# HG changeset patch # User wenzelm # Date 966501777 -7200 # Node ID 1c13360689cb4b673237e8f94f6bc92edb42e1e5 # Parent f4ebf1ec2df6a107ad6c9e6e7e216e74f5917c74 *** empty log message *** diff -r f4ebf1ec2df6 -r 1c13360689cb src/HOL/Lambda/T.thy --- a/src/HOL/Lambda/T.thy Thu Aug 17 10:40:31 2000 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,484 +0,0 @@ -(* Title: HOL/Lambda/Type.thy - ID: $Id$ - Author: Stefan Berghofer - Copyright 2000 TU Muenchen - -Simply-typed lambda terms. Subject reduction and strong normalization -of simply-typed lambda terms. Partly based on a paper proof by Ralph -Matthes. -*) - -theory Type = InductTermi: - -datatype "typ" = - Atom nat - | Fun "typ" "typ" (infixr "=>" 200) - -consts - typing :: "((nat => typ) * dB * typ) set" - -syntax - "_typing" :: "[nat => typ, dB, typ] => bool" ("_ |- _ : _" [50,50,50] 50) - "_funs" :: "[typ list, typ] => typ" (infixl "=>>" 150) - -translations - "env |- t : T" == "(env, t, T) : typing" - "Ts =>> T" == "foldr Fun Ts T" - -lemmas [intro!] = IT.BetaI IT.LambdaI IT.VarI - -(* FIXME -declare IT.intros [intro!] -*) - -inductive typing -intros (* FIXME [intro!] *) - Var: "env x = T ==> env |- Var x : T" - Abs: "(nat_case T env) |- t : U ==> env |- (Abs t) : (T => U)" - App: "env |- s : T => U ==> env |- t : T ==> env |- (s $ t) : U" - -lemmas [intro!] = App Abs Var - -consts - "types" :: "[nat => typ, dB list, typ list] => bool" -primrec - "types e [] Ts = (Ts = [])" - "types e (t # ts) Ts = - (case Ts of - [] => False - | T # Ts => e |- t : T & types e ts Ts)" - -(* FIXME order *) -inductive_cases [elim!]: - "e |- Abs t : T" - "e |- t $ u : T" - "e |- Var i : T" - -inductive_cases [elim!]: - "x # xs : lists S" - - -text {* Some tests. *} - -lemma "\T U. e |- Abs (Abs (Abs (Var 1 $ (Var 2 $ Var 1 $ Var 0)))) : T \ U = T" - apply (intro exI conjI) - apply force - apply (rule refl) - done - -lemma "\T U. e |- Abs (Abs (Abs (Var 2 $ Var 0 $ (Var 1 $ Var 0)))) : T \ U = T"; - apply (intro exI conjI) - apply force - apply (rule refl) - done - - -text {* n-ary function types *} - -lemma list_app_typeD [rulify]: - "\t T. e |- t $$ ts : T --> (\Ts. e |- t : Ts =>> T \ types e ts Ts)" - apply (induct_tac ts) - apply simp - apply (intro strip) - apply simp - apply (erule_tac x = "t $ a" in allE) - apply (erule_tac x = T in allE) - apply (erule impE) - apply assumption - apply (elim exE conjE) - apply (ind_cases "e |- t $ u : T") - apply (rule_tac x = "Ta # Ts" in exI) - apply simp - done - -lemma list_app_typeI [rulify]: - "\t T Ts. e |- t : Ts =>> T --> types e ts Ts --> e |- t $$ ts : T" - apply (induct_tac ts) - apply (intro strip) - apply simp - apply (intro strip) - apply (case_tac Ts) - apply simp - apply simp - apply (erule_tac x = "t $ a" in allE) - apply (erule_tac x = T in allE) - apply (erule_tac x = lista in allE) - apply (erule impE) - apply (erule conjE) - apply (erule typing.App) - apply assumption - apply blast - done - -lemma lists_types [rulify]: - "\Ts. types e ts Ts --> ts : lists {t. \T. e |- t : T}" - apply (induct_tac ts) - apply (intro strip) - apply (case_tac Ts) - apply simp - apply (rule lists.Nil) - apply simp - apply (intro strip) - apply (case_tac Ts) - apply simp - apply simp - apply (rule lists.Cons) - apply blast - apply blast - done - - -text {* lifting preserves termination and well-typedness *} - -lemma lift_map [rulify, simp]: - "\t. lift (t $$ ts) i = lift t i $$ map (\t. lift t i) ts" - apply (induct_tac ts) - apply simp_all - done - -lemma subst_map [rulify, simp]: - "\t. subst (t $$ ts) u i = subst t u i $$ map (\t. subst t u i) ts" - apply (induct_tac ts) - apply simp_all - done - -lemma lift_IT [rulify, intro!]: - "t : IT ==> \i. lift t i : IT" - apply (erule IT.induct) - apply (rule allI) - apply (simp (no_asm)) - apply (rule conjI) - apply - (rule impI, - rule IT.VarI, - erule lists.induct, - simp (no_asm), - rule lists.Nil, - simp (no_asm), - erule IntE, - rule lists.Cons, - blast, - assumption)+ - apply auto - done - -lemma lifts_IT [rulify]: - "ts : lists IT --> map (\t. lift t 0) ts : lists IT" - apply (induct_tac ts) - apply auto - done - - -lemma shift_env [simp]: - "nat_case T - (\j. if j < i then e j else if j = i then Ua else e (j - 1)) = - (\j. if j < Suc i then nat_case T e j else if j = Suc i then Ua - else nat_case T e (j - 1))" - apply (rule ext) - apply (case_tac j) - apply simp - apply (case_tac nat) - apply simp_all - done - -lemma lift_type' [rulify]: - "e |- t : T ==> \i U. - (\j. if j < i then e j - else if j = i then U - else e (j - 1)) |- lift t i : T" - apply (erule typing.induct) - apply auto - done - - -lemma lift_type [intro!]: - "e |- t : T ==> nat_case U e |- lift t 0 : T" - apply (subgoal_tac - "nat_case U e = - (\j. if j < 0 then e j - else if j = 0 then U else e (j - 1))") - apply (erule ssubst) - apply (erule lift_type') - apply (rule ext) - apply (case_tac j) - apply simp_all - done - -lemma lift_types [rulify]: - "\Ts. types e ts Ts --> - types (\j. if j < i then e j - else if j = i then U - else e (j - 1)) (map (\t. lift t i) ts) Ts" - apply (induct_tac ts) - apply simp - apply (intro strip) - apply (case_tac Ts) - apply simp_all - apply (rule lift_type') - apply (erule conjunct1) - done - - -text {* substitution lemma *} - -lemma subst_lemma [rulify]: - "e |- t : T ==> \e' i U u. - e = (\j. if j < i then e' j - else if j = i then U - else e' (j-1)) --> - e' |- u : U --> e' |- t[u/i] : T" - apply (erule typing.induct) - apply (intro strip) - apply (case_tac "x = i") - apply simp - apply (frule linorder_neq_iff [THEN iffD1]) - apply (erule disjE) - apply simp - apply (rule typing.Var) - apply assumption - apply (frule order_less_not_sym) - apply (simp only: subst_gt split: split_if add: if_False) - apply (rule typing.Var) - apply assumption - apply fastsimp - apply fastsimp - done - -lemma substs_lemma [rulify]: - "e |- u : T ==> - \Ts. types (\j. if j < i then e j - else if j = i then T else e (j - 1)) ts Ts --> - types e (map (%t. t[u/i]) ts) Ts" - apply (induct_tac ts) - apply (intro strip) - apply (case_tac Ts) - apply simp - apply simp - apply (intro strip) - apply (case_tac Ts) - apply simp - apply simp - apply (erule conjE) - apply (erule subst_lemma) - apply (rule refl) - apply assumption - done - - -text {* subject reduction *} - -lemma subject_reduction [rulify]: - "e |- t : T ==> \t'. t -> t' --> e |- t' : T" - apply (erule typing.induct) - apply blast - apply blast - apply (intro strip) - apply (ind_cases "s $ t -> t'") - apply hypsubst - apply (ind_cases "env |- Abs t : T => U") - apply (rule subst_lemma) - apply assumption - prefer 2 - apply assumption - apply (rule ext) - apply (case_tac j) - - apply simp - apply simp - apply fast - apply fast - (* FIXME apply auto *) - done - -text {* additional lemmas *} - -lemma app_last: "(t $$ ts) $ u = t $$ (ts @ [u])" - apply simp - done - - -lemma subst_Var_IT [rulify]: "r : IT ==> \i j. r[Var i/j] : IT" - apply (erule IT.induct) - txt {* Var *} - apply (intro strip) - apply (simp (no_asm) add: subst_Var) - apply - ((rule conjI impI)+, - rule IT.VarI, - erule lists.induct, - simp (no_asm), - rule lists.Nil, - simp (no_asm), - erule IntE, - erule CollectE, - rule lists.Cons, - fast, - assumption)+ - txt {* Lambda *} - apply (intro strip) - apply simp - apply (rule IT.LambdaI) - apply fast - txt {* Beta *} - apply (intro strip) - apply (simp (no_asm_use) add: subst_subst [symmetric]) - apply (rule IT.BetaI) - apply auto - done - -lemma Var_IT: "Var n \ IT" - apply (subgoal_tac "Var n $$ [] \ IT") - apply simp - apply (rule IT.VarI) - apply (rule lists.Nil) - done - -lemma app_Var_IT: "t : IT ==> t $ Var i : IT" - apply (erule IT.induct) - apply (subst app_last) - apply (rule IT.VarI) - apply simp - apply (rule lists.Cons) - apply (rule Var_IT) - apply (rule lists.Nil) - apply (rule IT.BetaI [where ?ss = "[]", unfold foldl_Nil [THEN eq_reflection]]) - apply (erule subst_Var_IT) - apply (rule Var_IT) - apply (subst app_last) - apply (rule IT.BetaI) - apply (subst app_last [symmetric]) - apply assumption - apply assumption - done - - -text {* Well-typed substitution preserves termination. *} - -lemma subst_type_IT [rulify]: - "\t. t : IT --> (\e T u i. - (\j. if j < i then e j - else if j = i then U - else e (j - 1)) |- t : T --> - u : IT --> e |- u : U --> t[u/i] : IT)" - apply (rule_tac f = size and a = U in measure_induct) - apply (rule allI) - apply (rule impI) - apply (erule IT.induct) - txt {* Var *} - apply (intro strip) - apply (case_tac "n = i") - txt {* n=i *} - apply (case_tac rs) - apply simp - apply simp - apply (drule list_app_typeD) - apply (elim exE conjE) - apply (ind_cases "e |- t $ u : T") - apply (ind_cases "e |- Var i : T") - apply (drule_tac s = "(?T::typ) => ?U" in sym) - apply simp - apply (subgoal_tac "lift u 0 $ Var 0 : IT") - prefer 2 - apply (rule app_Var_IT) - apply (erule lift_IT) - apply (subgoal_tac "(lift u 0 $ Var 0)[a[u/i]/0] : IT") - apply (simp (no_asm_use)) - apply (subgoal_tac "(Var 0 $$ map (%t. lift t 0) - (map (%t. t[u/i]) list))[(u $ a[u/i])/0] : IT") - apply (simp (no_asm_use) del: map_compose add: map_compose [symmetric] o_def) - apply (erule_tac x = "Ts =>> T" in allE) - apply (erule impE) - apply simp - apply (erule_tac x = "Var 0 $$ - map (%t. lift t 0) (map (%t. t[u/i]) list)" in allE) - apply (erule impE) - apply (rule IT.VarI) - apply (rule lifts_IT) - apply (drule lists_types) - apply - (ind_cases "x # xs : lists (Collect P)", - erule lists_IntI [THEN lists.induct], - assumption) - apply fastsimp - apply fastsimp - apply (erule_tac x = e in allE) - apply (erule_tac x = T in allE) - apply (erule_tac x = "u $ a[u/i]" in allE) - apply (erule_tac x = 0 in allE) - apply (fastsimp intro!: list_app_typeI lift_types subst_lemma substs_lemma) - -(* FIXME - apply (tactic { * fast_tac (claset() - addSIs [thm "list_app_typeI", thm "lift_types", thm "subst_lemma", thm "substs_lemma"] - addss simpset()) 1 * }) *) - - apply (erule_tac x = Ta in allE) - apply (erule impE) - apply simp - apply (erule_tac x = "lift u 0 $ Var 0" in allE) - apply (erule impE) - apply assumption - apply (erule_tac x = e in allE) - apply (erule_tac x = "Ts =>> T" in allE) - apply (erule_tac x = "a[u/i]" in allE) - apply (erule_tac x = 0 in allE) - apply (erule impE) - apply (rule typing.App) - apply (erule lift_type') - apply (rule typing.Var) - apply simp - apply (fast intro!: subst_lemma) - txt {* n~=i *} - apply (drule list_app_typeD) - apply (erule exE) - apply (erule conjE) - apply (drule lists_types) - apply (subgoal_tac "map (%x. x[u/i]) rs : lists IT") - apply (simp add: subst_Var) - apply fast - apply (erule lists_IntI [THEN lists.induct]) - apply assumption - apply fastsimp - apply fastsimp - txt {* Lambda *} - apply fastsimp - txt {* Beta *} - apply (intro strip) - apply (simp (no_asm)) - apply (rule IT.BetaI) - apply (simp (no_asm) del: subst_map add: subst_subst subst_map [symmetric]) - apply (drule subject_reduction) - apply (rule apps_preserves_beta) - apply (rule beta.beta) - apply fast - apply (drule list_app_typeD) - apply fast - done - - -text {* main theorem: well-typed terms are strongly normalizing *} - -lemma type_implies_IT: "e |- t : T ==> t : IT" - apply (erule typing.induct) - apply (rule Var_IT) - apply (erule IT.LambdaI) - apply (subgoal_tac "(Var 0 $ lift t 0)[s/0] : IT") - apply simp - apply (rule subst_type_IT) - apply (rule lists.Nil [THEN 2 lists.Cons [THEN IT.VarI], unfold foldl_Nil [THEN eq_reflection] - foldl_Cons [THEN eq_reflection]]) - apply (erule lift_IT) - apply (rule typing.App) - apply (rule typing.Var) - apply simp - apply (erule lift_type') - apply assumption - apply assumption - done - -theorem type_implies_termi: "e |- t : T ==> t : termi beta" - apply (rule IT_implies_termi) - apply (erule type_implies_IT) - done - -end