# HG changeset patch # User wenzelm # Date 936004407 -7200 # Node ID 1d486a5b6176530f4205d12d77fd0580f0bbc654 # Parent 33c976216121bf9401f866c15ebefedd29ab8f45 tuned; diff -r 33c976216121 -r 1d486a5b6176 src/HOL/Isar_examples/MutilatedCheckerboard.thy --- a/src/HOL/Isar_examples/MutilatedCheckerboard.thy Sun Aug 29 17:53:03 1999 +0200 +++ b/src/HOL/Isar_examples/MutilatedCheckerboard.thy Mon Aug 30 11:13:27 1999 +0200 @@ -1,11 +1,13 @@ (* Title: HOL/Isar_examples/MutilatedCheckerboard.thy ID: $Id$ - Author: Lawrence C Paulson, Cambridge University Computer Laboratory (original script) - Markus Wenzel, TU Muenchen (Isar document) + Author: Markus Wenzel, TU Muenchen (Isar document) + Lawrence C Paulson, Cambridge University Computer Laboratory (original scripts) -The Mutilated Chess Board Problem, formalized inductively. +The Mutilated Checker Board Problem, formalized inductively. Originator is Max Black, according to J A Robinson. Popularized as the Mutilated Checkerboard Problem by J McCarthy. + +See also HOL/Induct/Mutil for the original Isabelle tactic scripts. *) theory MutilatedCheckerboard = Main:; @@ -32,7 +34,7 @@ show "??P {}"; by simp; fix a t; - assume "a:A" "t : ??T" "??P t" "a <= - t"; + assume "a : A" "t : ??T" "??P t" "a <= - t"; show "??P (a Un t)"; proof (intro impI); assume "u : ??T" "(a Un t) Int u = {}"; @@ -45,9 +47,6 @@ qed; qed; -lemma tiling_UnI: "[| t : tiling A; u : tiling A; t Int u = {} |] ==> t Un u : tiling A"; - by (rule tiling_Un [rulify]); - section {* Basic properties of below *}; @@ -58,7 +57,7 @@ lemma below_less_iff [iff]: "(i: below k) = (i < k)"; by (simp add: below_def); -lemma below_0 [simp]: "below 0 = {}"; +lemma below_0: "below 0 = {}"; by (simp add: below_def); lemma Sigma_Suc1: "below (Suc n) Times B = ({n} Times B) Un (below n Times B)"; @@ -73,33 +72,31 @@ section {* Basic properties of evnodd *}; constdefs - evnodd :: "[(nat * nat) set, nat] => (nat * nat) set" + evnodd :: "(nat * nat) set => nat => (nat * nat) set" "evnodd A b == A Int {(i, j). (i + j) mod 2 = b}"; lemma evnodd_iff: "(i, j): evnodd A b = ((i, j): A & (i + j) mod 2 = b)"; by (simp add: evnodd_def); lemma evnodd_subset: "evnodd A b <= A"; -proof (unfold evnodd_def); - show "!!B. A Int B <= A"; by (rule Int_lower1); -qed; + by (unfold evnodd_def, rule Int_lower1); lemma evnoddD: "x : evnodd A b ==> x : A"; by (rule subsetD, rule evnodd_subset); -lemma evnodd_finite [simp]: "finite A ==> finite (evnodd A b)"; +lemma evnodd_finite: "finite A ==> finite (evnodd A b)"; by (rule finite_subset, rule evnodd_subset); -lemma evnodd_Un [simp]: "evnodd (A Un B) b = evnodd A b Un evnodd B b"; +lemma evnodd_Un: "evnodd (A Un B) b = evnodd A b Un evnodd B b"; by (unfold evnodd_def) blast; -lemma evnodd_Diff [simp]: "evnodd (A - B) b = evnodd A b - evnodd B b"; +lemma evnodd_Diff: "evnodd (A - B) b = evnodd A b - evnodd B b"; by (unfold evnodd_def) blast; -lemma evnodd_empty [simp]: "evnodd {} b = {}"; +lemma evnodd_empty: "evnodd {} b = {}"; by (simp add: evnodd_def); -lemma evnodd_insert [simp]: "evnodd (insert (i, j) C) b = +lemma evnodd_insert: "evnodd (insert (i, j) C) b = (if (i + j) mod 2 = b then insert (i, j) (evnodd C b) else evnodd C b)"; by (simp add: evnodd_def) blast; @@ -111,43 +108,41 @@ inductive domino intrs - horiz: "{(i, j), (i, Suc j)} : domino" - vertl: "{(i, j), (Suc i, j)} : domino"; + horiz: "{(i, j), (i, j + 1)} : domino" + vertl: "{(i, j), (i + 1, j)} : domino"; -lemma dominoes_tile_row: "{i} Times below (n + n) : tiling domino" +lemma dominoes_tile_row: "{i} Times below (2 * n) : tiling domino" (is "??P n" is "??B n : ??T"); proof (induct n); - have "??B 0 = {}"; by simp; - also; have "... : ??T"; by (rule tiling.empty); - finally; show "??P 0"; .; + show "??P 0"; by (simp add: below_0 tiling.empty); fix n; assume hyp: "??P n"; - let ??a = "{i} Times {Suc (n + n)} Un {i} Times {n + n}"; + let ??a = "{i} Times {2 * n + 1} Un {i} Times {2 * n}"; have "??B (Suc n) = ??a Un ??B n"; by (simp add: Sigma_Suc Un_assoc); also; have "... : ??T"; proof (rule tiling.Un); - have "{(i, n + n), (i, Suc (n + n))} : domino"; by (rule domino.horiz); - also; have "{(i, n + n), (i, Suc (n + n))} = ??a"; by blast; - finally; show "??a : domino"; .; + have "{(i, 2 * n), (i, 2 * n + 1)} : domino"; by (rule domino.horiz); + also; have "{(i, 2 * n), (i, 2 * n + 1)} = ??a"; by blast; + finally; show "... : domino"; .; show "??B n : ??T"; by (rule hyp); show "??a <= - ??B n"; by force; qed; finally; show "??P (Suc n)"; .; qed; -lemma dominoes_tile_matrix: "below m Times below (n + n) : tiling domino" +lemma dominoes_tile_matrix: "below m Times below (2 * n) : tiling domino" (is "??P m" is "??B m : ??T"); proof (induct m); - show "??P 0"; by (simp add: tiling.empty) -- {* same as above *}; + show "??P 0"; by (simp add: below_0 tiling.empty); fix m; assume hyp: "??P m"; - let ??t = "{m} Times below (n + n)"; + let ??t = "{m} Times below (2 * n)"; have "??B (Suc m) = ??t Un ??B m"; by (simp add: Sigma_Suc); also; have "... : ??T"; - proof (rule tiling_UnI); + proof (rule tiling_Un [rulify]); show "??t : ??T"; by (rule dominoes_tile_row); show "??B m : ??T"; by (rule hyp); show "??t Int ??B m = {}"; by blast; @@ -162,19 +157,19 @@ assume "d : domino"; thus ??thesis (is "??P d"); proof (induct d set: domino); + have b_cases: "b = 0 | b = 1"; by arith; fix i j; - have b_cases: "b = 0 | b = 1"; by arith; - note [simp] = less_Suc_eq mod_Suc; - from b_cases; show "??P {(i, j), (i, Suc j)}"; by rule auto; - from b_cases; show "??P {(i, j), (Suc i, j)}"; by rule auto; + note [simp] = evnodd_empty evnodd_insert mod_Suc; + from b_cases; show "??P {(i, j), (i, j + 1)}"; by rule auto; + from b_cases; show "??P {(i, j), (i + 1, j)}"; by rule auto; qed; qed; lemma domino_finite: "d: domino ==> finite d"; proof (induct set: domino); fix i j; - show "finite {(i, j), (i, Suc j)}"; by (intro Finites.intrs); - show "finite {(i, j), (Suc i, j)}"; by (intro Finites.intrs); + show "finite {(i, j), (i, j + 1)}"; by (intro Finites.intrs); + show "finite {(i, j), (i + 1, j)}"; by (intro Finites.intrs); qed; @@ -184,7 +179,7 @@ proof -; assume "t : ??T"; thus "??F t"; - proof (induct set: tiling); + proof (induct t set: tiling); show "??F {}"; by (rule Finites.emptyI); fix a t; assume "??F t"; assume "a : domino"; hence "??F a"; by (rule domino_finite); @@ -197,7 +192,7 @@ proof -; assume "t : ??T"; thus "??P t"; - proof (induct set: tiling); + proof (induct t set: tiling); show "??P {}"; by (simp add: evnodd_def); fix a t; @@ -237,29 +232,30 @@ constdefs mutilated_board :: "nat => nat => (nat * nat) set" - "mutilated_board m n == below (Suc m + Suc m) Times below (Suc n + Suc n) - - {(0, 0)} - {(Suc (m + m), Suc (n + n))}"; + "mutilated_board m n == below (2 * (m + 1)) Times below (2 * (n + 1)) + - {(0, 0)} - {(2 * m + 1, 2 * n + 1)}"; -theorem mutil_not_tiling: "mutilated_board m n ~: tiling domino" (is "_ ~: ??T"); +theorem mutil_not_tiling: "mutilated_board m n ~: tiling domino"; proof (unfold mutilated_board_def); - let ??t = "below (Suc m + Suc m) Times below (Suc n + Suc n)"; + let ??T = "tiling domino"; + let ??t = "below (2 * (m + 1)) Times below (2 * (n + 1))"; let ??t' = "??t - {(0, 0)}"; - let ??t'' = "??t' - {(Suc (m + m), Suc (n + n))}"; + let ??t'' = "??t' - {(2 * m + 1, 2 * n + 1)}"; show "??t'' ~: ??T"; proof; - let ??e = evnodd; - note [simp] = evnodd_iff; + have t: "??t : ??T"; by (rule dominoes_tile_matrix); assume t'': "??t'' : ??T"; - have t: "??t : ??T"; by (rule dominoes_tile_matrix); + let ??e = evnodd; have fin: "finite (??e ??t 0)"; by (rule evnodd_finite, rule tiling_domino_finite, rule t); + note [simp] = evnodd_iff evnodd_empty evnodd_insert evnodd_Diff; have "card (??e ??t'' 0) < card (??e ??t' 0)"; proof -; - have "card (??e ??t' 0 - {(Suc (m + m), Suc (n + n))}) < card (??e ??t' 0)"; + have "card (??e ??t' 0 - {(2 * m + 1, 2 * n + 1)}) < card (??e ??t' 0)"; proof (rule card_Diff1_less); show "finite (??e ??t' 0)"; by (rule finite_subset, rule fin) force; - show "(Suc (m + m), Suc (n + n)) : ??e ??t' 0"; by simp; + show "(2 * m + 1, 2 * n + 1) : ??e ??t' 0"; by simp; qed; thus ??thesis; by simp; qed; @@ -271,7 +267,7 @@ qed; also; from t; have "... = card (??e ??t 1)"; by (rule tiling_domino_01); also; have "??e ??t 1 = ??e ??t'' 1"; by simp; - also; have "card ... = card (??e ??t'' 0)"; by (rule sym, rule tiling_domino_01); + also; from t''; have "card ... = card (??e ??t'' 0)"; by (rule tiling_domino_01 [RS sym]); finally; show False; ..; qed; qed;