# HG changeset patch # User haftmann # Date 1193730355 -3600 # Node ID 1aa9c8f022d00d55d4cf415b39eb54582a255cd7 # Parent 022029099a83e5eaa562e7eabe173abb771617a5 simplified proof diff -r 022029099a83 -r 1aa9c8f022d0 src/HOL/Nat.thy --- a/src/HOL/Nat.thy Tue Oct 30 08:45:54 2007 +0100 +++ b/src/HOL/Nat.thy Tue Oct 30 08:45:55 2007 +0100 @@ -1289,7 +1289,7 @@ end lemma abs_of_nat [simp]: "\of_nat n::'a::ordered_idom\ = of_nat n" - by (rule of_nat_0_le_iff [THEN abs_of_nonneg]) + unfolding abs_if by auto lemma nat_diff_split_asm: "P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))" diff -r 022029099a83 -r 1aa9c8f022d0 src/HOL/Power.thy --- a/src/HOL/Power.thy Tue Oct 30 08:45:54 2007 +0100 +++ b/src/HOL/Power.thy Tue Oct 30 08:45:55 2007 +0100 @@ -194,7 +194,8 @@ show ?case by (simp add: zero_less_one) next case (Suc n) - show ?case by (force simp add: prems power_Suc zero_less_mult_iff) + show ?case by (auto simp add: prems power_Suc zero_less_mult_iff + abs_zero) qed lemma zero_le_power_abs [simp]: