# HG changeset patch # User obua # Date 1181219165 -7200 # Node ID 1c39f1bd1f5347d8dfe790ce2cfc45ca896d28b3 # Parent 9179346e1208008dd28623cdaed3f757032e9667 deleted legacy lemmas diff -r 9179346e1208 -r 1c39f1bd1f53 src/HOL/Real/RealPow.thy --- a/src/HOL/Real/RealPow.thy Thu Jun 07 11:25:27 2007 +0200 +++ b/src/HOL/Real/RealPow.thy Thu Jun 07 14:26:05 2007 +0200 @@ -28,7 +28,7 @@ qed -lemma realpow_zero_zero: "r ^ n = (0::real) ==> r = 0" +(*lemma realpow_zero_zero: "r ^ n = (0::real) ==> r = 0" by simp lemma realpow_two: "(r::real)^ (Suc (Suc 0)) = r * r" @@ -37,20 +37,25 @@ text{*Legacy: weaker version of the theorem @{text power_strict_mono}*} lemma realpow_less: "[|(0::real) < x; x < y; 0 < n|] ==> x ^ n < y ^ n" +thm power_strict_mono apply (rule power_strict_mono, auto) -done +done *) + +(* declare [simp del]: zero_le_power lemma realpow_two_le [simp]: "(0::real) \ r^ Suc (Suc 0)" by (simp) + lemma abs_realpow_two [simp]: "abs((x::real)^Suc (Suc 0)) = x^Suc (Suc 0)" -by (simp add: abs_mult) +by (simp) lemma realpow_two_abs [simp]: "abs(x::real)^Suc (Suc 0) = x^Suc (Suc 0)" -by (simp add: power_abs [symmetric] del: realpow_Suc) +by (simp) +*) lemma two_realpow_ge_one [simp]: "(1::real) \ 2 ^ n" -by (insert power_increasing [of 0 n "2::real"], simp) +by (rule power_increasing[of 0 n "2::real", simplified]) lemma two_realpow_gt [simp]: "real (n::nat) < 2 ^ n" apply (induct "n") @@ -70,7 +75,7 @@ lemma realpow_two_mult_inverse [simp]: "r \ 0 ==> r * inverse r ^Suc (Suc 0) = inverse (r::real)" -by (simp add: realpow_two real_mult_assoc [symmetric]) +by (simp add: real_mult_assoc [symmetric]) lemma realpow_two_minus [simp]: "(-x)^Suc (Suc 0) = (x::real)^Suc (Suc 0)" by simp