# HG changeset patch # User nipkow # Date 1381832745 -7200 # Node ID 1d6d2ce2ad3eb098059dd14dbff277955f672c85 # Parent 80660c529d7487b14c70b0dca26f66356827c150 fixed thm names diff -r 80660c529d74 -r 1d6d2ce2ad3e src/Doc/Tutorial/document/sets.tex --- a/src/Doc/Tutorial/document/sets.tex Tue Oct 15 10:59:34 2013 +0200 +++ b/src/Doc/Tutorial/document/sets.tex Tue Oct 15 12:25:45 2013 +0200 @@ -661,7 +661,7 @@ available: \begin{isabelle} r\ O\ s\ \isasymequiv\ \isacharbraceleft(x,z).\ \isasymexists y.\ (x,y)\ \isasymin\ s\ \isasymand\ (y,z)\ \isasymin\ r\isacharbraceright -\rulenamedx{rel_comp_def} +\rulenamedx{relcomp_def} \end{isabelle} % This is one of the many lemmas proved about these concepts: @@ -677,7 +677,7 @@ \isasymlbrakk r\isacharprime\ \isasymsubseteq\ r;\ s\isacharprime\ \isasymsubseteq\ s\isasymrbrakk\ \isasymLongrightarrow\ r\isacharprime\ O\ s\isacharprime\ \isasymsubseteq\ r\ O\ s% -\rulename{rel_comp_mono} +\rulename{relcomp_mono} \end{isabelle} \indexbold{converse!of a relation}% @@ -695,7 +695,7 @@ Here is a typical law proved about converse and composition: \begin{isabelle} (r\ O\ s)\isasyminverse\ =\ s\isasyminverse\ O\ r\isasyminverse -\rulename{converse_rel_comp} +\rulename{converse_relcomp} \end{isabelle} \indexbold{image!under a relation}%