# HG changeset patch # User huffman # Date 1272329799 25200 # Node ID 1c0f42fb92f1d2dd63931e81e0785fdee09225ef # Parent bbe2730e6db6dd9fac8ce810a7a9aa9dcd3e88b5 remove redundant lemma diff -r bbe2730e6db6 -r 1c0f42fb92f1 src/HOL/Multivariate_Analysis/Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Mon Apr 26 16:28:58 2010 -0700 +++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Mon Apr 26 17:56:39 2010 -0700 @@ -599,19 +599,6 @@ end -lemma setsum_squares_eq_0_iff: assumes fS: "finite F" and fp: "\x \ F. f x \ (0 ::'a::ordered_ab_group_add)" shows "setsum f F = 0 \ (ALL x:F. f x = 0)" -using fS fp setsum_nonneg[OF fp] -proof (induct set: finite) - case empty thus ?case by simp -next - case (insert x F) - from insert.prems have Fx: "f x \ 0" and Fp: "\ a \ F. f a \ 0" by simp_all - from insert.hyps Fp setsum_nonneg[OF Fp] - have h: "setsum f F = 0 \ (\a \F. f a = 0)" by metis - from add_nonneg_eq_0_iff[OF Fx setsum_nonneg[OF Fp]] insert.hyps(1,2) - show ?case by (simp add: h) -qed - subsection {* A connectedness or intermediate value lemma with several applications. *} lemma connected_real_lemma: