# HG changeset patch # User wenzelm # Date 1375123120 -7200 # Node ID 19fa3e3964f068d63e3895722a3dc0df17d20d12 # Parent fa71ab256f706968ab63ece13c6259cfbf4fe988 tuned proofs; diff -r fa71ab256f70 -r 19fa3e3964f0 src/HOL/Decision_Procs/Polynomial_List.thy --- a/src/HOL/Decision_Procs/Polynomial_List.thy Mon Jul 29 20:34:53 2013 +0200 +++ b/src/HOL/Decision_Procs/Polynomial_List.thy Mon Jul 29 20:38:40 2013 +0200 @@ -10,7 +10,8 @@ text{* Application of polynomial as a real function. *} -primrec poly :: "'a list => 'a => ('a::{comm_ring})" where +primrec poly :: "'a list => 'a => ('a::{comm_ring})" +where poly_Nil: "poly [] x = 0" | poly_Cons: "poly (h#t) x = h + x * poly t x" @@ -18,42 +19,49 @@ subsection{*Arithmetic Operations on Polynomials*} text{*addition*} -primrec padd :: "['a list, 'a list] => ('a::comm_ring_1) list" (infixl "+++" 65) where +primrec padd :: "['a list, 'a list] => ('a::comm_ring_1) list" (infixl "+++" 65) +where padd_Nil: "[] +++ l2 = l2" | padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t else (h + hd l2)#(t +++ tl l2))" text{*Multiplication by a constant*} -primrec cmult :: "['a :: comm_ring_1, 'a list] => 'a list" (infixl "%*" 70) where +primrec cmult :: "['a :: comm_ring_1, 'a list] => 'a list" (infixl "%*" 70) +where cmult_Nil: "c %* [] = []" | cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)" text{*Multiplication by a polynomial*} -primrec pmult :: "['a list, 'a list] => ('a::comm_ring_1) list" (infixl "***" 70) where +primrec pmult :: "['a list, 'a list] => ('a::comm_ring_1) list" (infixl "***" 70) +where pmult_Nil: "[] *** l2 = []" | pmult_Cons: "(h#t) *** l2 = (if t = [] then h %* l2 else (h %* l2) +++ ((0) # (t *** l2)))" text{*Repeated multiplication by a polynomial*} -primrec mulexp :: "[nat, 'a list, 'a list] => ('a ::comm_ring_1) list" where +primrec mulexp :: "[nat, 'a list, 'a list] => ('a ::comm_ring_1) list" +where mulexp_zero: "mulexp 0 p q = q" | mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q" text{*Exponential*} -primrec pexp :: "['a list, nat] => ('a::comm_ring_1) list" (infixl "%^" 80) where +primrec pexp :: "['a list, nat] => ('a::comm_ring_1) list" (infixl "%^" 80) +where pexp_0: "p %^ 0 = [1]" | pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)" text{*Quotient related value of dividing a polynomial by x + a*} (* Useful for divisor properties in inductive proofs *) -primrec pquot :: "['a list, 'a::field] => 'a list" where - pquot_Nil: "pquot [] a= []" -| pquot_Cons: "pquot (h#t) a = (if t = [] then [h] - else (inverse(a) * (h - hd( pquot t a)))#(pquot t a))" +primrec pquot :: "['a list, 'a::field] => 'a list" +where + pquot_Nil: "pquot [] a= []" +| pquot_Cons: + "pquot (h#t) a = (if t = [] then [h] else (inverse(a) * (h - hd( pquot t a)))#(pquot t a))" text{*normalization of polynomials (remove extra 0 coeff)*} -primrec pnormalize :: "('a::comm_ring_1) list => 'a list" where +primrec pnormalize :: "('a::comm_ring_1) list => 'a list" +where pnormalize_Nil: "pnormalize [] = []" | pnormalize_Cons: "pnormalize (h#p) = (if ( (pnormalize p) = []) then (if (h = 0) then [] else [h]) @@ -63,24 +71,17 @@ definition "nonconstant p = (pnormal p \ (\x. p \ [x]))" text{*Other definitions*} -definition - poly_minus :: "'a list => ('a :: comm_ring_1) list" ("-- _" [80] 80) where - "-- p = (- 1) %* p" +definition poly_minus :: "'a list => ('a :: comm_ring_1) list" ("-- _" [80] 80) + where "-- p = (- 1) %* p" -definition - divides :: "[('a::comm_ring_1) list, 'a list] => bool" (infixl "divides" 70) where - "p1 divides p2 = (\q. poly p2 = poly(p1 *** q))" +definition divides :: "[('a::comm_ring_1) list, 'a list] => bool" (infixl "divides" 70) + where "p1 divides p2 = (\q. poly p2 = poly(p1 *** q))" -definition - order :: "('a::comm_ring_1) => 'a list => nat" where - --{*order of a polynomial*} - "order a p = (SOME n. ([-a, 1] %^ n) divides p & - ~ (([-a, 1] %^ (Suc n)) divides p))" +definition order :: "('a::comm_ring_1) => 'a list => nat" --{*order of a polynomial*} + where "order a p = (SOME n. ([-a, 1] %^ n) divides p & ~ (([-a, 1] %^ (Suc n)) divides p))" -definition - degree :: "('a::comm_ring_1) list => nat" where - --{*degree of a polynomial*} - "degree p = length (pnormalize p) - 1" +definition degree :: "('a::comm_ring_1) list => nat" --{*degree of a polynomial*} + where "degree p = length (pnormalize p) - 1" definition rsquarefree :: "('a::comm_ring_1) list => bool" where @@ -88,263 +89,255 @@ "rsquarefree p = (poly p \ poly [] & (\a. (order a p = 0) | (order a p = 1)))" -lemma padd_Nil2: "p +++ [] = p" -by (induct p) auto -declare padd_Nil2 [simp] +lemma padd_Nil2 [simp]: "p +++ [] = p" + by (induct p) auto lemma padd_Cons_Cons: "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)" -by auto + by auto -lemma pminus_Nil: "-- [] = []" -by (simp add: poly_minus_def) -declare pminus_Nil [simp] +lemma pminus_Nil [simp]: "-- [] = []" + by (simp add: poly_minus_def) lemma pmult_singleton: "[h1] *** p1 = h1 %* p1" -by simp + by simp -lemma poly_ident_mult: "1 %* t = t" -by (induct "t", auto) -declare poly_ident_mult [simp] +lemma poly_ident_mult [simp]: "1 %* t = t" + by (induct t) auto -lemma poly_simple_add_Cons: "[a] +++ ((0)#t) = (a#t)" -by simp -declare poly_simple_add_Cons [simp] +lemma poly_simple_add_Cons [simp]: "[a] +++ ((0)#t) = (a#t)" + by simp text{*Handy general properties*} lemma padd_commut: "b +++ a = a +++ b" -apply (subgoal_tac "\a. b +++ a = a +++ b") -apply (induct_tac [2] "b", auto) -apply (rule padd_Cons [THEN ssubst]) -apply (case_tac "aa", auto) -done + apply (subgoal_tac "\a. b +++ a = a +++ b") + apply (induct_tac [2] "b", auto) + apply (rule padd_Cons [THEN ssubst]) + apply (case_tac "aa", auto) + done lemma padd_assoc [rule_format]: "\b c. (a +++ b) +++ c = a +++ (b +++ c)" -apply (induct "a", simp, clarify) -apply (case_tac b, simp_all) -done + apply (induct "a", simp, clarify) + apply (case_tac b, simp_all) + done -lemma poly_cmult_distr [rule_format]: - "\q. a %* ( p +++ q) = (a %* p +++ a %* q)" -apply (induct "p", simp, clarify) -apply (case_tac "q") -apply (simp_all add: distrib_left) -done +lemma poly_cmult_distr [rule_format]: "\q. a %* ( p +++ q) = (a %* p +++ a %* q)" + apply (induct p) + apply simp + apply clarify + apply (case_tac q) + apply (simp_all add: distrib_left) + done lemma pmult_by_x[simp]: "[0, 1] *** t = ((0)#t)" -apply (induct "t", simp) -by (auto simp add: mult_zero_left poly_ident_mult padd_commut) + apply (induct t) + apply simp + apply (auto simp add: padd_commut) + done text{*properties of evaluation of polynomials.*} lemma poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x" -apply (subgoal_tac "\p2. poly (p1 +++ p2) x = poly (p1) x + poly (p2) x") -apply (induct_tac [2] "p1", auto) -apply (case_tac "p2") -apply (auto simp add: distrib_left) -done + apply (subgoal_tac "\p2. poly (p1 +++ p2) x = poly (p1) x + poly (p2) x") + apply (induct_tac [2] "p1", auto) + apply (case_tac "p2") + apply (auto simp add: distrib_left) + done lemma poly_cmult: "poly (c %* p) x = c * poly p x" -apply (induct "p") -apply (case_tac [2] "x=0") -apply (auto simp add: distrib_left mult_ac) -done + apply (induct "p") + apply (case_tac [2] "x=0") + apply (auto simp add: distrib_left mult_ac) + done lemma poly_minus: "poly (-- p) x = - (poly p x)" -apply (simp add: poly_minus_def) -apply (auto simp add: poly_cmult) -done + apply (simp add: poly_minus_def) + apply (auto simp add: poly_cmult) + done lemma poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x" -apply (subgoal_tac "\p2. poly (p1 *** p2) x = poly p1 x * poly p2 x") -apply (simp (no_asm_simp)) -apply (induct "p1") -apply (auto simp add: poly_cmult) -apply (case_tac p1) -apply (auto simp add: poly_cmult poly_add distrib_right distrib_left mult_ac) -done + apply (subgoal_tac "\p2. poly (p1 *** p2) x = poly p1 x * poly p2 x") + apply (simp (no_asm_simp)) + apply (induct "p1") + apply (auto simp add: poly_cmult) + apply (case_tac p1) + apply (auto simp add: poly_cmult poly_add distrib_right distrib_left mult_ac) + done lemma poly_exp: "poly (p %^ n) (x::'a::comm_ring_1) = (poly p x) ^ n" -apply (induct "n") -apply (auto simp add: poly_cmult poly_mult power_Suc) -done + by (induct "n") (auto simp add: poly_cmult poly_mult) text{*More Polynomial Evaluation Lemmas*} -lemma poly_add_rzero: "poly (a +++ []) x = poly a x" -by simp -declare poly_add_rzero [simp] +lemma poly_add_rzero [simp]: "poly (a +++ []) x = poly a x" + by simp lemma poly_mult_assoc: "poly ((a *** b) *** c) x = poly (a *** (b *** c)) x" by (simp add: poly_mult mult_assoc) -lemma poly_mult_Nil2: "poly (p *** []) x = 0" -by (induct "p", auto) -declare poly_mult_Nil2 [simp] +lemma poly_mult_Nil2 [simp]: "poly (p *** []) x = 0" + by (induct "p") auto lemma poly_exp_add: "poly (p %^ (n + d)) x = poly( p %^ n *** p %^ d) x" -apply (induct "n") -apply (auto simp add: poly_mult mult_assoc) -done + by (induct "n") (auto simp add: poly_mult mult_assoc) subsection{*Key Property: if @{term "f(a) = 0"} then @{term "(x - a)"} divides @{term "p(x)"} *} lemma lemma_poly_linear_rem: "\h. \q r. h#t = [r] +++ [-a, 1] *** q" -apply (induct "t", safe) -apply (rule_tac x = "[]" in exI) -apply (rule_tac x = h in exI, simp) -apply (drule_tac x = aa in spec, safe) -apply (rule_tac x = "r#q" in exI) -apply (rule_tac x = "a*r + h" in exI) -apply (case_tac "q", auto) -done + apply (induct "t", safe) + apply (rule_tac x = "[]" in exI) + apply (rule_tac x = h in exI, simp) + apply (drule_tac x = aa in spec, safe) + apply (rule_tac x = "r#q" in exI) + apply (rule_tac x = "a*r + h" in exI) + apply (case_tac "q", auto) + done lemma poly_linear_rem: "\q r. h#t = [r] +++ [-a, 1] *** q" -by (cut_tac t = t and a = a in lemma_poly_linear_rem, auto) + using lemma_poly_linear_rem [where t = t and a = a] by auto lemma poly_linear_divides: "(poly p a = 0) = ((p = []) | (\q. p = [-a, 1] *** q))" -apply (auto simp add: poly_add poly_cmult distrib_left) -apply (case_tac "p", simp) -apply (cut_tac h = aa and t = list and a = a in poly_linear_rem, safe) -apply (case_tac "q", auto) -apply (drule_tac x = "[]" in spec, simp) -apply (auto simp add: poly_add poly_cmult add_assoc) -apply (drule_tac x = "aa#lista" in spec, auto) -done + apply (auto simp add: poly_add poly_cmult distrib_left) + apply (case_tac "p", simp) + apply (cut_tac h = aa and t = list and a = a in poly_linear_rem, safe) + apply (case_tac "q", auto) + apply (drule_tac x = "[]" in spec, simp) + apply (auto simp add: poly_add poly_cmult add_assoc) + apply (drule_tac x = "aa#lista" in spec, auto) + done -lemma lemma_poly_length_mult: "\h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)" -by (induct "p", auto) -declare lemma_poly_length_mult [simp] +lemma lemma_poly_length_mult [simp]: "\h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)" + by (induct p) auto -lemma lemma_poly_length_mult2: "\h k. length (k %* p +++ (h # p)) = Suc (length p)" -by (induct "p", auto) -declare lemma_poly_length_mult2 [simp] +lemma lemma_poly_length_mult2 [simp]: "\h k. length (k %* p +++ (h # p)) = Suc (length p)" + by (induct p) auto -lemma poly_length_mult: "length([-a,1] *** q) = Suc (length q)" -by auto -declare poly_length_mult [simp] +lemma poly_length_mult [simp]: "length([-a,1] *** q) = Suc (length q)" + by auto subsection{*Polynomial length*} -lemma poly_cmult_length: "length (a %* p) = length p" -by (induct "p", auto) -declare poly_cmult_length [simp] +lemma poly_cmult_length [simp]: "length (a %* p) = length p" + by (induct p) auto lemma poly_add_length [rule_format]: - "\p2. length (p1 +++ p2) = - (if (length p1 < length p2) then length p2 else length p1)" -apply (induct "p1", simp_all) -apply arith -done + "\p2. length (p1 +++ p2) = (if (length p1 < length p2) then length p2 else length p1)" + apply (induct p1) + apply simp_all + apply arith + done -lemma poly_root_mult_length: "length([a,b] *** p) = Suc (length p)" -by (simp add: poly_cmult_length poly_add_length) -declare poly_root_mult_length [simp] +lemma poly_root_mult_length [simp]: "length([a,b] *** p) = Suc (length p)" + by simp -lemma poly_mult_not_eq_poly_Nil: "(poly (p *** q) x \ poly [] x) = - (poly p x \ poly [] x & poly q x \ poly [] (x::'a::idom))" -apply (auto simp add: poly_mult) -done -declare poly_mult_not_eq_poly_Nil [simp] +lemma poly_mult_not_eq_poly_Nil [simp]: "(poly (p *** q) x \ poly [] x) = + (poly p x \ poly [] x & poly q x \ poly [] (x::'a::idom))" + by (auto simp add: poly_mult) lemma poly_mult_eq_zero_disj: "(poly (p *** q) (x::'a::idom) = 0) = (poly p x = 0 | poly q x = 0)" -by (auto simp add: poly_mult) + by (auto simp add: poly_mult) text{*Normalisation Properties*} lemma poly_normalized_nil: "(pnormalize p = []) --> (poly p x = 0)" -by (induct "p", auto) + by (induct p) auto text{*A nontrivial polynomial of degree n has no more than n roots*} lemma poly_roots_index_lemma0 [rule_format]: "\p x. poly p x \ poly [] x & length p = n --> (\i. \x. (poly p x = (0::'a::idom)) --> (\m. (m \ n & x = i m)))" -apply (induct "n", safe) -apply (rule ccontr) -apply (subgoal_tac "\a. poly p a = 0", safe) -apply (drule poly_linear_divides [THEN iffD1], safe) -apply (drule_tac x = q in spec) -apply (drule_tac x = x in spec) -apply (simp del: poly_Nil pmult_Cons) -apply (erule exE) -apply (drule_tac x = "%m. if m = Suc n then a else i m" in spec, safe) -apply (drule poly_mult_eq_zero_disj [THEN iffD1], safe) -apply (drule_tac x = "Suc (length q)" in spec) -apply (auto simp add: field_simps) -apply (drule_tac x = xa in spec) -apply (clarsimp simp add: field_simps) -apply (drule_tac x = m in spec) -apply (auto simp add:field_simps) -done + apply (induct "n", safe) + apply (rule ccontr) + apply (subgoal_tac "\a. poly p a = 0", safe) + apply (drule poly_linear_divides [THEN iffD1], safe) + apply (drule_tac x = q in spec) + apply (drule_tac x = x in spec) + apply (simp del: poly_Nil pmult_Cons) + apply (erule exE) + apply (drule_tac x = "%m. if m = Suc n then a else i m" in spec, safe) + apply (drule poly_mult_eq_zero_disj [THEN iffD1], safe) + apply (drule_tac x = "Suc (length q)" in spec) + apply (auto simp add: field_simps) + apply (drule_tac x = xa in spec) + apply (clarsimp simp add: field_simps) + apply (drule_tac x = m in spec) + apply (auto simp add:field_simps) + done lemmas poly_roots_index_lemma1 = conjI [THEN poly_roots_index_lemma0] -lemma poly_roots_index_length0: "poly p (x::'a::idom) \ poly [] x ==> - \i. \x. (poly p x = 0) --> (\n. n \ length p & x = i n)" -by (blast intro: poly_roots_index_lemma1) +lemma poly_roots_index_length0: + "poly p (x::'a::idom) \ poly [] x \ + \i. \x. (poly p x = 0) \ (\n. n \ length p & x = i n)" + by (blast intro: poly_roots_index_lemma1) -lemma poly_roots_finite_lemma: "poly p (x::'a::idom) \ poly [] x ==> - \N i. \x. (poly p x = 0) --> (\n. (n::nat) < N & x = i n)" -apply (drule poly_roots_index_length0, safe) -apply (rule_tac x = "Suc (length p)" in exI) -apply (rule_tac x = i in exI) -apply (simp add: less_Suc_eq_le) -done +lemma poly_roots_finite_lemma: + "poly p (x::'a::idom) \ poly [] x \ + \N i. \x. (poly p x = 0) \ (\n. (n::nat) < N & x = i n)" + apply (drule poly_roots_index_length0, safe) + apply (rule_tac x = "Suc (length p)" in exI) + apply (rule_tac x = i in exI) + apply (simp add: less_Suc_eq_le) + done lemma real_finite_lemma: assumes P: "\x. P x --> (\n. n < length j & x = j!n)" shows "finite {(x::'a::idom). P x}" -proof- +proof - let ?M = "{x. P x}" let ?N = "set j" have "?M \ ?N" using P by auto - thus ?thesis using finite_subset by auto + then show ?thesis using finite_subset by auto qed lemma poly_roots_index_lemma [rule_format]: - "\p x. poly p x \ poly [] x & length p = n - --> (\i. \x. (poly p x = (0::'a::{idom})) --> x \ set i)" -apply (induct "n", safe) -apply (rule ccontr) -apply (subgoal_tac "\a. poly p a = 0", safe) -apply (drule poly_linear_divides [THEN iffD1], safe) -apply (drule_tac x = q in spec) -apply (drule_tac x = x in spec) -apply (auto simp del: poly_Nil pmult_Cons) -apply (drule_tac x = "a#i" in spec) -apply (auto simp only: poly_mult List.list.size) -apply (drule_tac x = xa in spec) -apply (clarsimp simp add: field_simps) -done + "\p x. poly p x \ poly [] x & length p = n + \ (\i. \x. (poly p x = (0::'a::{idom})) \ x \ set i)" + apply (induct "n", safe) + apply (rule ccontr) + apply (subgoal_tac "\a. poly p a = 0", safe) + apply (drule poly_linear_divides [THEN iffD1], safe) + apply (drule_tac x = q in spec) + apply (drule_tac x = x in spec) + apply (auto simp del: poly_Nil pmult_Cons) + apply (drule_tac x = "a#i" in spec) + apply (auto simp only: poly_mult List.list.size) + apply (drule_tac x = xa in spec) + apply (clarsimp simp add: field_simps) + done lemmas poly_roots_index_lemma2 = conjI [THEN poly_roots_index_lemma] -lemma poly_roots_index_length: "poly p (x::'a::idom) \ poly [] x ==> - \i. \x. (poly p x = 0) --> x \ set i" -by (blast intro: poly_roots_index_lemma2) +lemma poly_roots_index_length: + "poly p (x::'a::idom) \ poly [] x \ + \i. \x. (poly p x = 0) --> x \ set i" + by (blast intro: poly_roots_index_lemma2) -lemma poly_roots_finite_lemma': "poly p (x::'a::idom) \ poly [] x ==> - \i. \x. (poly p x = 0) --> x \ set i" -by (drule poly_roots_index_length, safe) +lemma poly_roots_finite_lemma': + "poly p (x::'a::idom) \ poly [] x \ + \i. \x. (poly p x = 0) --> x \ set i" + apply (drule poly_roots_index_length) + apply auto + done lemma UNIV_nat_infinite: "\ finite (UNIV :: nat set)" unfolding finite_conv_nat_seg_image -proof(auto simp add: set_eq_iff image_iff) +proof (auto simp add: set_eq_iff image_iff) fix n::nat and f:: "nat \ nat" let ?N = "{i. i < n}" let ?fN = "f ` ?N" let ?y = "Max ?fN + 1" - from nat_seg_image_imp_finite[of "?fN" "f" n] + from nat_seg_image_imp_finite[of "?fN" "f" n] have thfN: "finite ?fN" by simp - {assume "n =0" hence "\x. \xa f xa" by auto} + { assume "n =0" hence "\x. \xa f xa" by auto } moreover - {assume nz: "n \ 0" - hence thne: "?fN \ {}" by (auto simp add: neq0_conv) + { assume nz: "n \ 0" + hence thne: "?fN \ {}" by auto have "\x\ ?fN. Max ?fN \ x" using nz Max_ge_iff[OF thfN thne] by auto hence "\x\ ?fN. ?y > x" by (auto simp add: less_Suc_eq_le) hence "?y \ ?fN" by auto @@ -359,12 +352,11 @@ from finite_subset[OF th0 F] have th: "finite (of_nat ` UNIV :: 'a set)" . have th': "inj_on (of_nat::nat \ 'a) (UNIV)" unfolding inj_on_def by auto - from finite_imageD[OF th th'] UNIV_nat_infinite + from finite_imageD[OF th th'] UNIV_nat_infinite show False by blast qed -lemma poly_roots_finite: "(poly p \ poly []) = - finite {x. poly p x = (0::'a::{idom, ring_char_0})}" +lemma poly_roots_finite: "(poly p \ poly []) = finite {x. poly p x = (0::'a::{idom, ring_char_0})}" proof assume H: "poly p \ poly []" show "finite {x. poly p x = (0::'a)}" @@ -374,75 +366,80 @@ apply (rule ccontr) apply (clarify dest!: poly_roots_finite_lemma') using finite_subset - proof- + proof - fix x i - assume F: "\ finite {x. poly p x = (0\'a)}" + assume F: "\ finite {x. poly p x = (0\'a)}" and P: "\x. poly p x = (0\'a) \ x \ set i" let ?M= "{x. poly p x = (0\'a)}" from P have "?M \ set i" by auto with finite_subset F show False by auto qed next - assume F: "finite {x. poly p x = (0\'a)}" - show "poly p \ poly []" using F UNIV_ring_char_0_infinte by auto + assume "finite {x. poly p x = (0\'a)}" + then show "poly p \ poly []" using UNIV_ring_char_0_infinte by auto qed text{*Entirety and Cancellation for polynomials*} -lemma poly_entire_lemma: "[| poly (p:: ('a::{idom,ring_char_0}) list) \ poly [] ; poly q \ poly [] |] - ==> poly (p *** q) \ poly []" -by (auto simp add: poly_roots_finite poly_mult Collect_disj_eq) +lemma poly_entire_lemma: + "poly (p:: ('a::{idom,ring_char_0}) list) \ poly [] \ poly q \ poly [] \ + poly (p *** q) \ poly []" + by (auto simp add: poly_roots_finite poly_mult Collect_disj_eq) -lemma poly_entire: "(poly (p *** q) = poly ([]::('a::{idom,ring_char_0}) list)) = ((poly p = poly []) | (poly q = poly []))" -apply (auto intro: ext dest: fun_cong simp add: poly_entire_lemma poly_mult) -apply (blast intro: ccontr dest: poly_entire_lemma poly_mult [THEN subst]) -done +lemma poly_entire: + "(poly (p *** q) = + poly ([]::('a::{idom,ring_char_0}) list)) = ((poly p = poly []) | (poly q = poly []))" + apply (auto dest: fun_cong simp add: poly_entire_lemma poly_mult) + apply (blast intro: ccontr dest: poly_entire_lemma poly_mult [THEN subst]) + done -lemma poly_entire_neg: "(poly (p *** q) \ poly ([]::('a::{idom,ring_char_0}) list)) = ((poly p \ poly []) & (poly q \ poly []))" -by (simp add: poly_entire) +lemma poly_entire_neg: + "(poly (p *** q) \ poly ([]::('a::{idom,ring_char_0}) list)) = + ((poly p \ poly []) & (poly q \ poly []))" + by (simp add: poly_entire) -lemma fun_eq: " (f = g) = (\x. f x = g x)" -by (auto intro!: ext) +lemma fun_eq: "f = g \ (\x. f x = g x)" + by auto lemma poly_add_minus_zero_iff: "(poly (p +++ -- q) = poly []) = (poly p = poly q)" -by (auto simp add: field_simps poly_add poly_minus_def fun_eq poly_cmult) + by (auto simp add: field_simps poly_add poly_minus_def fun_eq poly_cmult) lemma poly_add_minus_mult_eq: "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))" -by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult distrib_left) + by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult distrib_left) -lemma poly_mult_left_cancel: "(poly (p *** q) = poly (p *** r)) = (poly p = poly ([]::('a::{idom, ring_char_0}) list) | poly q = poly r)" -apply (rule_tac p1 = "p *** q" in poly_add_minus_zero_iff [THEN subst]) -apply (auto intro: ext simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff) -done +lemma poly_mult_left_cancel: + "(poly (p *** q) = poly (p *** r)) = + (poly p = poly ([]::('a::{idom, ring_char_0}) list) | poly q = poly r)" + apply (rule_tac p1 = "p *** q" in poly_add_minus_zero_iff [THEN subst]) + apply (auto simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff) + done -lemma poly_exp_eq_zero: - "(poly (p %^ n) = poly ([]::('a::idom) list)) = (poly p = poly [] & n \ 0)" -apply (simp only: fun_eq add: HOL.all_simps [symmetric]) -apply (rule arg_cong [where f = All]) -apply (rule ext) -apply (induct_tac "n") -apply (auto simp add: poly_mult) -done -declare poly_exp_eq_zero [simp] +lemma poly_exp_eq_zero [simp]: + "(poly (p %^ n) = poly ([]::('a::idom) list)) = (poly p = poly [] & n \ 0)" + apply (simp only: fun_eq add: HOL.all_simps [symmetric]) + apply (rule arg_cong [where f = All]) + apply (rule ext) + apply (induct_tac "n") + apply (auto simp add: poly_mult) + done -lemma poly_prime_eq_zero: "poly [a,(1::'a::comm_ring_1)] \ poly []" -apply (simp add: fun_eq) -apply (rule_tac x = "1 - a" in exI, simp) -done -declare poly_prime_eq_zero [simp] +lemma poly_prime_eq_zero [simp]: "poly [a,(1::'a::comm_ring_1)] \ poly []" + apply (simp add: fun_eq) + apply (rule_tac x = "1 - a" in exI, simp) + done -lemma poly_exp_prime_eq_zero: "(poly ([a, (1::'a::idom)] %^ n) \ poly [])" -by auto -declare poly_exp_prime_eq_zero [simp] +lemma poly_exp_prime_eq_zero [simp]: "(poly ([a, (1::'a::idom)] %^ n) \ poly [])" + by auto text{*A more constructive notion of polynomials being trivial*} -lemma poly_zero_lemma': "poly (h # t) = poly [] ==> h = (0::'a::{idom,ring_char_0}) & poly t = poly []" -apply(simp add: fun_eq) -apply (case_tac "h = 0") -apply (drule_tac [2] x = 0 in spec, auto) -apply (case_tac "poly t = poly []", simp) -proof- +lemma poly_zero_lemma': + "poly (h # t) = poly [] \ h = (0::'a::{idom,ring_char_0}) & poly t = poly []" + apply (simp add: fun_eq) + apply (case_tac "h = 0") + apply (drule_tac [2] x = 0 in spec, auto) + apply (case_tac "poly t = poly []", simp) +proof - fix x assume H: "\x. x = (0\'a) \ poly t x = (0\'a)" and pnz: "poly t \ poly []" let ?S = "{x. poly t x = 0}" @@ -451,325 +448,323 @@ from poly_roots_finite pnz have th': "finite ?S" by blast from finite_subset[OF th th'] UNIV_ring_char_0_infinte[where ?'a = 'a] show "poly t x = (0\'a)" by simp - qed +qed lemma poly_zero: "(poly p = poly []) = list_all (%c. c = (0::'a::{idom,ring_char_0})) p" -apply (induct "p", simp) -apply (rule iffI) -apply (drule poly_zero_lemma', auto) -done - + apply (induct p) + apply simp + apply (rule iffI) + apply (drule poly_zero_lemma') + apply auto + done text{*Basics of divisibility.*} lemma poly_primes: "([a, (1::'a::idom)] divides (p *** q)) = ([a, 1] divides p | [a, 1] divides q)" -apply (auto simp add: divides_def fun_eq poly_mult poly_add poly_cmult distrib_right [symmetric]) -apply (drule_tac x = "-a" in spec) -apply (auto simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric]) -apply (rule_tac x = "qa *** q" in exI) -apply (rule_tac [2] x = "p *** qa" in exI) -apply (auto simp add: poly_add poly_mult poly_cmult mult_ac) -done + apply (auto simp add: divides_def fun_eq poly_mult poly_add poly_cmult distrib_right [symmetric]) + apply (drule_tac x = "-a" in spec) + apply (auto simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric]) + apply (rule_tac x = "qa *** q" in exI) + apply (rule_tac [2] x = "p *** qa" in exI) + apply (auto simp add: poly_add poly_mult poly_cmult mult_ac) + done -lemma poly_divides_refl: "p divides p" -apply (simp add: divides_def) -apply (rule_tac x = "[1]" in exI) -apply (auto simp add: poly_mult fun_eq) -done -declare poly_divides_refl [simp] +lemma poly_divides_refl [simp]: "p divides p" + apply (simp add: divides_def) + apply (rule_tac x = "[1]" in exI) + apply (auto simp add: poly_mult fun_eq) + done -lemma poly_divides_trans: "[| p divides q; q divides r |] ==> p divides r" -apply (simp add: divides_def, safe) -apply (rule_tac x = "qa *** qaa" in exI) -apply (auto simp add: poly_mult fun_eq mult_assoc) -done +lemma poly_divides_trans: "p divides q \ q divides r \ p divides r" + apply (simp add: divides_def, safe) + apply (rule_tac x = "qa *** qaa" in exI) + apply (auto simp add: poly_mult fun_eq mult_assoc) + done -lemma poly_divides_exp: "m \ n ==> (p %^ m) divides (p %^ n)" -apply (auto simp add: le_iff_add) -apply (induct_tac k) -apply (rule_tac [2] poly_divides_trans) -apply (auto simp add: divides_def) -apply (rule_tac x = p in exI) -apply (auto simp add: poly_mult fun_eq mult_ac) -done +lemma poly_divides_exp: "m \ n \ (p %^ m) divides (p %^ n)" + apply (auto simp add: le_iff_add) + apply (induct_tac k) + apply (rule_tac [2] poly_divides_trans) + apply (auto simp add: divides_def) + apply (rule_tac x = p in exI) + apply (auto simp add: poly_mult fun_eq mult_ac) + done -lemma poly_exp_divides: "[| (p %^ n) divides q; m\n |] ==> (p %^ m) divides q" -by (blast intro: poly_divides_exp poly_divides_trans) +lemma poly_exp_divides: "(p %^ n) divides q \ m \ n \ (p %^ m) divides q" + by (blast intro: poly_divides_exp poly_divides_trans) -lemma poly_divides_add: - "[| p divides q; p divides r |] ==> p divides (q +++ r)" -apply (simp add: divides_def, auto) -apply (rule_tac x = "qa +++ qaa" in exI) -apply (auto simp add: poly_add fun_eq poly_mult distrib_left) -done +lemma poly_divides_add: "p divides q \ p divides r \ p divides (q +++ r)" + apply (simp add: divides_def, auto) + apply (rule_tac x = "qa +++ qaa" in exI) + apply (auto simp add: poly_add fun_eq poly_mult distrib_left) + done -lemma poly_divides_diff: - "[| p divides q; p divides (q +++ r) |] ==> p divides r" -apply (simp add: divides_def, auto) -apply (rule_tac x = "qaa +++ -- qa" in exI) -apply (auto simp add: poly_add fun_eq poly_mult poly_minus right_diff_distrib algebra_simps) -done +lemma poly_divides_diff: "p divides q \ p divides (q +++ r) \ p divides r" + apply (simp add: divides_def, auto) + apply (rule_tac x = "qaa +++ -- qa" in exI) + apply (auto simp add: poly_add fun_eq poly_mult poly_minus algebra_simps) + done lemma poly_divides_diff2: "[| p divides r; p divides (q +++ r) |] ==> p divides q" -apply (erule poly_divides_diff) -apply (auto simp add: poly_add fun_eq poly_mult divides_def add_ac) -done + apply (erule poly_divides_diff) + apply (auto simp add: poly_add fun_eq poly_mult divides_def add_ac) + done lemma poly_divides_zero: "poly p = poly [] ==> q divides p" -apply (simp add: divides_def) -apply (rule exI[where x="[]"]) -apply (auto simp add: fun_eq poly_mult) -done + apply (simp add: divides_def) + apply (rule exI[where x="[]"]) + apply (auto simp add: fun_eq poly_mult) + done -lemma poly_divides_zero2: "q divides []" -apply (simp add: divides_def) -apply (rule_tac x = "[]" in exI) -apply (auto simp add: fun_eq) -done -declare poly_divides_zero2 [simp] +lemma poly_divides_zero2 [simp]: "q divides []" + apply (simp add: divides_def) + apply (rule_tac x = "[]" in exI) + apply (auto simp add: fun_eq) + done text{*At last, we can consider the order of a root.*} lemma poly_order_exists_lemma [rule_format]: - "\p. length p = d --> poly p \ poly [] - --> (\n q. p = mulexp n [-a, (1::'a::{idom,ring_char_0})] q & poly q a \ 0)" -apply (induct "d") -apply (simp add: fun_eq, safe) -apply (case_tac "poly p a = 0") -apply (drule_tac poly_linear_divides [THEN iffD1], safe) -apply (drule_tac x = q in spec) -apply (drule_tac poly_entire_neg [THEN iffD1], safe, force) -apply (rule_tac x = "Suc n" in exI) -apply (rule_tac x = qa in exI) -apply (simp del: pmult_Cons) -apply (rule_tac x = 0 in exI, force) -done + "\p. length p = d \ poly p \ poly [] \ + (\n q. p = mulexp n [-a, (1::'a::{idom,ring_char_0})] q & poly q a \ 0)" + apply (induct "d") + apply (simp add: fun_eq, safe) + apply (case_tac "poly p a = 0") + apply (drule_tac poly_linear_divides [THEN iffD1], safe) + apply (drule_tac x = q in spec) + apply (drule_tac poly_entire_neg [THEN iffD1], safe, force) + apply (rule_tac x = "Suc n" in exI) + apply (rule_tac x = qa in exI) + apply (simp del: pmult_Cons) + apply (rule_tac x = 0 in exI, force) + done (* FIXME: Tidy up *) lemma poly_order_exists: "[| length p = d; poly p \ poly [] |] ==> \n. ([-a, 1] %^ n) divides p & ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)" -apply (drule poly_order_exists_lemma [where a=a], assumption, clarify) -apply (rule_tac x = n in exI, safe) -apply (unfold divides_def) -apply (rule_tac x = q in exI) -apply (induct_tac "n", simp) -apply (simp (no_asm_simp) add: poly_add poly_cmult poly_mult distrib_left mult_ac) -apply safe -apply (subgoal_tac "poly (mulexp n [- a, 1] q) \ poly ([- a, 1] %^ Suc n *** qa)") -apply simp -apply (induct_tac "n") -apply (simp del: pmult_Cons pexp_Suc) -apply (erule_tac Q = "poly q a = 0" in contrapos_np) -apply (simp add: poly_add poly_cmult) -apply (rule pexp_Suc [THEN ssubst]) -apply (rule ccontr) -apply (simp add: poly_mult_left_cancel poly_mult_assoc del: pmult_Cons pexp_Suc) -done + apply (drule poly_order_exists_lemma [where a=a], assumption, clarify) + apply (rule_tac x = n in exI, safe) + apply (unfold divides_def) + apply (rule_tac x = q in exI) + apply (induct_tac n, simp) + apply (simp (no_asm_simp) add: poly_add poly_cmult poly_mult distrib_left mult_ac) + apply safe + apply (subgoal_tac "poly (mulexp n [- a, 1] q) \ poly ([- a, 1] %^ Suc n *** qa)") + apply simp + apply (induct_tac n) + apply (simp del: pmult_Cons pexp_Suc) + apply (erule_tac Q = "poly q a = 0" in contrapos_np) + apply (simp add: poly_add poly_cmult) + apply (rule pexp_Suc [THEN ssubst]) + apply (rule ccontr) + apply (simp add: poly_mult_left_cancel poly_mult_assoc del: pmult_Cons pexp_Suc) + done -lemma poly_one_divides: "[1] divides p" -by (simp add: divides_def, auto) -declare poly_one_divides [simp] +lemma poly_one_divides [simp]: "[1] divides p" + by (auto simp: divides_def) lemma poly_order: "poly p \ poly [] ==> EX! n. ([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p & ~(([-a, 1] %^ (Suc n)) divides p)" -apply (auto intro: poly_order_exists simp add: less_linear simp del: pmult_Cons pexp_Suc) -apply (cut_tac x = y and y = n in less_linear) -apply (drule_tac m = n in poly_exp_divides) -apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides] - simp del: pmult_Cons pexp_Suc) -done + apply (auto intro: poly_order_exists simp add: less_linear simp del: pmult_Cons pexp_Suc) + apply (cut_tac x = y and y = n in less_linear) + apply (drule_tac m = n in poly_exp_divides) + apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides] + simp del: pmult_Cons pexp_Suc) + done text{*Order*} lemma some1_equalityD: "[| n = (@n. P n); EX! n. P n |] ==> P n" -by (blast intro: someI2) + by (blast intro: someI2) lemma order: - "(([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p & - ~(([-a, 1] %^ (Suc n)) divides p)) = - ((n = order a p) & ~(poly p = poly []))" -apply (unfold order_def) -apply (rule iffI) -apply (blast dest: poly_divides_zero intro!: some1_equality [symmetric] poly_order) -apply (blast intro!: poly_order [THEN [2] some1_equalityD]) -done + "(([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p & + ~(([-a, 1] %^ (Suc n)) divides p)) = + ((n = order a p) & ~(poly p = poly []))" + apply (unfold order_def) + apply (rule iffI) + apply (blast dest: poly_divides_zero intro!: some1_equality [symmetric] poly_order) + apply (blast intro!: poly_order [THEN [2] some1_equalityD]) + done -lemma order2: "[| poly p \ poly [] |] - ==> ([-a, (1::'a::{idom,ring_char_0})] %^ (order a p)) divides p & - ~(([-a, 1] %^ (Suc(order a p))) divides p)" -by (simp add: order del: pexp_Suc) +lemma order2: "poly p \ poly [] \ + ([-a, (1::'a::{idom,ring_char_0})] %^ (order a p)) divides p & + ~(([-a, 1] %^ (Suc(order a p))) divides p)" + by (simp add: order del: pexp_Suc) lemma order_unique: "[| poly p \ poly []; ([-a, 1] %^ n) divides p; - ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p) + ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p) |] ==> (n = order a p)" -by (insert order [of a n p], auto) + using order [of a n p] by auto lemma order_unique_lemma: "(poly p \ poly [] & ([-a, 1] %^ n) divides p & ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)) ==> (n = order a p)" -by (blast intro: order_unique) + by (blast intro: order_unique) lemma order_poly: "poly p = poly q ==> order a p = order a q" -by (auto simp add: fun_eq divides_def poly_mult order_def) + by (auto simp add: fun_eq divides_def poly_mult order_def) -lemma pexp_one: "p %^ (Suc 0) = p" -apply (induct "p") -apply (auto simp add: numeral_1_eq_1) -done -declare pexp_one [simp] +lemma pexp_one [simp]: "p %^ (Suc 0) = p" + by (induct p) simp_all lemma lemma_order_root [rule_format]: - "\p a. 0 < n & [- a, 1] %^ n divides p & ~ [- a, 1] %^ (Suc n) divides p - --> poly p a = 0" -apply (induct "n", blast) -apply (auto simp add: divides_def poly_mult simp del: pmult_Cons) -done + "\p a. 0 < n & [- a, 1] %^ n divides p & ~ [- a, 1] %^ (Suc n) divides p + --> poly p a = 0" + apply (induct n) + apply blast + apply (auto simp add: divides_def poly_mult simp del: pmult_Cons) + done lemma order_root: "(poly p a = (0::'a::{idom,ring_char_0})) = ((poly p = poly []) | order a p \ 0)" -apply (case_tac "poly p = poly []", auto) -apply (simp add: poly_linear_divides del: pmult_Cons, safe) -apply (drule_tac [!] a = a in order2) -apply (rule ccontr) -apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast) -using neq0_conv -apply (blast intro: lemma_order_root) -done + apply (case_tac "poly p = poly []", auto) + apply (simp add: poly_linear_divides del: pmult_Cons, safe) + apply (drule_tac [!] a = a in order2) + apply (rule ccontr) + apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast) + using neq0_conv + apply (blast intro: lemma_order_root) + done lemma order_divides: "(([-a, 1::'a::{idom,ring_char_0}] %^ n) divides p) = ((poly p = poly []) | n \ order a p)" -apply (case_tac "poly p = poly []", auto) -apply (simp add: divides_def fun_eq poly_mult) -apply (rule_tac x = "[]" in exI) -apply (auto dest!: order2 [where a=a] - intro: poly_exp_divides simp del: pexp_Suc) -done + apply (case_tac "poly p = poly []", auto) + apply (simp add: divides_def fun_eq poly_mult) + apply (rule_tac x = "[]" in exI) + apply (auto dest!: order2 [where a=a] + intro: poly_exp_divides simp del: pexp_Suc) + done lemma order_decomp: - "poly p \ poly [] - ==> \q. (poly p = poly (([-a, 1] %^ (order a p)) *** q)) & - ~([-a, 1::'a::{idom,ring_char_0}] divides q)" -apply (unfold divides_def) -apply (drule order2 [where a = a]) -apply (simp add: divides_def del: pexp_Suc pmult_Cons, safe) -apply (rule_tac x = q in exI, safe) -apply (drule_tac x = qa in spec) -apply (auto simp add: poly_mult fun_eq poly_exp mult_ac simp del: pmult_Cons) -done + "poly p \ poly [] \ + \q. (poly p = poly (([-a, 1] %^ (order a p)) *** q)) & + ~([-a, 1::'a::{idom,ring_char_0}] divides q)" + apply (unfold divides_def) + apply (drule order2 [where a = a]) + apply (simp add: divides_def del: pexp_Suc pmult_Cons, safe) + apply (rule_tac x = q in exI, safe) + apply (drule_tac x = qa in spec) + apply (auto simp add: poly_mult fun_eq poly_exp mult_ac simp del: pmult_Cons) + done text{*Important composition properties of orders.*} -lemma order_mult: "poly (p *** q) \ poly [] - ==> order a (p *** q) = order a p + order (a::'a::{idom,ring_char_0}) q" -apply (cut_tac a = a and p = "p***q" and n = "order a p + order a q" in order) -apply (auto simp add: poly_entire simp del: pmult_Cons) -apply (drule_tac a = a in order2)+ -apply safe -apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe) -apply (rule_tac x = "qa *** qaa" in exI) -apply (simp add: poly_mult mult_ac del: pmult_Cons) -apply (drule_tac a = a in order_decomp)+ -apply safe -apply (subgoal_tac "[-a,1] divides (qa *** qaa) ") -apply (simp add: poly_primes del: pmult_Cons) -apply (auto simp add: divides_def simp del: pmult_Cons) -apply (rule_tac x = qb in exI) -apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))") -apply (drule poly_mult_left_cancel [THEN iffD1], force) -apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ") -apply (drule poly_mult_left_cancel [THEN iffD1], force) -apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons) -done - - +lemma order_mult: "poly (p *** q) \ poly [] \ + order a (p *** q) = order a p + order (a::'a::{idom,ring_char_0}) q" + apply (cut_tac a = a and p = "p***q" and n = "order a p + order a q" in order) + apply (auto simp add: poly_entire simp del: pmult_Cons) + apply (drule_tac a = a in order2)+ + apply safe + apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe) + apply (rule_tac x = "qa *** qaa" in exI) + apply (simp add: poly_mult mult_ac del: pmult_Cons) + apply (drule_tac a = a in order_decomp)+ + apply safe + apply (subgoal_tac "[-a,1] divides (qa *** qaa) ") + apply (simp add: poly_primes del: pmult_Cons) + apply (auto simp add: divides_def simp del: pmult_Cons) + apply (rule_tac x = qb in exI) + apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))") + apply (drule poly_mult_left_cancel [THEN iffD1], force) + apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ") + apply (drule poly_mult_left_cancel [THEN iffD1], force) + apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons) + done lemma order_root2: "poly p \ poly [] ==> (poly p a = 0) = (order (a::'a::{idom,ring_char_0}) p \ 0)" -by (rule order_root [THEN ssubst], auto) + by (rule order_root [THEN ssubst], auto) -lemma pmult_one: "[1] *** p = p" -by auto -declare pmult_one [simp] +lemma pmult_one [simp]: "[1] *** p = p" + by auto lemma poly_Nil_zero: "poly [] = poly [0]" -by (simp add: fun_eq) + by (simp add: fun_eq) lemma rsquarefree_decomp: - "[| rsquarefree p; poly p a = (0::'a::{idom,ring_char_0}) |] - ==> \q. (poly p = poly ([-a, 1] *** q)) & poly q a \ 0" -apply (simp add: rsquarefree_def, safe) -apply (frule_tac a = a in order_decomp) -apply (drule_tac x = a in spec) -apply (drule_tac a = a in order_root2 [symmetric]) -apply (auto simp del: pmult_Cons) -apply (rule_tac x = q in exI, safe) -apply (simp add: poly_mult fun_eq) -apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1]) -apply (simp add: divides_def del: pmult_Cons, safe) -apply (drule_tac x = "[]" in spec) -apply (auto simp add: fun_eq) -done + "[| rsquarefree p; poly p a = (0::'a::{idom,ring_char_0}) |] + ==> \q. (poly p = poly ([-a, 1] *** q)) & poly q a \ 0" + apply (simp add: rsquarefree_def, safe) + apply (frule_tac a = a in order_decomp) + apply (drule_tac x = a in spec) + apply (drule_tac a = a in order_root2 [symmetric]) + apply (auto simp del: pmult_Cons) + apply (rule_tac x = q in exI, safe) + apply (simp add: poly_mult fun_eq) + apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1]) + apply (simp add: divides_def del: pmult_Cons, safe) + apply (drule_tac x = "[]" in spec) + apply (auto simp add: fun_eq) + done text{*Normalization of a polynomial.*} -lemma poly_normalize: "poly (pnormalize p) = poly p" -apply (induct "p") -apply (auto simp add: fun_eq) -done -declare poly_normalize [simp] +lemma poly_normalize [simp]: "poly (pnormalize p) = poly p" + by (induct p) (auto simp add: fun_eq) text{*The degree of a polynomial.*} -lemma lemma_degree_zero: - "list_all (%c. c = 0) p \ pnormalize p = []" -by (induct "p", auto) +lemma lemma_degree_zero: "list_all (%c. c = 0) p \ pnormalize p = []" + by (induct p) auto lemma degree_zero: "(poly p = poly ([]:: (('a::{idom,ring_char_0}) list))) \ (degree p = 0)" -apply (simp add: degree_def) -apply (case_tac "pnormalize p = []") -apply (auto simp add: poly_zero lemma_degree_zero ) -done + apply (simp add: degree_def) + apply (case_tac "pnormalize p = []") + apply (auto simp add: poly_zero lemma_degree_zero ) + done lemma pnormalize_sing: "(pnormalize [x] = [x]) \ x \ 0" by simp + lemma pnormalize_pair: "y \ 0 \ (pnormalize [x, y] = [x, y])" by simp -lemma pnormal_cons: "pnormal p \ pnormal (c#p)" + +lemma pnormal_cons: "pnormal p \ pnormal (c#p)" unfolding pnormal_def by simp + lemma pnormal_tail: "p\[] \ pnormal (c#p) \ pnormal p" - unfolding pnormal_def + unfolding pnormal_def apply (cases "pnormalize p = []", auto) - by (cases "c = 0", auto) + apply (cases "c = 0", auto) + done + lemma pnormal_last_nonzero: "pnormal p ==> last p \ 0" apply (induct p, auto simp add: pnormal_def) apply (case_tac "pnormalize p = []", auto) - by (case_tac "a=0", auto) + apply (case_tac "a=0", auto) + done + lemma pnormal_length: "pnormal p \ 0 < length p" unfolding pnormal_def length_greater_0_conv by blast + lemma pnormal_last_length: "\0 < length p ; last p \ 0\ \ pnormal p" apply (induct p, auto) apply (case_tac "p = []", auto) apply (simp add: pnormal_def) - by (rule pnormal_cons, auto) + apply (rule pnormal_cons, auto) + done + lemma pnormal_id: "pnormal p \ (0 < length p \ last p \ 0)" using pnormal_last_length pnormal_length pnormal_last_nonzero by blast text{*Tidier versions of finiteness of roots.*} -lemma poly_roots_finite_set: "poly p \ poly [] ==> finite {x::'a::{idom,ring_char_0}. poly p x = 0}" -unfolding poly_roots_finite . +lemma poly_roots_finite_set: + "poly p \ poly [] \ finite {x::'a::{idom,ring_char_0}. poly p x = 0}" + unfolding poly_roots_finite . text{*bound for polynomial.*} lemma poly_mono: "abs(x) \ k ==> abs(poly p (x::'a::{linordered_idom})) \ poly (map abs p) k" -apply (induct "p", auto) -apply (rule_tac y = "abs a + abs (x * poly p x)" in order_trans) -apply (rule abs_triangle_ineq) -apply (auto intro!: mult_mono simp add: abs_mult) -done + apply (induct "p", auto) + apply (rule_tac y = "abs a + abs (x * poly p x)" in order_trans) + apply (rule abs_triangle_ineq) + apply (auto intro!: mult_mono simp add: abs_mult) + done lemma poly_Sing: "poly [c] x = c" by simp