# HG changeset patch # User huffman # Date 1272320523 25200 # Node ID 1ad1cfeaec2dd360958b3465e167508ec7a360ba # Parent 3407550278407d9a61ee31cd19c2507df4ac663c move proof of Fashoda meet theorem into separate file diff -r 340755027840 -r 1ad1cfeaec2d src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy --- a/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Mon Apr 26 12:19:57 2010 -0700 +++ b/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Mon Apr 26 15:22:03 2010 -0700 @@ -19,7 +19,7 @@ header {* Results connected with topological dimension. *} theory Brouwer_Fixpoint - imports Convex_Euclidean_Space Vec1 + imports Convex_Euclidean_Space begin lemma brouwer_compactness_lemma: @@ -1430,550 +1430,4 @@ unfolding interval_bij_def split_conv Cart_eq Cart_lambda_beta apply(rule,insert assms,erule_tac x=i in allE) by auto -subsection {*Fashoda meet theorem. *} - -lemma infnorm_2: "infnorm (x::real^2) = max (abs(x$1)) (abs(x$2))" - unfolding infnorm_def UNIV_2 apply(rule Sup_eq) by auto - -lemma infnorm_eq_1_2: "infnorm (x::real^2) = 1 \ - (abs(x$1) \ 1 \ abs(x$2) \ 1 \ (x$1 = -1 \ x$1 = 1 \ x$2 = -1 \ x$2 = 1))" - unfolding infnorm_2 by auto - -lemma infnorm_eq_1_imp: assumes "infnorm (x::real^2) = 1" shows "abs(x$1) \ 1" "abs(x$2) \ 1" - using assms unfolding infnorm_eq_1_2 by auto - -lemma fashoda_unit: fixes f g::"real \ real^2" - assumes "f ` {- 1..1} \ {- 1..1}" "g ` {- 1..1} \ {- 1..1}" - "continuous_on {- 1..1} f" "continuous_on {- 1..1} g" - "f (- 1)$1 = - 1" "f 1$1 = 1" "g (- 1) $2 = -1" "g 1 $2 = 1" - shows "\s\{- 1..1}. \t\{- 1..1}. f s = g t" proof(rule ccontr) - case goal1 note as = this[unfolded bex_simps,rule_format] - def sqprojection \ "\z::real^2. (inverse (infnorm z)) *\<^sub>R z" - def negatex \ "\x::real^2. (vector [-(x$1), x$2])::real^2" - have lem1:"\z::real^2. infnorm(negatex z) = infnorm z" - unfolding negatex_def infnorm_2 vector_2 by auto - have lem2:"\z. z\0 \ infnorm(sqprojection z) = 1" unfolding sqprojection_def - unfolding infnorm_mul[unfolded smult_conv_scaleR] unfolding abs_inverse real_abs_infnorm - unfolding infnorm_eq_0[THEN sym] by auto - let ?F = "(\w::real^2. (f \ (\x. x$1)) w - (g \ (\x. x$2)) w)" - have *:"\i. (\x::real^2. x $ i) ` {- 1..1} = {- 1..1::real}" - apply(rule set_ext) unfolding image_iff Bex_def mem_interval apply rule defer - apply(rule_tac x="vec x" in exI) by auto - { fix x assume "x \ (\w. (f \ (\x. x $ 1)) w - (g \ (\x. x $ 2)) w) ` {- 1..1::real^2}" - then guess w unfolding image_iff .. note w = this - hence "x \ 0" using as[of "w$1" "w$2"] unfolding mem_interval by auto} note x0=this - have 21:"\i::2. i\1 \ i=2" using UNIV_2 by auto - have 1:"{- 1<..<1::real^2} \ {}" unfolding interval_eq_empty by auto - have 2:"continuous_on {- 1..1} (negatex \ sqprojection \ ?F)" apply(rule continuous_on_intros continuous_on_component continuous_on_vec1)+ - prefer 2 apply(rule continuous_on_intros continuous_on_component continuous_on_vec1)+ unfolding * - apply(rule assms)+ apply(rule continuous_on_compose,subst sqprojection_def) - apply(rule continuous_on_mul ) apply(rule continuous_at_imp_continuous_on,rule) apply(rule continuous_at_inv[unfolded o_def]) - apply(rule continuous_at_infnorm) unfolding infnorm_eq_0 defer apply(rule continuous_on_id) apply(rule linear_continuous_on) proof- - show "bounded_linear negatex" apply(rule bounded_linearI') unfolding Cart_eq proof(rule_tac[!] allI) fix i::2 and x y::"real^2" and c::real - show "negatex (x + y) $ i = (negatex x + negatex y) $ i" "negatex (c *s x) $ i = (c *s negatex x) $ i" - apply-apply(case_tac[!] "i\1") prefer 3 apply(drule_tac[1-2] 21) - unfolding negatex_def by(auto simp add:vector_2 ) qed qed(insert x0, auto) - have 3:"(negatex \ sqprojection \ ?F) ` {- 1..1} \ {- 1..1}" unfolding subset_eq apply rule proof- - case goal1 then guess y unfolding image_iff .. note y=this have "?F y \ 0" apply(rule x0) using y(1) by auto - hence *:"infnorm (sqprojection (?F y)) = 1" unfolding y o_def apply- by(rule lem2[rule_format]) - have "infnorm x = 1" unfolding *[THEN sym] y o_def by(rule lem1[rule_format]) - thus "x\{- 1..1}" unfolding mem_interval infnorm_2 apply- apply rule - proof-case goal1 thus ?case apply(cases "i=1") defer apply(drule 21) by auto qed qed - guess x apply(rule brouwer_weak[of "{- 1..1::real^2}" "negatex \ sqprojection \ ?F"]) - apply(rule compact_interval convex_interval)+ unfolding interior_closed_interval - apply(rule 1 2 3)+ . note x=this - have "?F x \ 0" apply(rule x0) using x(1) by auto - hence *:"infnorm (sqprojection (?F x)) = 1" unfolding o_def by(rule lem2[rule_format]) - have nx:"infnorm x = 1" apply(subst x(2)[THEN sym]) unfolding *[THEN sym] o_def by(rule lem1[rule_format]) - have "\x i. x \ 0 \ (0 < (sqprojection x)$i \ 0 < x$i)" "\x i. x \ 0 \ ((sqprojection x)$i < 0 \ x$i < 0)" - apply- apply(rule_tac[!] allI impI)+ proof- fix x::"real^2" and i::2 assume x:"x\0" - have "inverse (infnorm x) > 0" using x[unfolded infnorm_pos_lt[THEN sym]] by auto - thus "(0 < sqprojection x $ i) = (0 < x $ i)" "(sqprojection x $ i < 0) = (x $ i < 0)" - unfolding sqprojection_def vector_component_simps Cart_nth.scaleR real_scaleR_def - unfolding zero_less_mult_iff mult_less_0_iff by(auto simp add:field_simps) qed - note lem3 = this[rule_format] - have x1:"x $ 1 \ {- 1..1::real}" "x $ 2 \ {- 1..1::real}" using x(1) unfolding mem_interval by auto - hence nz:"f (x $ 1) - g (x $ 2) \ 0" unfolding right_minus_eq apply-apply(rule as) by auto - have "x $ 1 = -1 \ x $ 1 = 1 \ x $ 2 = -1 \ x $ 2 = 1" using nx unfolding infnorm_eq_1_2 by auto - thus False proof- fix P Q R S - presume "P \ Q \ R \ S" "P\False" "Q\False" "R\False" "S\False" thus False by auto - next assume as:"x$1 = 1" - hence *:"f (x $ 1) $ 1 = 1" using assms(6) by auto - have "sqprojection (f (x$1) - g (x$2)) $ 1 < 0" - using x(2)[unfolded o_def Cart_eq,THEN spec[where x=1]] - unfolding as negatex_def vector_2 by auto moreover - from x1 have "g (x $ 2) \ {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto - ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval - apply(erule_tac x=1 in allE) by auto - next assume as:"x$1 = -1" - hence *:"f (x $ 1) $ 1 = - 1" using assms(5) by auto - have "sqprojection (f (x$1) - g (x$2)) $ 1 > 0" - using x(2)[unfolded o_def Cart_eq,THEN spec[where x=1]] - unfolding as negatex_def vector_2 by auto moreover - from x1 have "g (x $ 2) \ {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto - ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval - apply(erule_tac x=1 in allE) by auto - next assume as:"x$2 = 1" - hence *:"g (x $ 2) $ 2 = 1" using assms(8) by auto - have "sqprojection (f (x$1) - g (x$2)) $ 2 > 0" - using x(2)[unfolded o_def Cart_eq,THEN spec[where x=2]] - unfolding as negatex_def vector_2 by auto moreover - from x1 have "f (x $ 1) \ {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto - ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval - apply(erule_tac x=2 in allE) by auto - next assume as:"x$2 = -1" - hence *:"g (x $ 2) $ 2 = - 1" using assms(7) by auto - have "sqprojection (f (x$1) - g (x$2)) $ 2 < 0" - using x(2)[unfolded o_def Cart_eq,THEN spec[where x=2]] - unfolding as negatex_def vector_2 by auto moreover - from x1 have "f (x $ 1) \ {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto - ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval - apply(erule_tac x=2 in allE) by auto qed(auto) qed - -lemma fashoda_unit_path: fixes f ::"real \ real^2" and g ::"real \ real^2" - assumes "path f" "path g" "path_image f \ {- 1..1}" "path_image g \ {- 1..1}" - "(pathstart f)$1 = -1" "(pathfinish f)$1 = 1" "(pathstart g)$2 = -1" "(pathfinish g)$2 = 1" - obtains z where "z \ path_image f" "z \ path_image g" proof- - note assms=assms[unfolded path_def pathstart_def pathfinish_def path_image_def] - def iscale \ "\z::real. inverse 2 *\<^sub>R (z + 1)" - have isc:"iscale ` {- 1..1} \ {0..1}" unfolding iscale_def by(auto) - have "\s\{- 1..1}. \t\{- 1..1}. (f \ iscale) s = (g \ iscale) t" proof(rule fashoda_unit) - show "(f \ iscale) ` {- 1..1} \ {- 1..1}" "(g \ iscale) ` {- 1..1} \ {- 1..1}" - using isc and assms(3-4) unfolding image_compose by auto - have *:"continuous_on {- 1..1} iscale" unfolding iscale_def by(rule continuous_on_intros)+ - show "continuous_on {- 1..1} (f \ iscale)" "continuous_on {- 1..1} (g \ iscale)" - apply-apply(rule_tac[!] continuous_on_compose[OF *]) apply(rule_tac[!] continuous_on_subset[OF _ isc]) - by(rule assms)+ have *:"(1 / 2) *\<^sub>R (1 + (1::real^1)) = 1" unfolding Cart_eq by auto - show "(f \ iscale) (- 1) $ 1 = - 1" "(f \ iscale) 1 $ 1 = 1" "(g \ iscale) (- 1) $ 2 = -1" "(g \ iscale) 1 $ 2 = 1" - unfolding o_def iscale_def using assms by(auto simp add:*) qed - then guess s .. from this(2) guess t .. note st=this - show thesis apply(rule_tac z="f (iscale s)" in that) - using st `s\{- 1..1}` unfolding o_def path_image_def image_iff apply- - apply(rule_tac x="iscale s" in bexI) prefer 3 apply(rule_tac x="iscale t" in bexI) - using isc[unfolded subset_eq, rule_format] by auto qed - -lemma fashoda: fixes b::"real^2" - assumes "path f" "path g" "path_image f \ {a..b}" "path_image g \ {a..b}" - "(pathstart f)$1 = a$1" "(pathfinish f)$1 = b$1" - "(pathstart g)$2 = a$2" "(pathfinish g)$2 = b$2" - obtains z where "z \ path_image f" "z \ path_image g" proof- - fix P Q S presume "P \ Q \ S" "P \ thesis" "Q \ thesis" "S \ thesis" thus thesis by auto -next have "{a..b} \ {}" using assms(3) using path_image_nonempty by auto - hence "a \ b" unfolding interval_eq_empty vector_le_def by(auto simp add: not_less) - thus "a$1 = b$1 \ a$2 = b$2 \ (a$1 < b$1 \ a$2 < b$2)" unfolding vector_le_def forall_2 by auto -next assume as:"a$1 = b$1" have "\z\path_image g. z$2 = (pathstart f)$2" apply(rule connected_ivt_component) - apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image) - unfolding assms using assms(3)[unfolded path_image_def subset_eq,rule_format,of "f 0"] - unfolding pathstart_def by(auto simp add: vector_le_def) then guess z .. note z=this - have "z \ {a..b}" using z(1) assms(4) unfolding path_image_def by blast - hence "z = f 0" unfolding Cart_eq forall_2 unfolding z(2) pathstart_def - using assms(3)[unfolded path_image_def subset_eq mem_interval,rule_format,of "f 0" 1] - unfolding mem_interval apply(erule_tac x=1 in allE) using as by auto - thus thesis apply-apply(rule that[OF _ z(1)]) unfolding path_image_def by auto -next assume as:"a$2 = b$2" have "\z\path_image f. z$1 = (pathstart g)$1" apply(rule connected_ivt_component) - apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image) - unfolding assms using assms(4)[unfolded path_image_def subset_eq,rule_format,of "g 0"] - unfolding pathstart_def by(auto simp add: vector_le_def) then guess z .. note z=this - have "z \ {a..b}" using z(1) assms(3) unfolding path_image_def by blast - hence "z = g 0" unfolding Cart_eq forall_2 unfolding z(2) pathstart_def - using assms(4)[unfolded path_image_def subset_eq mem_interval,rule_format,of "g 0" 2] - unfolding mem_interval apply(erule_tac x=2 in allE) using as by auto - thus thesis apply-apply(rule that[OF z(1)]) unfolding path_image_def by auto -next assume as:"a $ 1 < b $ 1 \ a $ 2 < b $ 2" - have int_nem:"{- 1..1::real^2} \ {}" unfolding interval_eq_empty by auto - guess z apply(rule fashoda_unit_path[of "interval_bij (a,b) (- 1,1) \ f" "interval_bij (a,b) (- 1,1) \ g"]) - unfolding path_def path_image_def pathstart_def pathfinish_def - apply(rule_tac[1-2] continuous_on_compose) apply(rule assms[unfolded path_def] continuous_on_interval_bij)+ - unfolding subset_eq apply(rule_tac[1-2] ballI) - proof- fix x assume "x \ (interval_bij (a, b) (- 1, 1) \ f) ` {0..1}" - then guess y unfolding image_iff .. note y=this - show "x \ {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij) - using y(1) using assms(3)[unfolded path_image_def subset_eq] int_nem by auto - next fix x assume "x \ (interval_bij (a, b) (- 1, 1) \ g) ` {0..1}" - then guess y unfolding image_iff .. note y=this - show "x \ {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij) - using y(1) using assms(4)[unfolded path_image_def subset_eq] int_nem by auto - next show "(interval_bij (a, b) (- 1, 1) \ f) 0 $ 1 = -1" - "(interval_bij (a, b) (- 1, 1) \ f) 1 $ 1 = 1" - "(interval_bij (a, b) (- 1, 1) \ g) 0 $ 2 = -1" - "(interval_bij (a, b) (- 1, 1) \ g) 1 $ 2 = 1" unfolding interval_bij_def Cart_lambda_beta vector_component_simps o_def split_conv - unfolding assms[unfolded pathstart_def pathfinish_def] using as by auto qed note z=this - from z(1) guess zf unfolding image_iff .. note zf=this - from z(2) guess zg unfolding image_iff .. note zg=this - have *:"\i. (- 1) $ i < (1::real^2) $ i \ a $ i < b $ i" unfolding forall_2 using as by auto - show thesis apply(rule_tac z="interval_bij (- 1,1) (a,b) z" in that) - apply(subst zf) defer apply(subst zg) unfolding o_def interval_bij_bij[OF *] path_image_def - using zf(1) zg(1) by auto qed - -subsection {*Some slightly ad hoc lemmas I use below*} - -lemma segment_vertical: fixes a::"real^2" assumes "a$1 = b$1" - shows "x \ closed_segment a b \ (x$1 = a$1 \ x$1 = b$1 \ - (a$2 \ x$2 \ x$2 \ b$2 \ b$2 \ x$2 \ x$2 \ a$2))" (is "_ = ?R") -proof- - let ?L = "\u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \ x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \ 0 \ u \ u \ 1" - { presume "?L \ ?R" "?R \ ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq - unfolding Cart_eq forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast } - { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this - { fix b a assume "b + u * a > a + u * b" - hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps) - hence "b \ a" apply(drule_tac mult_less_imp_less_left) using u by auto - hence "u * a \ u * b" apply-apply(rule mult_left_mono[OF _ u(3)]) - using u(3-4) by(auto simp add:field_simps) } note * = this - { fix a b assume "u * b > u * a" hence "(1 - u) * a \ (1 - u) * b" apply-apply(rule mult_left_mono) - apply(drule mult_less_imp_less_left) using u by auto - hence "a + u * b \ b + u * a" by(auto simp add:field_simps) } note ** = this - thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) } - { assume ?R thus ?L proof(cases "x$2 = b$2") - case True thus ?L apply(rule_tac x="(x$2 - a$2) / (b$2 - a$2)" in exI) unfolding assms True - using `?R` by(auto simp add:field_simps) - next case False thus ?L apply(rule_tac x="1 - (x$2 - b$2) / (a$2 - b$2)" in exI) unfolding assms using `?R` - by(auto simp add:field_simps) - qed } qed - -lemma segment_horizontal: fixes a::"real^2" assumes "a$2 = b$2" - shows "x \ closed_segment a b \ (x$2 = a$2 \ x$2 = b$2 \ - (a$1 \ x$1 \ x$1 \ b$1 \ b$1 \ x$1 \ x$1 \ a$1))" (is "_ = ?R") -proof- - let ?L = "\u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \ x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \ 0 \ u \ u \ 1" - { presume "?L \ ?R" "?R \ ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq - unfolding Cart_eq forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast } - { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this - { fix b a assume "b + u * a > a + u * b" - hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps) - hence "b \ a" apply(drule_tac mult_less_imp_less_left) using u by auto - hence "u * a \ u * b" apply-apply(rule mult_left_mono[OF _ u(3)]) - using u(3-4) by(auto simp add:field_simps) } note * = this - { fix a b assume "u * b > u * a" hence "(1 - u) * a \ (1 - u) * b" apply-apply(rule mult_left_mono) - apply(drule mult_less_imp_less_left) using u by auto - hence "a + u * b \ b + u * a" by(auto simp add:field_simps) } note ** = this - thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) } - { assume ?R thus ?L proof(cases "x$1 = b$1") - case True thus ?L apply(rule_tac x="(x$1 - a$1) / (b$1 - a$1)" in exI) unfolding assms True - using `?R` by(auto simp add:field_simps) - next case False thus ?L apply(rule_tac x="1 - (x$1 - b$1) / (a$1 - b$1)" in exI) unfolding assms using `?R` - by(auto simp add:field_simps) - qed } qed - -subsection {*useful Fashoda corollary pointed out to me by Tom Hales. *} - -lemma fashoda_interlace: fixes a::"real^2" - assumes "path f" "path g" - "path_image f \ {a..b}" "path_image g \ {a..b}" - "(pathstart f)$2 = a$2" "(pathfinish f)$2 = a$2" - "(pathstart g)$2 = a$2" "(pathfinish g)$2 = a$2" - "(pathstart f)$1 < (pathstart g)$1" "(pathstart g)$1 < (pathfinish f)$1" - "(pathfinish f)$1 < (pathfinish g)$1" - obtains z where "z \ path_image f" "z \ path_image g" -proof- - have "{a..b} \ {}" using path_image_nonempty using assms(3) by auto - note ab=this[unfolded interval_eq_empty not_ex forall_2 not_less] - have "pathstart f \ {a..b}" "pathfinish f \ {a..b}" "pathstart g \ {a..b}" "pathfinish g \ {a..b}" - using pathstart_in_path_image pathfinish_in_path_image using assms(3-4) by auto - note startfin = this[unfolded mem_interval forall_2] - let ?P1 = "linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2]) +++ - linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f) +++ f +++ - linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2]) +++ - linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2])" - let ?P2 = "linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g) +++ g +++ - linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1]) +++ - linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1]) +++ - linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3])" - let ?a = "vector[a$1 - 2, a$2 - 3]" - let ?b = "vector[b$1 + 2, b$2 + 3]" - have P1P2:"path_image ?P1 = path_image (linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2])) \ - path_image (linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f)) \ path_image f \ - path_image (linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2])) \ - path_image (linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2]))" - "path_image ?P2 = path_image(linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g)) \ path_image g \ - path_image(linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1])) \ - path_image(linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1])) \ - path_image(linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3]))" using assms(1-2) - by(auto simp add: path_image_join path_linepath) - have abab: "{a..b} \ {?a..?b}" by(auto simp add:vector_le_def forall_2 vector_2) - guess z apply(rule fashoda[of ?P1 ?P2 ?a ?b]) - unfolding pathstart_join pathfinish_join pathstart_linepath pathfinish_linepath vector_2 proof- - show "path ?P1" "path ?P2" using assms by auto - have "path_image ?P1 \ {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 3 - apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format]) - unfolding mem_interval forall_2 vector_2 using ab startfin abab assms(3) - using assms(9-) unfolding assms by(auto simp add:field_simps) - thus "path_image ?P1 \ {?a .. ?b}" . - have "path_image ?P2 \ {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 2 - apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format]) - unfolding mem_interval forall_2 vector_2 using ab startfin abab assms(4) - using assms(9-) unfolding assms by(auto simp add:field_simps) - thus "path_image ?P2 \ {?a .. ?b}" . - show "a $ 1 - 2 = a $ 1 - 2" "b $ 1 + 2 = b $ 1 + 2" "pathstart g $ 2 - 3 = a $ 2 - 3" "b $ 2 + 3 = b $ 2 + 3" - by(auto simp add: assms) - qed note z=this[unfolded P1P2 path_image_linepath] - show thesis apply(rule that[of z]) proof- - have "(z \ closed_segment (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) \ - z \ closed_segment (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f)) \ - z \ closed_segment (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) \ - z \ closed_segment (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]) \ - (((z \ closed_segment (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g)) \ - z \ closed_segment (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1])) \ - z \ closed_segment (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1])) \ - z \ closed_segment (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]) \ False" - apply(simp only: segment_vertical segment_horizontal vector_2) proof- case goal1 note as=this - have "pathfinish f \ {a..b}" using assms(3) pathfinish_in_path_image[of f] by auto - hence "1 + b $ 1 \ pathfinish f $ 1 \ False" unfolding mem_interval forall_2 by auto - hence "z$1 \ pathfinish f$1" using as(2) using assms ab by(auto simp add:field_simps) - moreover have "pathstart f \ {a..b}" using assms(3) pathstart_in_path_image[of f] by auto - hence "1 + b $ 1 \ pathstart f $ 1 \ False" unfolding mem_interval forall_2 by auto - hence "z$1 \ pathstart f$1" using as(2) using assms ab by(auto simp add:field_simps) - ultimately have *:"z$2 = a$2 - 2" using goal1(1) by auto - have "z$1 \ pathfinish g$1" using as(2) using assms ab by(auto simp add:field_simps *) - moreover have "pathstart g \ {a..b}" using assms(4) pathstart_in_path_image[of g] by auto - note this[unfolded mem_interval forall_2] - hence "z$1 \ pathstart g$1" using as(1) using assms ab by(auto simp add:field_simps *) - ultimately have "a $ 2 - 1 \ z $ 2 \ z $ 2 \ b $ 2 + 3 \ b $ 2 + 3 \ z $ 2 \ z $ 2 \ a $ 2 - 1" - using as(2) unfolding * assms by(auto simp add:field_simps) - thus False unfolding * using ab by auto - qed hence "z \ path_image f \ z \ path_image g" using z unfolding Un_iff by blast - hence z':"z\{a..b}" using assms(3-4) by auto - have "a $ 2 = z $ 2 \ (z $ 1 = pathstart f $ 1 \ z $ 1 = pathfinish f $ 1) \ (z = pathstart f \ z = pathfinish f)" - unfolding Cart_eq forall_2 assms by auto - with z' show "z\path_image f" using z(1) unfolding Un_iff mem_interval forall_2 apply- - apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto - have "a $ 2 = z $ 2 \ (z $ 1 = pathstart g $ 1 \ z $ 1 = pathfinish g $ 1) \ (z = pathstart g \ z = pathfinish g)" - unfolding Cart_eq forall_2 assms by auto - with z' show "z\path_image g" using z(2) unfolding Un_iff mem_interval forall_2 apply- - apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto - qed qed - -(** The Following still needs to be translated. Maybe I will do that later. - -(* ------------------------------------------------------------------------- *) -(* Complement in dimension N >= 2 of set homeomorphic to any interval in *) -(* any dimension is (path-)connected. This naively generalizes the argument *) -(* in Ryuji Maehara's paper "The Jordan curve theorem via the Brouwer *) -(* fixed point theorem", American Mathematical Monthly 1984. *) -(* ------------------------------------------------------------------------- *) - -let RETRACTION_INJECTIVE_IMAGE_INTERVAL = prove - (`!p:real^M->real^N a b. - ~(interval[a,b] = {}) /\ - p continuous_on interval[a,b] /\ - (!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ p x = p y ==> x = y) - ==> ?f. f continuous_on (:real^N) /\ - IMAGE f (:real^N) SUBSET (IMAGE p (interval[a,b])) /\ - (!x. x IN (IMAGE p (interval[a,b])) ==> f x = x)`, - REPEAT STRIP_TAC THEN - FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN - DISCH_THEN(X_CHOOSE_TAC `q:real^N->real^M`) THEN - SUBGOAL_THEN `(q:real^N->real^M) continuous_on - (IMAGE p (interval[a:real^M,b]))` - ASSUME_TAC THENL - [MATCH_MP_TAC CONTINUOUS_ON_INVERSE THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]; - ALL_TAC] THEN - MP_TAC(ISPECL [`q:real^N->real^M`; - `IMAGE (p:real^M->real^N) - (interval[a,b])`; - `a:real^M`; `b:real^M`] - TIETZE_CLOSED_INTERVAL) THEN - ASM_SIMP_TAC[COMPACT_INTERVAL; COMPACT_CONTINUOUS_IMAGE; - COMPACT_IMP_CLOSED] THEN - ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN - DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^M` STRIP_ASSUME_TAC) THEN - EXISTS_TAC `(p:real^M->real^N) o (r:real^N->real^M)` THEN - REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM; IN_UNIV] THEN - CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN - MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN - FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ] - CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; - -let UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove - (`!s:real^N->bool a b:real^M. - s homeomorphic (interval[a,b]) - ==> !x. ~(x IN s) ==> ~bounded(path_component((:real^N) DIFF s) x)`, - REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; homeomorphism] THEN - REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN - MAP_EVERY X_GEN_TAC [`p':real^N->real^M`; `p:real^M->real^N`] THEN - DISCH_TAC THEN - SUBGOAL_THEN - `!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ - (p:real^M->real^N) x = p y ==> x = y` - ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN - FIRST_X_ASSUM(MP_TAC o funpow 4 CONJUNCT2) THEN - DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN - ASM_CASES_TAC `interval[a:real^M,b] = {}` THEN - ASM_REWRITE_TAC[IMAGE_CLAUSES; DIFF_EMPTY; PATH_COMPONENT_UNIV; - NOT_BOUNDED_UNIV] THEN - ABBREV_TAC `s = (:real^N) DIFF (IMAGE p (interval[a:real^M,b]))` THEN - X_GEN_TAC `c:real^N` THEN REPEAT STRIP_TAC THEN - SUBGOAL_THEN `(c:real^N) IN s` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN - SUBGOAL_THEN `bounded((path_component s c) UNION - (IMAGE (p:real^M->real^N) (interval[a,b])))` - MP_TAC THENL - [ASM_SIMP_TAC[BOUNDED_UNION; COMPACT_IMP_BOUNDED; COMPACT_IMP_BOUNDED; - COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; - ALL_TAC] THEN - DISCH_THEN(MP_TAC o SPEC `c:real^N` o MATCH_MP BOUNDED_SUBSET_BALL) THEN - REWRITE_TAC[UNION_SUBSET] THEN - DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN - MP_TAC(ISPECL [`p:real^M->real^N`; `a:real^M`; `b:real^M`] - RETRACTION_INJECTIVE_IMAGE_INTERVAL) THEN - ASM_REWRITE_TAC[SUBSET; IN_UNIV] THEN - DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` MP_TAC) THEN - DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC - (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN - REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN DISCH_TAC THEN - ABBREV_TAC `q = \z:real^N. if z IN path_component s c then r(z) else z` THEN - SUBGOAL_THEN - `(q:real^N->real^N) continuous_on - (closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)))` - MP_TAC THENL - [EXPAND_TAC "q" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES THEN - REWRITE_TAC[CLOSED_CLOSURE; CONTINUOUS_ON_ID; GSYM OPEN_CLOSED] THEN - REPEAT CONJ_TAC THENL - [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN - ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED; - COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; - ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; - ALL_TAC] THEN - X_GEN_TAC `z:real^N` THEN - REWRITE_TAC[SET_RULE `~(z IN (s DIFF t) /\ z IN t)`] THEN - STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN - MP_TAC(ISPECL - [`path_component s (z:real^N)`; `path_component s (c:real^N)`] - OPEN_INTER_CLOSURE_EQ_EMPTY) THEN - ASM_REWRITE_TAC[GSYM DISJOINT; PATH_COMPONENT_DISJOINT] THEN ANTS_TAC THENL - [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN - ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED; - COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; - REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN - DISCH_THEN(MP_TAC o SPEC `z:real^N`) THEN ASM_REWRITE_TAC[] THEN - GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [IN] THEN - REWRITE_TAC[PATH_COMPONENT_REFL_EQ] THEN ASM SET_TAC[]]; - ALL_TAC] THEN - SUBGOAL_THEN - `closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)) = - (:real^N)` - SUBST1_TAC THENL - [MATCH_MP_TAC(SET_RULE `s SUBSET t ==> t UNION (UNIV DIFF s) = UNIV`) THEN - REWRITE_TAC[CLOSURE_SUBSET]; - DISCH_TAC] THEN - MP_TAC(ISPECL - [`(\x. &2 % c - x) o - (\x. c + B / norm(x - c) % (x - c)) o (q:real^N->real^N)`; - `cball(c:real^N,B)`] - BROUWER) THEN - REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; COMPACT_CBALL; CONVEX_CBALL] THEN - ASM_SIMP_TAC[CBALL_EQ_EMPTY; REAL_LT_IMP_LE; REAL_NOT_LT] THEN - SUBGOAL_THEN `!x. ~((q:real^N->real^N) x = c)` ASSUME_TAC THENL - [X_GEN_TAC `x:real^N` THEN EXPAND_TAC "q" THEN - REWRITE_TAC[NORM_EQ_0; VECTOR_SUB_EQ] THEN COND_CASES_TAC THEN - ASM SET_TAC[PATH_COMPONENT_REFL_EQ]; - ALL_TAC] THEN - REPEAT CONJ_TAC THENL - [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN - SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN - MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL - [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; ALL_TAC] THEN - MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN - MATCH_MP_TAC CONTINUOUS_ON_MUL THEN - SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN - REWRITE_TAC[o_DEF; real_div; LIFT_CMUL] THEN - MATCH_MP_TAC CONTINUOUS_ON_CMUL THEN - MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_INV) THEN - ASM_REWRITE_TAC[FORALL_IN_IMAGE; NORM_EQ_0; VECTOR_SUB_EQ] THEN - SUBGOAL_THEN - `(\x:real^N. lift(norm(x - c))) = (lift o norm) o (\x. x - c)` - SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN - MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN - ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST; - CONTINUOUS_ON_LIFT_NORM]; - REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_CBALL; o_THM; dist] THEN - X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN - REWRITE_TAC[VECTOR_ARITH `c - (&2 % c - (c + x)) = x`] THEN - REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN - ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN - ASM_REAL_ARITH_TAC; - REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(c /\ b) <=> c ==> ~b`] THEN - REWRITE_TAC[IN_CBALL; o_THM; dist] THEN - X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN - REWRITE_TAC[VECTOR_ARITH `&2 % c - (c + x') = x <=> --x' = x - c`] THEN - ASM_CASES_TAC `(x:real^N) IN path_component s c` THENL - [MATCH_MP_TAC(NORM_ARITH `norm(y) < B /\ norm(x) = B ==> ~(--x = y)`) THEN - REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN - ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN - ASM_SIMP_TAC[REAL_ARITH `&0 < B ==> abs B = B`] THEN - UNDISCH_TAC `path_component s c SUBSET ball(c:real^N,B)` THEN - REWRITE_TAC[SUBSET; IN_BALL] THEN ASM_MESON_TAC[dist; NORM_SUB]; - EXPAND_TAC "q" THEN REWRITE_TAC[] THEN ASM_REWRITE_TAC[] THEN - REWRITE_TAC[VECTOR_ARITH `--(c % x) = x <=> (&1 + c) % x = vec 0`] THEN - ASM_REWRITE_TAC[DE_MORGAN_THM; VECTOR_SUB_EQ; VECTOR_MUL_EQ_0] THEN - SUBGOAL_THEN `~(x:real^N = c)` ASSUME_TAC THENL - [ASM_MESON_TAC[PATH_COMPONENT_REFL; IN]; ALL_TAC] THEN - ASM_REWRITE_TAC[] THEN - MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(&1 + x = &0)`) THEN - ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]]]);; - -let PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove - (`!s:real^N->bool a b:real^M. - 2 <= dimindex(:N) /\ s homeomorphic interval[a,b] - ==> path_connected((:real^N) DIFF s)`, - REPEAT STRIP_TAC THEN REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN - FIRST_ASSUM(MP_TAC o MATCH_MP - UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN - ASM_REWRITE_TAC[SET_RULE `~(x IN s) <=> x IN (UNIV DIFF s)`] THEN - ABBREV_TAC `t = (:real^N) DIFF s` THEN - DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN - STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HOMEOMORPHIC_COMPACTNESS) THEN - REWRITE_TAC[COMPACT_INTERVAL] THEN - DISCH_THEN(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN - REWRITE_TAC[BOUNDED_POS; LEFT_IMP_EXISTS_THM] THEN - X_GEN_TAC `B:real` THEN STRIP_TAC THEN - SUBGOAL_THEN `(?u:real^N. u IN path_component t x /\ B < norm(u)) /\ - (?v:real^N. v IN path_component t y /\ B < norm(v))` - STRIP_ASSUME_TAC THENL - [ASM_MESON_TAC[BOUNDED_POS; REAL_NOT_LE]; ALL_TAC] THEN - MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `u:real^N` THEN - CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN - MATCH_MP_TAC PATH_COMPONENT_SYM THEN - MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `v:real^N` THEN - CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN - MATCH_MP_TAC PATH_COMPONENT_OF_SUBSET THEN - EXISTS_TAC `(:real^N) DIFF cball(vec 0,B)` THEN CONJ_TAC THENL - [EXPAND_TAC "t" THEN MATCH_MP_TAC(SET_RULE - `s SUBSET t ==> (u DIFF t) SUBSET (u DIFF s)`) THEN - ASM_REWRITE_TAC[SUBSET; IN_CBALL_0]; - MP_TAC(ISPEC `cball(vec 0:real^N,B)` - PATH_CONNECTED_COMPLEMENT_BOUNDED_CONVEX) THEN - ASM_REWRITE_TAC[BOUNDED_CBALL; CONVEX_CBALL] THEN - REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN - DISCH_THEN MATCH_MP_TAC THEN - ASM_REWRITE_TAC[IN_DIFF; IN_UNIV; IN_CBALL_0; REAL_NOT_LE]]);; - -(* ------------------------------------------------------------------------- *) -(* In particular, apply all these to the special case of an arc. *) -(* ------------------------------------------------------------------------- *) - -let RETRACTION_ARC = prove - (`!p. arc p - ==> ?f. f continuous_on (:real^N) /\ - IMAGE f (:real^N) SUBSET path_image p /\ - (!x. x IN path_image p ==> f x = x)`, - REWRITE_TAC[arc; path; path_image] THEN REPEAT STRIP_TAC THEN - MATCH_MP_TAC RETRACTION_INJECTIVE_IMAGE_INTERVAL THEN - ASM_REWRITE_TAC[INTERVAL_EQ_EMPTY_1; DROP_VEC; REAL_NOT_LT; REAL_POS]);; - -let PATH_CONNECTED_ARC_COMPLEMENT = prove - (`!p. 2 <= dimindex(:N) /\ arc p - ==> path_connected((:real^N) DIFF path_image p)`, - REWRITE_TAC[arc; path] THEN REPEAT STRIP_TAC THEN SIMP_TAC[path_image] THEN - MP_TAC(ISPECL [`path_image p:real^N->bool`; `vec 0:real^1`; `vec 1:real^1`] - PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN - ASM_REWRITE_TAC[path_image] THEN DISCH_THEN MATCH_MP_TAC THEN - ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN - MATCH_MP_TAC HOMEOMORPHIC_COMPACT THEN - EXISTS_TAC `p:real^1->real^N` THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]);; - -let CONNECTED_ARC_COMPLEMENT = prove - (`!p. 2 <= dimindex(:N) /\ arc p - ==> connected((:real^N) DIFF path_image p)`, - SIMP_TAC[PATH_CONNECTED_ARC_COMPLEMENT; PATH_CONNECTED_IMP_CONNECTED]);; *) - end diff -r 340755027840 -r 1ad1cfeaec2d src/HOL/Multivariate_Analysis/Derivative.thy --- a/src/HOL/Multivariate_Analysis/Derivative.thy Mon Apr 26 12:19:57 2010 -0700 +++ b/src/HOL/Multivariate_Analysis/Derivative.thy Mon Apr 26 15:22:03 2010 -0700 @@ -6,7 +6,7 @@ header {* Multivariate calculus in Euclidean space. *} theory Derivative -imports Brouwer_Fixpoint RealVector +imports Brouwer_Fixpoint Vec1 RealVector begin diff -r 340755027840 -r 1ad1cfeaec2d src/HOL/Multivariate_Analysis/Fashoda.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Multivariate_Analysis/Fashoda.thy Mon Apr 26 15:22:03 2010 -0700 @@ -0,0 +1,556 @@ +(* Author: John Harrison + Translation from HOL light: Robert Himmelmann, TU Muenchen *) + +header {* Fashoda meet theorem. *} + +theory Fashoda +imports Brouwer_Fixpoint Vec1 +begin + +subsection {*Fashoda meet theorem. *} + +lemma infnorm_2: "infnorm (x::real^2) = max (abs(x$1)) (abs(x$2))" + unfolding infnorm_def UNIV_2 apply(rule Sup_eq) by auto + +lemma infnorm_eq_1_2: "infnorm (x::real^2) = 1 \ + (abs(x$1) \ 1 \ abs(x$2) \ 1 \ (x$1 = -1 \ x$1 = 1 \ x$2 = -1 \ x$2 = 1))" + unfolding infnorm_2 by auto + +lemma infnorm_eq_1_imp: assumes "infnorm (x::real^2) = 1" shows "abs(x$1) \ 1" "abs(x$2) \ 1" + using assms unfolding infnorm_eq_1_2 by auto + +lemma fashoda_unit: fixes f g::"real \ real^2" + assumes "f ` {- 1..1} \ {- 1..1}" "g ` {- 1..1} \ {- 1..1}" + "continuous_on {- 1..1} f" "continuous_on {- 1..1} g" + "f (- 1)$1 = - 1" "f 1$1 = 1" "g (- 1) $2 = -1" "g 1 $2 = 1" + shows "\s\{- 1..1}. \t\{- 1..1}. f s = g t" proof(rule ccontr) + case goal1 note as = this[unfolded bex_simps,rule_format] + def sqprojection \ "\z::real^2. (inverse (infnorm z)) *\<^sub>R z" + def negatex \ "\x::real^2. (vector [-(x$1), x$2])::real^2" + have lem1:"\z::real^2. infnorm(negatex z) = infnorm z" + unfolding negatex_def infnorm_2 vector_2 by auto + have lem2:"\z. z\0 \ infnorm(sqprojection z) = 1" unfolding sqprojection_def + unfolding infnorm_mul[unfolded smult_conv_scaleR] unfolding abs_inverse real_abs_infnorm + unfolding infnorm_eq_0[THEN sym] by auto + let ?F = "(\w::real^2. (f \ (\x. x$1)) w - (g \ (\x. x$2)) w)" + have *:"\i. (\x::real^2. x $ i) ` {- 1..1} = {- 1..1::real}" + apply(rule set_ext) unfolding image_iff Bex_def mem_interval apply rule defer + apply(rule_tac x="vec x" in exI) by auto + { fix x assume "x \ (\w. (f \ (\x. x $ 1)) w - (g \ (\x. x $ 2)) w) ` {- 1..1::real^2}" + then guess w unfolding image_iff .. note w = this + hence "x \ 0" using as[of "w$1" "w$2"] unfolding mem_interval by auto} note x0=this + have 21:"\i::2. i\1 \ i=2" using UNIV_2 by auto + have 1:"{- 1<..<1::real^2} \ {}" unfolding interval_eq_empty by auto + have 2:"continuous_on {- 1..1} (negatex \ sqprojection \ ?F)" apply(rule continuous_on_intros continuous_on_component continuous_on_vec1)+ + prefer 2 apply(rule continuous_on_intros continuous_on_component continuous_on_vec1)+ unfolding * + apply(rule assms)+ apply(rule continuous_on_compose,subst sqprojection_def) + apply(rule continuous_on_mul ) apply(rule continuous_at_imp_continuous_on,rule) apply(rule continuous_at_inv[unfolded o_def]) + apply(rule continuous_at_infnorm) unfolding infnorm_eq_0 defer apply(rule continuous_on_id) apply(rule linear_continuous_on) proof- + show "bounded_linear negatex" apply(rule bounded_linearI') unfolding Cart_eq proof(rule_tac[!] allI) fix i::2 and x y::"real^2" and c::real + show "negatex (x + y) $ i = (negatex x + negatex y) $ i" "negatex (c *s x) $ i = (c *s negatex x) $ i" + apply-apply(case_tac[!] "i\1") prefer 3 apply(drule_tac[1-2] 21) + unfolding negatex_def by(auto simp add:vector_2 ) qed qed(insert x0, auto) + have 3:"(negatex \ sqprojection \ ?F) ` {- 1..1} \ {- 1..1}" unfolding subset_eq apply rule proof- + case goal1 then guess y unfolding image_iff .. note y=this have "?F y \ 0" apply(rule x0) using y(1) by auto + hence *:"infnorm (sqprojection (?F y)) = 1" unfolding y o_def apply- by(rule lem2[rule_format]) + have "infnorm x = 1" unfolding *[THEN sym] y o_def by(rule lem1[rule_format]) + thus "x\{- 1..1}" unfolding mem_interval infnorm_2 apply- apply rule + proof-case goal1 thus ?case apply(cases "i=1") defer apply(drule 21) by auto qed qed + guess x apply(rule brouwer_weak[of "{- 1..1::real^2}" "negatex \ sqprojection \ ?F"]) + apply(rule compact_interval convex_interval)+ unfolding interior_closed_interval + apply(rule 1 2 3)+ . note x=this + have "?F x \ 0" apply(rule x0) using x(1) by auto + hence *:"infnorm (sqprojection (?F x)) = 1" unfolding o_def by(rule lem2[rule_format]) + have nx:"infnorm x = 1" apply(subst x(2)[THEN sym]) unfolding *[THEN sym] o_def by(rule lem1[rule_format]) + have "\x i. x \ 0 \ (0 < (sqprojection x)$i \ 0 < x$i)" "\x i. x \ 0 \ ((sqprojection x)$i < 0 \ x$i < 0)" + apply- apply(rule_tac[!] allI impI)+ proof- fix x::"real^2" and i::2 assume x:"x\0" + have "inverse (infnorm x) > 0" using x[unfolded infnorm_pos_lt[THEN sym]] by auto + thus "(0 < sqprojection x $ i) = (0 < x $ i)" "(sqprojection x $ i < 0) = (x $ i < 0)" + unfolding sqprojection_def vector_component_simps Cart_nth.scaleR real_scaleR_def + unfolding zero_less_mult_iff mult_less_0_iff by(auto simp add:field_simps) qed + note lem3 = this[rule_format] + have x1:"x $ 1 \ {- 1..1::real}" "x $ 2 \ {- 1..1::real}" using x(1) unfolding mem_interval by auto + hence nz:"f (x $ 1) - g (x $ 2) \ 0" unfolding right_minus_eq apply-apply(rule as) by auto + have "x $ 1 = -1 \ x $ 1 = 1 \ x $ 2 = -1 \ x $ 2 = 1" using nx unfolding infnorm_eq_1_2 by auto + thus False proof- fix P Q R S + presume "P \ Q \ R \ S" "P\False" "Q\False" "R\False" "S\False" thus False by auto + next assume as:"x$1 = 1" + hence *:"f (x $ 1) $ 1 = 1" using assms(6) by auto + have "sqprojection (f (x$1) - g (x$2)) $ 1 < 0" + using x(2)[unfolded o_def Cart_eq,THEN spec[where x=1]] + unfolding as negatex_def vector_2 by auto moreover + from x1 have "g (x $ 2) \ {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto + ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval + apply(erule_tac x=1 in allE) by auto + next assume as:"x$1 = -1" + hence *:"f (x $ 1) $ 1 = - 1" using assms(5) by auto + have "sqprojection (f (x$1) - g (x$2)) $ 1 > 0" + using x(2)[unfolded o_def Cart_eq,THEN spec[where x=1]] + unfolding as negatex_def vector_2 by auto moreover + from x1 have "g (x $ 2) \ {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto + ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval + apply(erule_tac x=1 in allE) by auto + next assume as:"x$2 = 1" + hence *:"g (x $ 2) $ 2 = 1" using assms(8) by auto + have "sqprojection (f (x$1) - g (x$2)) $ 2 > 0" + using x(2)[unfolded o_def Cart_eq,THEN spec[where x=2]] + unfolding as negatex_def vector_2 by auto moreover + from x1 have "f (x $ 1) \ {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto + ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval + apply(erule_tac x=2 in allE) by auto + next assume as:"x$2 = -1" + hence *:"g (x $ 2) $ 2 = - 1" using assms(7) by auto + have "sqprojection (f (x$1) - g (x$2)) $ 2 < 0" + using x(2)[unfolded o_def Cart_eq,THEN spec[where x=2]] + unfolding as negatex_def vector_2 by auto moreover + from x1 have "f (x $ 1) \ {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto + ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval + apply(erule_tac x=2 in allE) by auto qed(auto) qed + +lemma fashoda_unit_path: fixes f ::"real \ real^2" and g ::"real \ real^2" + assumes "path f" "path g" "path_image f \ {- 1..1}" "path_image g \ {- 1..1}" + "(pathstart f)$1 = -1" "(pathfinish f)$1 = 1" "(pathstart g)$2 = -1" "(pathfinish g)$2 = 1" + obtains z where "z \ path_image f" "z \ path_image g" proof- + note assms=assms[unfolded path_def pathstart_def pathfinish_def path_image_def] + def iscale \ "\z::real. inverse 2 *\<^sub>R (z + 1)" + have isc:"iscale ` {- 1..1} \ {0..1}" unfolding iscale_def by(auto) + have "\s\{- 1..1}. \t\{- 1..1}. (f \ iscale) s = (g \ iscale) t" proof(rule fashoda_unit) + show "(f \ iscale) ` {- 1..1} \ {- 1..1}" "(g \ iscale) ` {- 1..1} \ {- 1..1}" + using isc and assms(3-4) unfolding image_compose by auto + have *:"continuous_on {- 1..1} iscale" unfolding iscale_def by(rule continuous_on_intros)+ + show "continuous_on {- 1..1} (f \ iscale)" "continuous_on {- 1..1} (g \ iscale)" + apply-apply(rule_tac[!] continuous_on_compose[OF *]) apply(rule_tac[!] continuous_on_subset[OF _ isc]) + by(rule assms)+ have *:"(1 / 2) *\<^sub>R (1 + (1::real^1)) = 1" unfolding Cart_eq by auto + show "(f \ iscale) (- 1) $ 1 = - 1" "(f \ iscale) 1 $ 1 = 1" "(g \ iscale) (- 1) $ 2 = -1" "(g \ iscale) 1 $ 2 = 1" + unfolding o_def iscale_def using assms by(auto simp add:*) qed + then guess s .. from this(2) guess t .. note st=this + show thesis apply(rule_tac z="f (iscale s)" in that) + using st `s\{- 1..1}` unfolding o_def path_image_def image_iff apply- + apply(rule_tac x="iscale s" in bexI) prefer 3 apply(rule_tac x="iscale t" in bexI) + using isc[unfolded subset_eq, rule_format] by auto qed + +lemma fashoda: fixes b::"real^2" + assumes "path f" "path g" "path_image f \ {a..b}" "path_image g \ {a..b}" + "(pathstart f)$1 = a$1" "(pathfinish f)$1 = b$1" + "(pathstart g)$2 = a$2" "(pathfinish g)$2 = b$2" + obtains z where "z \ path_image f" "z \ path_image g" proof- + fix P Q S presume "P \ Q \ S" "P \ thesis" "Q \ thesis" "S \ thesis" thus thesis by auto +next have "{a..b} \ {}" using assms(3) using path_image_nonempty by auto + hence "a \ b" unfolding interval_eq_empty vector_le_def by(auto simp add: not_less) + thus "a$1 = b$1 \ a$2 = b$2 \ (a$1 < b$1 \ a$2 < b$2)" unfolding vector_le_def forall_2 by auto +next assume as:"a$1 = b$1" have "\z\path_image g. z$2 = (pathstart f)$2" apply(rule connected_ivt_component) + apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image) + unfolding assms using assms(3)[unfolded path_image_def subset_eq,rule_format,of "f 0"] + unfolding pathstart_def by(auto simp add: vector_le_def) then guess z .. note z=this + have "z \ {a..b}" using z(1) assms(4) unfolding path_image_def by blast + hence "z = f 0" unfolding Cart_eq forall_2 unfolding z(2) pathstart_def + using assms(3)[unfolded path_image_def subset_eq mem_interval,rule_format,of "f 0" 1] + unfolding mem_interval apply(erule_tac x=1 in allE) using as by auto + thus thesis apply-apply(rule that[OF _ z(1)]) unfolding path_image_def by auto +next assume as:"a$2 = b$2" have "\z\path_image f. z$1 = (pathstart g)$1" apply(rule connected_ivt_component) + apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image) + unfolding assms using assms(4)[unfolded path_image_def subset_eq,rule_format,of "g 0"] + unfolding pathstart_def by(auto simp add: vector_le_def) then guess z .. note z=this + have "z \ {a..b}" using z(1) assms(3) unfolding path_image_def by blast + hence "z = g 0" unfolding Cart_eq forall_2 unfolding z(2) pathstart_def + using assms(4)[unfolded path_image_def subset_eq mem_interval,rule_format,of "g 0" 2] + unfolding mem_interval apply(erule_tac x=2 in allE) using as by auto + thus thesis apply-apply(rule that[OF z(1)]) unfolding path_image_def by auto +next assume as:"a $ 1 < b $ 1 \ a $ 2 < b $ 2" + have int_nem:"{- 1..1::real^2} \ {}" unfolding interval_eq_empty by auto + guess z apply(rule fashoda_unit_path[of "interval_bij (a,b) (- 1,1) \ f" "interval_bij (a,b) (- 1,1) \ g"]) + unfolding path_def path_image_def pathstart_def pathfinish_def + apply(rule_tac[1-2] continuous_on_compose) apply(rule assms[unfolded path_def] continuous_on_interval_bij)+ + unfolding subset_eq apply(rule_tac[1-2] ballI) + proof- fix x assume "x \ (interval_bij (a, b) (- 1, 1) \ f) ` {0..1}" + then guess y unfolding image_iff .. note y=this + show "x \ {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij) + using y(1) using assms(3)[unfolded path_image_def subset_eq] int_nem by auto + next fix x assume "x \ (interval_bij (a, b) (- 1, 1) \ g) ` {0..1}" + then guess y unfolding image_iff .. note y=this + show "x \ {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij) + using y(1) using assms(4)[unfolded path_image_def subset_eq] int_nem by auto + next show "(interval_bij (a, b) (- 1, 1) \ f) 0 $ 1 = -1" + "(interval_bij (a, b) (- 1, 1) \ f) 1 $ 1 = 1" + "(interval_bij (a, b) (- 1, 1) \ g) 0 $ 2 = -1" + "(interval_bij (a, b) (- 1, 1) \ g) 1 $ 2 = 1" unfolding interval_bij_def Cart_lambda_beta vector_component_simps o_def split_conv + unfolding assms[unfolded pathstart_def pathfinish_def] using as by auto qed note z=this + from z(1) guess zf unfolding image_iff .. note zf=this + from z(2) guess zg unfolding image_iff .. note zg=this + have *:"\i. (- 1) $ i < (1::real^2) $ i \ a $ i < b $ i" unfolding forall_2 using as by auto + show thesis apply(rule_tac z="interval_bij (- 1,1) (a,b) z" in that) + apply(subst zf) defer apply(subst zg) unfolding o_def interval_bij_bij[OF *] path_image_def + using zf(1) zg(1) by auto qed + +subsection {*Some slightly ad hoc lemmas I use below*} + +lemma segment_vertical: fixes a::"real^2" assumes "a$1 = b$1" + shows "x \ closed_segment a b \ (x$1 = a$1 \ x$1 = b$1 \ + (a$2 \ x$2 \ x$2 \ b$2 \ b$2 \ x$2 \ x$2 \ a$2))" (is "_ = ?R") +proof- + let ?L = "\u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \ x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \ 0 \ u \ u \ 1" + { presume "?L \ ?R" "?R \ ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq + unfolding Cart_eq forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast } + { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this + { fix b a assume "b + u * a > a + u * b" + hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps) + hence "b \ a" apply(drule_tac mult_less_imp_less_left) using u by auto + hence "u * a \ u * b" apply-apply(rule mult_left_mono[OF _ u(3)]) + using u(3-4) by(auto simp add:field_simps) } note * = this + { fix a b assume "u * b > u * a" hence "(1 - u) * a \ (1 - u) * b" apply-apply(rule mult_left_mono) + apply(drule mult_less_imp_less_left) using u by auto + hence "a + u * b \ b + u * a" by(auto simp add:field_simps) } note ** = this + thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) } + { assume ?R thus ?L proof(cases "x$2 = b$2") + case True thus ?L apply(rule_tac x="(x$2 - a$2) / (b$2 - a$2)" in exI) unfolding assms True + using `?R` by(auto simp add:field_simps) + next case False thus ?L apply(rule_tac x="1 - (x$2 - b$2) / (a$2 - b$2)" in exI) unfolding assms using `?R` + by(auto simp add:field_simps) + qed } qed + +lemma segment_horizontal: fixes a::"real^2" assumes "a$2 = b$2" + shows "x \ closed_segment a b \ (x$2 = a$2 \ x$2 = b$2 \ + (a$1 \ x$1 \ x$1 \ b$1 \ b$1 \ x$1 \ x$1 \ a$1))" (is "_ = ?R") +proof- + let ?L = "\u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \ x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \ 0 \ u \ u \ 1" + { presume "?L \ ?R" "?R \ ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq + unfolding Cart_eq forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast } + { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this + { fix b a assume "b + u * a > a + u * b" + hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps) + hence "b \ a" apply(drule_tac mult_less_imp_less_left) using u by auto + hence "u * a \ u * b" apply-apply(rule mult_left_mono[OF _ u(3)]) + using u(3-4) by(auto simp add:field_simps) } note * = this + { fix a b assume "u * b > u * a" hence "(1 - u) * a \ (1 - u) * b" apply-apply(rule mult_left_mono) + apply(drule mult_less_imp_less_left) using u by auto + hence "a + u * b \ b + u * a" by(auto simp add:field_simps) } note ** = this + thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) } + { assume ?R thus ?L proof(cases "x$1 = b$1") + case True thus ?L apply(rule_tac x="(x$1 - a$1) / (b$1 - a$1)" in exI) unfolding assms True + using `?R` by(auto simp add:field_simps) + next case False thus ?L apply(rule_tac x="1 - (x$1 - b$1) / (a$1 - b$1)" in exI) unfolding assms using `?R` + by(auto simp add:field_simps) + qed } qed + +subsection {*useful Fashoda corollary pointed out to me by Tom Hales. *} + +lemma fashoda_interlace: fixes a::"real^2" + assumes "path f" "path g" + "path_image f \ {a..b}" "path_image g \ {a..b}" + "(pathstart f)$2 = a$2" "(pathfinish f)$2 = a$2" + "(pathstart g)$2 = a$2" "(pathfinish g)$2 = a$2" + "(pathstart f)$1 < (pathstart g)$1" "(pathstart g)$1 < (pathfinish f)$1" + "(pathfinish f)$1 < (pathfinish g)$1" + obtains z where "z \ path_image f" "z \ path_image g" +proof- + have "{a..b} \ {}" using path_image_nonempty using assms(3) by auto + note ab=this[unfolded interval_eq_empty not_ex forall_2 not_less] + have "pathstart f \ {a..b}" "pathfinish f \ {a..b}" "pathstart g \ {a..b}" "pathfinish g \ {a..b}" + using pathstart_in_path_image pathfinish_in_path_image using assms(3-4) by auto + note startfin = this[unfolded mem_interval forall_2] + let ?P1 = "linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2]) +++ + linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f) +++ f +++ + linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2]) +++ + linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2])" + let ?P2 = "linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g) +++ g +++ + linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1]) +++ + linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1]) +++ + linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3])" + let ?a = "vector[a$1 - 2, a$2 - 3]" + let ?b = "vector[b$1 + 2, b$2 + 3]" + have P1P2:"path_image ?P1 = path_image (linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2])) \ + path_image (linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f)) \ path_image f \ + path_image (linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2])) \ + path_image (linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2]))" + "path_image ?P2 = path_image(linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g)) \ path_image g \ + path_image(linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1])) \ + path_image(linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1])) \ + path_image(linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3]))" using assms(1-2) + by(auto simp add: path_image_join path_linepath) + have abab: "{a..b} \ {?a..?b}" by(auto simp add:vector_le_def forall_2 vector_2) + guess z apply(rule fashoda[of ?P1 ?P2 ?a ?b]) + unfolding pathstart_join pathfinish_join pathstart_linepath pathfinish_linepath vector_2 proof- + show "path ?P1" "path ?P2" using assms by auto + have "path_image ?P1 \ {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 3 + apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format]) + unfolding mem_interval forall_2 vector_2 using ab startfin abab assms(3) + using assms(9-) unfolding assms by(auto simp add:field_simps) + thus "path_image ?P1 \ {?a .. ?b}" . + have "path_image ?P2 \ {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 2 + apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format]) + unfolding mem_interval forall_2 vector_2 using ab startfin abab assms(4) + using assms(9-) unfolding assms by(auto simp add:field_simps) + thus "path_image ?P2 \ {?a .. ?b}" . + show "a $ 1 - 2 = a $ 1 - 2" "b $ 1 + 2 = b $ 1 + 2" "pathstart g $ 2 - 3 = a $ 2 - 3" "b $ 2 + 3 = b $ 2 + 3" + by(auto simp add: assms) + qed note z=this[unfolded P1P2 path_image_linepath] + show thesis apply(rule that[of z]) proof- + have "(z \ closed_segment (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) \ + z \ closed_segment (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f)) \ + z \ closed_segment (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) \ + z \ closed_segment (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]) \ + (((z \ closed_segment (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g)) \ + z \ closed_segment (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1])) \ + z \ closed_segment (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1])) \ + z \ closed_segment (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]) \ False" + apply(simp only: segment_vertical segment_horizontal vector_2) proof- case goal1 note as=this + have "pathfinish f \ {a..b}" using assms(3) pathfinish_in_path_image[of f] by auto + hence "1 + b $ 1 \ pathfinish f $ 1 \ False" unfolding mem_interval forall_2 by auto + hence "z$1 \ pathfinish f$1" using as(2) using assms ab by(auto simp add:field_simps) + moreover have "pathstart f \ {a..b}" using assms(3) pathstart_in_path_image[of f] by auto + hence "1 + b $ 1 \ pathstart f $ 1 \ False" unfolding mem_interval forall_2 by auto + hence "z$1 \ pathstart f$1" using as(2) using assms ab by(auto simp add:field_simps) + ultimately have *:"z$2 = a$2 - 2" using goal1(1) by auto + have "z$1 \ pathfinish g$1" using as(2) using assms ab by(auto simp add:field_simps *) + moreover have "pathstart g \ {a..b}" using assms(4) pathstart_in_path_image[of g] by auto + note this[unfolded mem_interval forall_2] + hence "z$1 \ pathstart g$1" using as(1) using assms ab by(auto simp add:field_simps *) + ultimately have "a $ 2 - 1 \ z $ 2 \ z $ 2 \ b $ 2 + 3 \ b $ 2 + 3 \ z $ 2 \ z $ 2 \ a $ 2 - 1" + using as(2) unfolding * assms by(auto simp add:field_simps) + thus False unfolding * using ab by auto + qed hence "z \ path_image f \ z \ path_image g" using z unfolding Un_iff by blast + hence z':"z\{a..b}" using assms(3-4) by auto + have "a $ 2 = z $ 2 \ (z $ 1 = pathstart f $ 1 \ z $ 1 = pathfinish f $ 1) \ (z = pathstart f \ z = pathfinish f)" + unfolding Cart_eq forall_2 assms by auto + with z' show "z\path_image f" using z(1) unfolding Un_iff mem_interval forall_2 apply- + apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto + have "a $ 2 = z $ 2 \ (z $ 1 = pathstart g $ 1 \ z $ 1 = pathfinish g $ 1) \ (z = pathstart g \ z = pathfinish g)" + unfolding Cart_eq forall_2 assms by auto + with z' show "z\path_image g" using z(2) unfolding Un_iff mem_interval forall_2 apply- + apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto + qed qed + +(** The Following still needs to be translated. Maybe I will do that later. + +(* ------------------------------------------------------------------------- *) +(* Complement in dimension N >= 2 of set homeomorphic to any interval in *) +(* any dimension is (path-)connected. This naively generalizes the argument *) +(* in Ryuji Maehara's paper "The Jordan curve theorem via the Brouwer *) +(* fixed point theorem", American Mathematical Monthly 1984. *) +(* ------------------------------------------------------------------------- *) + +let RETRACTION_INJECTIVE_IMAGE_INTERVAL = prove + (`!p:real^M->real^N a b. + ~(interval[a,b] = {}) /\ + p continuous_on interval[a,b] /\ + (!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ p x = p y ==> x = y) + ==> ?f. f continuous_on (:real^N) /\ + IMAGE f (:real^N) SUBSET (IMAGE p (interval[a,b])) /\ + (!x. x IN (IMAGE p (interval[a,b])) ==> f x = x)`, + REPEAT STRIP_TAC THEN + FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN + DISCH_THEN(X_CHOOSE_TAC `q:real^N->real^M`) THEN + SUBGOAL_THEN `(q:real^N->real^M) continuous_on + (IMAGE p (interval[a:real^M,b]))` + ASSUME_TAC THENL + [MATCH_MP_TAC CONTINUOUS_ON_INVERSE THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]; + ALL_TAC] THEN + MP_TAC(ISPECL [`q:real^N->real^M`; + `IMAGE (p:real^M->real^N) + (interval[a,b])`; + `a:real^M`; `b:real^M`] + TIETZE_CLOSED_INTERVAL) THEN + ASM_SIMP_TAC[COMPACT_INTERVAL; COMPACT_CONTINUOUS_IMAGE; + COMPACT_IMP_CLOSED] THEN + ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN + DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^M` STRIP_ASSUME_TAC) THEN + EXISTS_TAC `(p:real^M->real^N) o (r:real^N->real^M)` THEN + REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM; IN_UNIV] THEN + CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN + MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN + FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ] + CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; + +let UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove + (`!s:real^N->bool a b:real^M. + s homeomorphic (interval[a,b]) + ==> !x. ~(x IN s) ==> ~bounded(path_component((:real^N) DIFF s) x)`, + REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; homeomorphism] THEN + REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN + MAP_EVERY X_GEN_TAC [`p':real^N->real^M`; `p:real^M->real^N`] THEN + DISCH_TAC THEN + SUBGOAL_THEN + `!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ + (p:real^M->real^N) x = p y ==> x = y` + ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN + FIRST_X_ASSUM(MP_TAC o funpow 4 CONJUNCT2) THEN + DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN + ASM_CASES_TAC `interval[a:real^M,b] = {}` THEN + ASM_REWRITE_TAC[IMAGE_CLAUSES; DIFF_EMPTY; PATH_COMPONENT_UNIV; + NOT_BOUNDED_UNIV] THEN + ABBREV_TAC `s = (:real^N) DIFF (IMAGE p (interval[a:real^M,b]))` THEN + X_GEN_TAC `c:real^N` THEN REPEAT STRIP_TAC THEN + SUBGOAL_THEN `(c:real^N) IN s` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN + SUBGOAL_THEN `bounded((path_component s c) UNION + (IMAGE (p:real^M->real^N) (interval[a,b])))` + MP_TAC THENL + [ASM_SIMP_TAC[BOUNDED_UNION; COMPACT_IMP_BOUNDED; COMPACT_IMP_BOUNDED; + COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; + ALL_TAC] THEN + DISCH_THEN(MP_TAC o SPEC `c:real^N` o MATCH_MP BOUNDED_SUBSET_BALL) THEN + REWRITE_TAC[UNION_SUBSET] THEN + DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN + MP_TAC(ISPECL [`p:real^M->real^N`; `a:real^M`; `b:real^M`] + RETRACTION_INJECTIVE_IMAGE_INTERVAL) THEN + ASM_REWRITE_TAC[SUBSET; IN_UNIV] THEN + DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` MP_TAC) THEN + DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC + (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN + REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN DISCH_TAC THEN + ABBREV_TAC `q = \z:real^N. if z IN path_component s c then r(z) else z` THEN + SUBGOAL_THEN + `(q:real^N->real^N) continuous_on + (closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)))` + MP_TAC THENL + [EXPAND_TAC "q" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES THEN + REWRITE_TAC[CLOSED_CLOSURE; CONTINUOUS_ON_ID; GSYM OPEN_CLOSED] THEN + REPEAT CONJ_TAC THENL + [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN + ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED; + COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; + ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; + ALL_TAC] THEN + X_GEN_TAC `z:real^N` THEN + REWRITE_TAC[SET_RULE `~(z IN (s DIFF t) /\ z IN t)`] THEN + STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN + MP_TAC(ISPECL + [`path_component s (z:real^N)`; `path_component s (c:real^N)`] + OPEN_INTER_CLOSURE_EQ_EMPTY) THEN + ASM_REWRITE_TAC[GSYM DISJOINT; PATH_COMPONENT_DISJOINT] THEN ANTS_TAC THENL + [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN + ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED; + COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; + REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN + DISCH_THEN(MP_TAC o SPEC `z:real^N`) THEN ASM_REWRITE_TAC[] THEN + GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [IN] THEN + REWRITE_TAC[PATH_COMPONENT_REFL_EQ] THEN ASM SET_TAC[]]; + ALL_TAC] THEN + SUBGOAL_THEN + `closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)) = + (:real^N)` + SUBST1_TAC THENL + [MATCH_MP_TAC(SET_RULE `s SUBSET t ==> t UNION (UNIV DIFF s) = UNIV`) THEN + REWRITE_TAC[CLOSURE_SUBSET]; + DISCH_TAC] THEN + MP_TAC(ISPECL + [`(\x. &2 % c - x) o + (\x. c + B / norm(x - c) % (x - c)) o (q:real^N->real^N)`; + `cball(c:real^N,B)`] + BROUWER) THEN + REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; COMPACT_CBALL; CONVEX_CBALL] THEN + ASM_SIMP_TAC[CBALL_EQ_EMPTY; REAL_LT_IMP_LE; REAL_NOT_LT] THEN + SUBGOAL_THEN `!x. ~((q:real^N->real^N) x = c)` ASSUME_TAC THENL + [X_GEN_TAC `x:real^N` THEN EXPAND_TAC "q" THEN + REWRITE_TAC[NORM_EQ_0; VECTOR_SUB_EQ] THEN COND_CASES_TAC THEN + ASM SET_TAC[PATH_COMPONENT_REFL_EQ]; + ALL_TAC] THEN + REPEAT CONJ_TAC THENL + [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN + SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN + MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL + [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; ALL_TAC] THEN + MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN + MATCH_MP_TAC CONTINUOUS_ON_MUL THEN + SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN + REWRITE_TAC[o_DEF; real_div; LIFT_CMUL] THEN + MATCH_MP_TAC CONTINUOUS_ON_CMUL THEN + MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_INV) THEN + ASM_REWRITE_TAC[FORALL_IN_IMAGE; NORM_EQ_0; VECTOR_SUB_EQ] THEN + SUBGOAL_THEN + `(\x:real^N. lift(norm(x - c))) = (lift o norm) o (\x. x - c)` + SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN + MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN + ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST; + CONTINUOUS_ON_LIFT_NORM]; + REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_CBALL; o_THM; dist] THEN + X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN + REWRITE_TAC[VECTOR_ARITH `c - (&2 % c - (c + x)) = x`] THEN + REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN + ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN + ASM_REAL_ARITH_TAC; + REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(c /\ b) <=> c ==> ~b`] THEN + REWRITE_TAC[IN_CBALL; o_THM; dist] THEN + X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN + REWRITE_TAC[VECTOR_ARITH `&2 % c - (c + x') = x <=> --x' = x - c`] THEN + ASM_CASES_TAC `(x:real^N) IN path_component s c` THENL + [MATCH_MP_TAC(NORM_ARITH `norm(y) < B /\ norm(x) = B ==> ~(--x = y)`) THEN + REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN + ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN + ASM_SIMP_TAC[REAL_ARITH `&0 < B ==> abs B = B`] THEN + UNDISCH_TAC `path_component s c SUBSET ball(c:real^N,B)` THEN + REWRITE_TAC[SUBSET; IN_BALL] THEN ASM_MESON_TAC[dist; NORM_SUB]; + EXPAND_TAC "q" THEN REWRITE_TAC[] THEN ASM_REWRITE_TAC[] THEN + REWRITE_TAC[VECTOR_ARITH `--(c % x) = x <=> (&1 + c) % x = vec 0`] THEN + ASM_REWRITE_TAC[DE_MORGAN_THM; VECTOR_SUB_EQ; VECTOR_MUL_EQ_0] THEN + SUBGOAL_THEN `~(x:real^N = c)` ASSUME_TAC THENL + [ASM_MESON_TAC[PATH_COMPONENT_REFL; IN]; ALL_TAC] THEN + ASM_REWRITE_TAC[] THEN + MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(&1 + x = &0)`) THEN + ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]]]);; + +let PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove + (`!s:real^N->bool a b:real^M. + 2 <= dimindex(:N) /\ s homeomorphic interval[a,b] + ==> path_connected((:real^N) DIFF s)`, + REPEAT STRIP_TAC THEN REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN + FIRST_ASSUM(MP_TAC o MATCH_MP + UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN + ASM_REWRITE_TAC[SET_RULE `~(x IN s) <=> x IN (UNIV DIFF s)`] THEN + ABBREV_TAC `t = (:real^N) DIFF s` THEN + DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN + STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HOMEOMORPHIC_COMPACTNESS) THEN + REWRITE_TAC[COMPACT_INTERVAL] THEN + DISCH_THEN(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN + REWRITE_TAC[BOUNDED_POS; LEFT_IMP_EXISTS_THM] THEN + X_GEN_TAC `B:real` THEN STRIP_TAC THEN + SUBGOAL_THEN `(?u:real^N. u IN path_component t x /\ B < norm(u)) /\ + (?v:real^N. v IN path_component t y /\ B < norm(v))` + STRIP_ASSUME_TAC THENL + [ASM_MESON_TAC[BOUNDED_POS; REAL_NOT_LE]; ALL_TAC] THEN + MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `u:real^N` THEN + CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN + MATCH_MP_TAC PATH_COMPONENT_SYM THEN + MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `v:real^N` THEN + CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN + MATCH_MP_TAC PATH_COMPONENT_OF_SUBSET THEN + EXISTS_TAC `(:real^N) DIFF cball(vec 0,B)` THEN CONJ_TAC THENL + [EXPAND_TAC "t" THEN MATCH_MP_TAC(SET_RULE + `s SUBSET t ==> (u DIFF t) SUBSET (u DIFF s)`) THEN + ASM_REWRITE_TAC[SUBSET; IN_CBALL_0]; + MP_TAC(ISPEC `cball(vec 0:real^N,B)` + PATH_CONNECTED_COMPLEMENT_BOUNDED_CONVEX) THEN + ASM_REWRITE_TAC[BOUNDED_CBALL; CONVEX_CBALL] THEN + REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN + DISCH_THEN MATCH_MP_TAC THEN + ASM_REWRITE_TAC[IN_DIFF; IN_UNIV; IN_CBALL_0; REAL_NOT_LE]]);; + +(* ------------------------------------------------------------------------- *) +(* In particular, apply all these to the special case of an arc. *) +(* ------------------------------------------------------------------------- *) + +let RETRACTION_ARC = prove + (`!p. arc p + ==> ?f. f continuous_on (:real^N) /\ + IMAGE f (:real^N) SUBSET path_image p /\ + (!x. x IN path_image p ==> f x = x)`, + REWRITE_TAC[arc; path; path_image] THEN REPEAT STRIP_TAC THEN + MATCH_MP_TAC RETRACTION_INJECTIVE_IMAGE_INTERVAL THEN + ASM_REWRITE_TAC[INTERVAL_EQ_EMPTY_1; DROP_VEC; REAL_NOT_LT; REAL_POS]);; + +let PATH_CONNECTED_ARC_COMPLEMENT = prove + (`!p. 2 <= dimindex(:N) /\ arc p + ==> path_connected((:real^N) DIFF path_image p)`, + REWRITE_TAC[arc; path] THEN REPEAT STRIP_TAC THEN SIMP_TAC[path_image] THEN + MP_TAC(ISPECL [`path_image p:real^N->bool`; `vec 0:real^1`; `vec 1:real^1`] + PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN + ASM_REWRITE_TAC[path_image] THEN DISCH_THEN MATCH_MP_TAC THEN + ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN + MATCH_MP_TAC HOMEOMORPHIC_COMPACT THEN + EXISTS_TAC `p:real^1->real^N` THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]);; + +let CONNECTED_ARC_COMPLEMENT = prove + (`!p. 2 <= dimindex(:N) /\ arc p + ==> connected((:real^N) DIFF path_image p)`, + SIMP_TAC[PATH_CONNECTED_ARC_COMPLEMENT; PATH_CONNECTED_IMP_CONNECTED]);; *) + +end diff -r 340755027840 -r 1ad1cfeaec2d src/HOL/Multivariate_Analysis/Multivariate_Analysis.thy --- a/src/HOL/Multivariate_Analysis/Multivariate_Analysis.thy Mon Apr 26 12:19:57 2010 -0700 +++ b/src/HOL/Multivariate_Analysis/Multivariate_Analysis.thy Mon Apr 26 15:22:03 2010 -0700 @@ -1,5 +1,5 @@ theory Multivariate_Analysis -imports Determinants Integration Real_Integration +imports Determinants Integration Real_Integration Fashoda begin end