# HG changeset patch # User paulson # Date 972307215 -7200 # Node ID 19753287b9df514e336cf1899d164fcae8854bd1 # Parent a88d347db404157fe567b0d333746b0b5d04b477 tidied diff -r a88d347db404 -r 19753287b9df src/HOL/Real/PNat.ML --- a/src/HOL/Real/PNat.ML Mon Oct 23 11:15:52 2000 +0200 +++ b/src/HOL/Real/PNat.ML Mon Oct 23 15:20:15 2000 +0200 @@ -126,9 +126,7 @@ (** alternative definition for pnat **) (** order isomorphism **) Goal "pnat = {x::nat. 0 < x}"; -by (rtac set_ext 1); -by (simp_tac (simpset() addsimps - [mem_pnat_gt_0_iff]) 1); +by (auto_tac (claset(), simpset() addsimps [mem_pnat_gt_0_iff])); qed "Collect_pnat_gt_0"; (*** Distinctness of constructors ***) diff -r a88d347db404 -r 19753287b9df src/HOL/Real/PReal.ML --- a/src/HOL/Real/PReal.ML Mon Oct 23 11:15:52 2000 +0200 +++ b/src/HOL/Real/PReal.ML Mon Oct 23 15:20:15 2000 +0200 @@ -197,7 +197,6 @@ Goalw [preal_add_def] "(x::preal) + y = y + x"; by (res_inst_tac [("f","Abs_preal")] arg_cong 1); -by (rtac set_ext 1); by (blast_tac (claset() addIs [prat_add_commute RS subst]) 1); qed "preal_add_commute"; @@ -265,9 +264,7 @@ Goalw [preal_add_def] "((x::preal) + y) + z = x + (y + z)"; by (res_inst_tac [("f","Abs_preal")] arg_cong 1); -by (rtac set_ext 1); -by (rtac (preal_mem_add_set RS Abs_preal_inverse RS ssubst) 1); -by (rtac (preal_mem_add_set RS Abs_preal_inverse RS ssubst) 1); +by (simp_tac (simpset() addsimps [preal_mem_add_set RS Abs_preal_inverse]) 1); by (auto_tac (claset(),simpset() addsimps prat_add_ac)); by (rtac bexI 1); by (auto_tac (claset() addSIs [exI],simpset() addsimps prat_add_ac)); @@ -288,7 +285,6 @@ Goalw [preal_mult_def] "(x::preal) * y = y * x"; by (res_inst_tac [("f","Abs_preal")] arg_cong 1); -by (rtac set_ext 1); by (blast_tac (claset() addIs [prat_mult_commute RS subst]) 1); qed "preal_mult_commute"; @@ -351,9 +347,7 @@ Goalw [preal_mult_def] "((x::preal) * y) * z = x * (y * z)"; by (res_inst_tac [("f","Abs_preal")] arg_cong 1); -by (rtac set_ext 1); -by (rtac (preal_mem_mult_set RS Abs_preal_inverse RS ssubst) 1); -by (rtac (preal_mem_mult_set RS Abs_preal_inverse RS ssubst) 1); +by (simp_tac (simpset() addsimps [preal_mem_mult_set RS Abs_preal_inverse]) 1); by (auto_tac (claset(),simpset() addsimps prat_mult_ac)); by (rtac bexI 1); by (auto_tac (claset() addSIs [exI],simpset() addsimps prat_mult_ac)); @@ -377,7 +371,6 @@ by (rtac (Rep_preal_inverse RS subst) 1); by (res_inst_tac [("f","Abs_preal")] arg_cong 1); by (rtac (one_set_mem_preal RS Abs_preal_inverse RS ssubst) 1); -by (rtac set_ext 1); by (auto_tac(claset(),simpset() addsimps [Rep_preal_inverse])); by (EVERY1[dtac (Rep_preal RS prealE_lemma4a),etac bexE]); by (dtac prat_mult_less_mono 1); @@ -490,14 +483,13 @@ Goal "(w * ((z1::preal) + z2)) = (w * z1) + (w * z2)"; by (rtac (inj_Rep_preal RS injD) 1); -by (rtac set_ext 1); by (fast_tac (claset() addIs [lemma_preal_add_mult_distrib, - lemma_preal_add_mult_distrib2]) 1); + lemma_preal_add_mult_distrib2]) 1); qed "preal_add_mult_distrib2"; Goal "(((z1::preal) + z2) * w) = (z1 * w) + (z2 * w)"; by (simp_tac (simpset() addsimps [preal_mult_commute, - preal_add_mult_distrib2]) 1); + preal_add_mult_distrib2]) 1); qed "preal_add_mult_distrib"; (*** Prove existence of inverse ***) @@ -687,7 +679,6 @@ Goal "pinv(A)*A = (preal_of_prat (prat_of_pnat (Abs_pnat 1)))"; by (rtac (inj_Rep_preal RS injD) 1); -by (rtac set_ext 1); by (fast_tac (claset() addDs [preal_mem_mult_invD,preal_mem_mult_invI]) 1); qed "preal_mult_inv"; @@ -1199,7 +1190,7 @@ by (asm_full_simp_tac (simpset() addsimps [psubset_def]) 1); by (dtac bspec 1 THEN assume_tac 1); by (REPEAT(etac conjE 1)); -by (EVERY1[rtac contrapos_np, assume_tac, rtac set_ext]); +by (EVERY1[rtac contrapos_np, assume_tac]); by (auto_tac (claset() addSDs [lemma_psubset_mem],simpset())); by (cut_inst_tac [("r1.0","Xa"),("r2.0","Ya")] preal_linear 1); by (auto_tac (claset() addDs [psubsetD],simpset() addsimps [preal_less_def])); @@ -1224,8 +1215,8 @@ "preal_of_prat ((z1::prat) + z2) = \ \ preal_of_prat z1 + preal_of_prat z2"; by (res_inst_tac [("f","Abs_preal")] arg_cong 1); -by (auto_tac (claset() addIs [prat_add_less_mono] addSIs [set_ext],simpset() addsimps - [lemma_prat_less_set_mem_preal RS Abs_preal_inverse])); +by (auto_tac (claset() addIs [prat_add_less_mono], + simpset() addsimps [lemma_prat_less_set_mem_preal RS Abs_preal_inverse])); by (res_inst_tac [("x","x*z1*qinv(z1+z2)")] exI 1 THEN rtac conjI 1); by (etac lemma_preal_rat_less 1); by (res_inst_tac [("x","x*z2*qinv(z1+z2)")] exI 1 THEN rtac conjI 1); @@ -1250,8 +1241,8 @@ "preal_of_prat ((z1::prat) * z2) = \ \ preal_of_prat z1 * preal_of_prat z2"; by (res_inst_tac [("f","Abs_preal")] arg_cong 1); -by (auto_tac (claset() addIs [prat_mult_less_mono] addSIs [set_ext],simpset() addsimps - [lemma_prat_less_set_mem_preal RS Abs_preal_inverse])); +by (auto_tac (claset() addIs [prat_mult_less_mono], + simpset() addsimps [lemma_prat_less_set_mem_preal RS Abs_preal_inverse])); by (dtac prat_dense 1); by (Step_tac 1); by (res_inst_tac [("x","x*z1*qinv(xa)")] exI 1 THEN rtac conjI 1); @@ -1267,8 +1258,8 @@ Goalw [preal_of_prat_def,preal_less_def] "(preal_of_prat p < preal_of_prat q) = (p < q)"; by (auto_tac (claset() addSDs [lemma_prat_set_eq] addEs [prat_less_trans], - simpset() addsimps [lemma_prat_less_set_mem_preal, - psubset_def,prat_less_not_refl])); + simpset() addsimps [lemma_prat_less_set_mem_preal, + psubset_def,prat_less_not_refl])); by (res_inst_tac [("q1.0","p"),("q2.0","q")] prat_linear_less2 1); by (auto_tac (claset() addIs [prat_less_irrefl],simpset())); qed "preal_of_prat_less_iff";