD2 = thm "add_leD2"; +val add_leE = thm "add_leE"; +val add_le_mono = thm "add_le_mono"; +val add_le_mono1 = thm "add_le_mono1"; +val add_left_cancel = thm "add_left_cancel"; +val add_left_cancel_le = thm "add_left_cancel_le"; +val add_left_cancel_less = thm "add_left_cancel_less"; +val add_left_commute = thm "add_left_commute"; +val add_lessD1 = thm "add_lessD1"; +val add_less_mono = thm "add_less_mono"; +val add_less_mono1 = thm "add_less_mono1"; +val add_mult_distrib = thm "add_mult_distrib"; +val add_mult_distrib2 = thm "add_mult_distrib2"; +val add_right_cancel = thm "add_right_cancel"; +val def_nat_rec_0 = thm "def_nat_rec_0"; +val def_nat_rec_Suc = thm "def_nat_rec_Suc"; +val diff_0 = thm "diff_0"; +val diff_0_eq_0 = thm "diff_0_eq_0"; +val diff_Suc = thm "diff_Suc"; +val diff_Suc_Suc = thm "diff_Suc_Suc"; +val diff_Suc_less = thm "diff_Suc_less"; +val diff_add_0 = thm "diff_add_0"; +val diff_add_assoc = thm "diff_add_assoc"; +val diff_add_assoc2 = thm "diff_add_assoc2"; +val diff_add_inverse = thm "diff_add_inverse"; +val diff_add_inverse2 = thm "diff_add_inverse2"; +val diff_cancel = thm "diff_cancel"; +val diff_cancel2 = thm "diff_cancel2"; +val diff_commute = thm "diff_commute"; +val diff_diff_left = thm "diff_diff_left"; +val diff_induct = thm "diff_induct"; +val diff_is_0_eq = thm "diff_is_0_eq"; +val diff_le_self = thm "diff_le_self"; +val diff_less_Suc = thm "diff_less_Suc"; +val diff_mult_distrib = thm "diff_mult_distrib"; +val diff_mult_distrib2 = thm "diff_mult_distrib2"; +val diff_self_eq_0 = thm "diff_self_eq_0"; +val eq_imp_le = thm "eq_imp_le"; +val gr0I = thm "gr0I"; +val gr0_conv_Suc = thm "gr0_conv_Suc"; +val gr_implies_not0 = thm "gr_implies_not0"; +val inj_Rep_Nat = thm "inj_Rep_Nat"; +val inj_Suc = thm "inj_Suc"; +val inj_on_Abs_Nat = thm "inj_on_Abs_Nat"; +val le0 = thm "le0"; +val leD = thm "leD"; +val leE = thm "leE"; +val leI = thm "leI"; +val le_0_eq = thm "le_0_eq"; +val le_SucE = thm "le_SucE"; +val le_SucI = thm "le_SucI"; +val le_Suc_eq = thm "le_Suc_eq"; +val le_add1 = thm "le_add1"; +val le_add2 = thm "le_add2"; +val le_add_diff_inverse = thm "le_add_diff_inverse"; +val le_add_diff_inverse2 = thm "le_add_diff_inverse2"; +val le_anti_sym = thm "le_anti_sym"; +val le_def = thm "le_def"; +val le_eq_less_or_eq = thm "le_eq_less_or_eq"; +val le_imp_diff_is_add = thm "le_imp_diff_is_add"; +val le_imp_less_Suc = thm "le_imp_less_Suc"; +val le_imp_less_or_eq = thm "le_imp_less_or_eq"; +val le_less_trans = thm "le_less_trans"; +val le_neq_implies_less = thm "le_neq_implies_less"; +val le_refl = thm "le_refl"; +val le_simps = thms "le_simps"; +val le_trans = thm "le_trans"; +val lessE = thm "lessE"; +val lessI = thm "lessI"; +val less_Suc0 = thm "less_Suc0"; +val less_SucE = thm "less_SucE"; +val less_SucI = thm "less_SucI"; +val less_Suc_eq = thm "less_Suc_eq"; +val less_Suc_eq_0_disj = thm "less_Suc_eq_0_disj"; +val less_Suc_eq_le = thm "less_Suc_eq_le"; +val less_add_Suc1 = thm "less_add_Suc1"; +val less_add_Suc2 = thm "less_add_Suc2"; +val less_add_eq_less = thm "less_add_eq_less"; +val less_asym = thm "less_asym"; +val less_def = thm "less_def"; +val less_eq = thm "less_eq"; +val less_iff_Suc_add = thm "less_iff_Suc_add"; +val less_imp_Suc_add = thm "less_imp_Suc_add"; +val less_imp_add_positive = thm "less_imp_add_positive"; +val less_imp_diff_less = thm "less_imp_diff_less"; +val less_imp_le = thm "less_imp_le"; +val less_irrefl = thm "less_irrefl"; +val less_le_trans = thm "less_le_trans"; +val less_linear = thm "less_linear"; +val less_mono_imp_le_mono = thm "less_mono_imp_le_mono"; +val less_not_refl = thm "less_not_refl"; +val less_not_refl2 = thm "less_not_refl2"; +val less_not_refl3 = thm "less_not_refl3"; +val less_not_sym = thm "less_not_sym"; +val less_one = thm "less_one"; +val less_or_eq_imp_le = thm "less_or_eq_imp_le"; +val less_trans = thm "less_trans"; +val less_trans_Suc = thm "less_trans_Suc"; +val less_zeroE = thm "less_zeroE"; +val max_0L = thm "max_0L"; +val max_0R = thm "max_0R"; +val max_Suc_Suc = thm "max_Suc_Suc"; +val min_0L = thm "min_0L"; +val min_0R = thm "min_0R"; +val min_Suc_Suc = thm "min_Suc_Suc"; +val mult_0 = thm "mult_0"; +val mult_0_right = thm "mult_0_right"; +val mult_1 = thm "mult_1"; +val mult_1_right = thm "mult_1_right"; +val mult_Suc = thm "mult_Suc"; +val mult_Suc_right = thm "mult_Suc_right"; +val mult_ac = thms "mult_ac"; +val mult_assoc = thm "mult_assoc"; +val mult_cancel1 = thm "mult_cancel1"; +val mult_cancel2 = thm "mult_cancel2"; +val mult_commute = thm "mult_commute"; +val mult_eq_1_iff = thm "mult_eq_1_iff"; +val mult_eq_self_implies_10 = thm "mult_eq_self_implies_10"; +val mult_is_0 = thm "mult_is_0"; +val mult_le_cancel1 = thm "mult_le_cancel1"; +val mult_le_cancel2 = thm "mult_le_cancel2"; +val mult_le_mono = thm "mult_le_mono"; +val mult_le_mono1 = thm "mult_le_mono1"; +val mult_le_mono2 = thm "mult_le_mono2"; +val mult_left_commute = thm "mult_left_commute"; +val mult_less_cancel1 = thm "mult_less_cancel1"; +val mult_less_cancel2 = thm "mult_less_cancel2"; +val mult_less_mono1 = thm "mult_less_mono1"; +val mult_less_mono2 = thm "mult_less_mono2"; +val n_not_Suc_n = thm "n_not_Suc_n"; +val nat_distrib = thms "nat_distrib"; +val nat_induct = thm "nat_induct"; +val nat_induct2 = thm "nat_induct2"; +val nat_le_linear = thm "nat_le_linear"; +val nat_less_cases = thm "nat_less_cases"; +val nat_less_induct = thm "nat_less_induct"; +val nat_less_le = thm "nat_less_le"; +val nat_neq_iff = thm "nat_neq_iff"; +val nat_not_singleton = thm "nat_not_singleton"; +val neq0_conv = thm "neq0_conv"; +val not0_implies_Suc = thm "not0_implies_Suc"; +val not_add_less1 = thm "not_add_less1"; +val not_add_less2 = thm "not_add_less2"; +val not_gr0 = thm "not_gr0"; +val not_leE = thm "not_leE"; +val not_le_iff_less = thm "not_le_iff_less"; +val not_less0 = thm "not_less0"; +val not_less_Least = thm "not_less_Least"; +val not_less_eq = thm "not_less_eq"; +val not_less_iff_le = thm "not_less_iff_le"; +val not_less_less_Suc_eq = thm "not_less_less_Suc_eq"; +val not_less_simps = thms "not_less_simps"; +val one_eq_mult_iff = thm "one_eq_mult_iff"; +val one_is_add = thm "one_is_add"; +val one_le_mult_iff = thm "one_le_mult_iff"; +val one_reorient = thm "one_reorient"; +val powerI = thm "powerI"; +val pred_nat_def = thm "pred_nat_def"; +val trans_le_add1 = thm "trans_le_add1"; +val trans_le_add2 = thm "trans_le_add2"; +val trans_less_add1 = thm "trans_less_add1"; +val trans_less_add2 = thm "trans_less_add2"; +val wf_less = thm "wf_less"; +val wf_pred_nat = thm "wf_pred_nat"; +val zero_induct = thm "zero_induct"; +val zero_induct_lemma = thm "zero_induct_lemma"; +val zero_less_Suc = thm "zero_less_Suc"; +val zero_less_diff = thm "zero_less_diff"; +val zero_less_mult_iff = thm "zero_less_mult_iff"; +val zero_reorient = thm "zero_reorient";