# HG changeset patch # User nipkow # Date 1120732616 -7200 # Node ID 1bbe526a552c9aaad3e28d74445f876acd291dd3 # Parent 124b4782944fa6ea9f515c84b7f9972b7e7afe69 Used to be part of Finite_Set (or was it SetInterval?) Added binomial thm. diff -r 124b4782944f -r 1bbe526a552c src/HOL/Binomial.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Binomial.thy Thu Jul 07 12:36:56 2005 +0200 @@ -0,0 +1,208 @@ +(* Title: HOL/Binomial.thy + ID: $Id$ + Author: Lawrence C Paulson + Copyright 1997 University of Cambridge + +*) + +header{*Binomial Coefficients*} + +theory Binomial +imports SetInterval +begin + +text{*This development is based on the work of Andy Gordon and +Florian Kammueller*} + +consts + binomial :: "nat \ nat \ nat" (infixl "choose" 65) + +primrec + binomial_0: "(0 choose k) = (if k = 0 then 1 else 0)" + + binomial_Suc: "(Suc n choose k) = + (if k = 0 then 1 else (n choose (k - 1)) + (n choose k))" + +lemma binomial_n_0 [simp]: "(n choose 0) = 1" +by (case_tac "n", simp_all) + +lemma binomial_0_Suc [simp]: "(0 choose Suc k) = 0" +by simp + +lemma binomial_Suc_Suc [simp]: + "(Suc n choose Suc k) = (n choose k) + (n choose Suc k)" +by simp + +lemma binomial_eq_0 [rule_format]: "\k. n < k --> (n choose k) = 0" +apply (induct "n", auto) +apply (erule allE) +apply (erule mp, arith) +done + +declare binomial_0 [simp del] binomial_Suc [simp del] + +lemma binomial_n_n [simp]: "(n choose n) = 1" +apply (induct "n") +apply (simp_all add: binomial_eq_0) +done + +lemma binomial_Suc_n [simp]: "(Suc n choose n) = Suc n" +by (induct "n", simp_all) + +lemma binomial_1 [simp]: "(n choose Suc 0) = n" +by (induct "n", simp_all) + +lemma zero_less_binomial [rule_format]: "k \ n --> 0 < (n choose k)" +by (rule_tac m = n and n = k in diff_induct, simp_all) + +lemma binomial_eq_0_iff: "(n choose k = 0) = (nn)" +by (simp add: linorder_not_less [symmetric] binomial_eq_0_iff [symmetric]) + +(*Might be more useful if re-oriented*) +lemma Suc_times_binomial_eq [rule_format]: + "\k. k \ n --> Suc n * (n choose k) = (Suc n choose Suc k) * Suc k" +apply (induct "n") +apply (simp add: binomial_0, clarify) +apply (case_tac "k") +apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq + binomial_eq_0) +done + +text{*This is the well-known version, but it's harder to use because of the + need to reason about division.*} +lemma binomial_Suc_Suc_eq_times: + "k \ n ==> (Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k" +by (simp add: Suc_times_binomial_eq div_mult_self_is_m zero_less_Suc + del: mult_Suc mult_Suc_right) + +text{*Another version, with -1 instead of Suc.*} +lemma times_binomial_minus1_eq: + "[|k \ n; 0 (n choose k) * k = n * ((n - 1) choose (k - 1))" +apply (cut_tac n = "n - 1" and k = "k - 1" in Suc_times_binomial_eq) +apply (simp split add: nat_diff_split, auto) +done + +subsubsection {* Theorems about @{text "choose"} *} + +text {* + \medskip Basic theorem about @{text "choose"}. By Florian + Kamm\"uller, tidied by LCP. +*} + +lemma card_s_0_eq_empty: + "finite A ==> card {B. B \ A & card B = 0} = 1" + apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq]) + apply (simp cong add: rev_conj_cong) + done + +lemma choose_deconstruct: "finite M ==> x \ M + ==> {s. s <= insert x M & card(s) = Suc k} + = {s. s <= M & card(s) = Suc k} Un + {s. EX t. t <= M & card(t) = k & s = insert x t}" + apply safe + apply (auto intro: finite_subset [THEN card_insert_disjoint]) + apply (drule_tac x = "xa - {x}" in spec) + apply (subgoal_tac "x \ xa", auto) + apply (erule rev_mp, subst card_Diff_singleton) + apply (auto intro: finite_subset) + done + +text{*There are as many subsets of @{term A} having cardinality @{term k} + as there are sets obtained from the former by inserting a fixed element + @{term x} into each.*} +lemma constr_bij: + "[|finite A; x \ A|] ==> + card {B. EX C. C <= A & card(C) = k & B = insert x C} = + card {B. B <= A & card(B) = k}" + apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq) + apply (auto elim!: equalityE simp add: inj_on_def) + apply (subst Diff_insert0, auto) + txt {* finiteness of the two sets *} + apply (rule_tac [2] B = "Pow (A)" in finite_subset) + apply (rule_tac B = "Pow (insert x A)" in finite_subset) + apply fast+ + done + +text {* + Main theorem: combinatorial statement about number of subsets of a set. +*} + +lemma n_sub_lemma: + "!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)" + apply (induct k) + apply (simp add: card_s_0_eq_empty, atomize) + apply (rotate_tac -1, erule finite_induct) + apply (simp_all (no_asm_simp) cong add: conj_cong + add: card_s_0_eq_empty choose_deconstruct) + apply (subst card_Un_disjoint) + prefer 4 apply (force simp add: constr_bij) + prefer 3 apply force + prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2] + finite_subset [of _ "Pow (insert x F)", standard]) + apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset]) + done + +theorem n_subsets: + "finite A ==> card {B. B <= A & card B = k} = (card A choose k)" + by (simp add: n_sub_lemma) + + +text{* The binomial theorem (courtesy of Tobias Nipkow): *} + +theorem binomial: "(a+b::nat)^n = (\k=0..n. (n choose k) * a^k * b^(n-k))" +proof (induct n) + case 0 thus ?case by simp +next + case (Suc n) + have decomp: "{0..n+1} = {0} \ {n+1} \ {1..n}" + by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) + have decomp2: "{0..n} = {0} \ {1..n}" + by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) + have "(a+b::nat)^(n+1) = (a+b) * (\k=0..n. (n choose k) * a^k * b^(n-k))" + using Suc by simp + also have "\ = a*(\k=0..n. (n choose k) * a^k * b^(n-k)) + + b*(\k=0..n. (n choose k) * a^k * b^(n-k))" + by(rule nat_distrib) + also have "\ = (\k=0..n. (n choose k) * a^(k+1) * b^(n-k)) + + (\k=0..n. (n choose k) * a^k * b^(n-k+1))" + by(simp add: setsum_mult mult_ac) + also have "\ = (\k=0..n. (n choose k) * a^k * b^(n+1-k)) + + (\k=1..n+1. (n choose (k - 1)) * a^k * b^(n+1-k))" + by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le + del:setsum_cl_ivl_Suc) + also have "\ = a^(n+1) + b^(n+1) + + (\k=1..n. (n choose (k - 1)) * a^k * b^(n+1-k)) + + (\k=1..n. (n choose k) * a^k * b^(n+1-k))" + by(simp add: decomp2) + also have + "\ = a^(n+1) + b^(n+1) + (\k=1..n. (n+1 choose k) * a^k * b^(n+1-k))" + by(simp add: nat_distrib setsum_addf binomial.simps) + also have "\ = (\k=0..n+1. (n+1 choose k) * a^k * b^(n+1-k))" + using decomp by simp + finally show ?case by simp +qed + +ML +{* +val binomial_n_0 = thm"binomial_n_0"; +val binomial_0_Suc = thm"binomial_0_Suc"; +val binomial_Suc_Suc = thm"binomial_Suc_Suc"; +val binomial_eq_0 = thm"binomial_eq_0"; +val binomial_n_n = thm"binomial_n_n"; +val binomial_Suc_n = thm"binomial_Suc_n"; +val binomial_1 = thm"binomial_1"; +val zero_less_binomial = thm"zero_less_binomial"; +val binomial_eq_0_iff = thm"binomial_eq_0_iff"; +val zero_less_binomial_iff = thm"zero_less_binomial_iff"; +val Suc_times_binomial_eq = thm"Suc_times_binomial_eq"; +val binomial_Suc_Suc_eq_times = thm"binomial_Suc_Suc_eq_times"; +val times_binomial_minus1_eq = thm"times_binomial_minus1_eq"; +*} + +end