# HG changeset patch # User huffman # Date 1272262949 25200 # Node ID 1debc8e29f6a7f58f7e461fa1f46f2a1db7a93a6 # Parent 9d8f7efd928991bfbd698daa2c78dcba047f7902 fix duplicate simp rule warnings diff -r 9d8f7efd9289 -r 1debc8e29f6a src/HOL/Library/FrechetDeriv.thy --- a/src/HOL/Library/FrechetDeriv.thy Sun Apr 25 20:48:19 2010 -0700 +++ b/src/HOL/Library/FrechetDeriv.thy Sun Apr 25 23:22:29 2010 -0700 @@ -385,7 +385,7 @@ fixes x :: "'a::{real_normed_algebra,comm_ring_1}" shows "FDERIV (\x. x ^ Suc n) x :> (\h. (1 + of_nat n) * x ^ n * h)" apply (induct n) - apply (simp add: power_Suc FDERIV_ident) + apply (simp add: FDERIV_ident) apply (drule FDERIV_mult [OF FDERIV_ident]) apply (simp only: of_nat_Suc left_distrib mult_1_left) apply (simp only: power_Suc right_distrib add_ac mult_ac) diff -r 9d8f7efd9289 -r 1debc8e29f6a src/HOL/Library/Permutations.thy --- a/src/HOL/Library/Permutations.thy Sun Apr 25 20:48:19 2010 -0700 +++ b/src/HOL/Library/Permutations.thy Sun Apr 25 23:22:29 2010 -0700 @@ -96,7 +96,7 @@ lemma permutes_superset: "p permutes S \ (\x \ S - T. p x = x) \ p permutes T" -by (simp add: Ball_def permutes_def Diff_iff) metis +by (simp add: Ball_def permutes_def) metis (* ------------------------------------------------------------------------- *) (* Group properties. *) @@ -125,7 +125,7 @@ apply (rule permutes_compose[OF pS]) apply (rule permutes_swap_id, simp) using permutes_in_image[OF pS, of a] apply simp - apply (auto simp add: Ball_def Diff_iff swap_def) + apply (auto simp add: Ball_def swap_def) done lemma permutes_insert: "{p. p permutes (insert a S)} = @@ -154,7 +154,7 @@ lemma card_permutations: assumes Sn: "card S = n" and fS: "finite S" shows "card {p. p permutes S} = fact n" using fS Sn proof (induct arbitrary: n) - case empty thus ?case by (simp add: permutes_empty) + case empty thus ?case by simp next case (insert x F) { fix n assume H0: "card (insert x F) = n"