# HG changeset patch # User huffman # Date 1288397728 25200 # Node ID 1dfdbd66093a176bc7b8aadedf28dd7f0fc5001a # Parent 73d45866dbda28c28229c76e33e149e7685e287a renamed {Rep,Abs}_CFun to {Rep,Abs}_cfun diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Algebraic.thy --- a/src/HOLCF/Algebraic.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Algebraic.thy Fri Oct 29 17:15:28 2010 -0700 @@ -191,7 +191,7 @@ lemma compact_cast_iff: "compact (cast\d) \ compact d" apply (rule iffI) apply (simp only: compact_def cast_below_cast [symmetric]) -apply (erule adm_subst [OF cont_Rep_CFun2]) +apply (erule adm_subst [OF cont_Rep_cfun2]) apply (erule compact_cast) done diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Cfun.thy --- a/src/HOLCF/Cfun.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Cfun.thy Fri Oct 29 17:15:28 2010 -0700 @@ -13,28 +13,28 @@ subsection {* Definition of continuous function type *} -cpodef (CFun) ('a, 'b) cfun (infixr "->" 0) = "{f::'a => 'b. cont f}" +cpodef ('a, 'b) cfun (infixr "->" 0) = "{f::'a => 'b. cont f}" by (auto intro: cont_const adm_cont) type_notation (xsymbols) cfun ("(_ \/ _)" [1, 0] 0) notation - Rep_CFun ("(_$/_)" [999,1000] 999) + Rep_cfun ("(_$/_)" [999,1000] 999) notation (xsymbols) - Rep_CFun ("(_\/_)" [999,1000] 999) + Rep_cfun ("(_\/_)" [999,1000] 999) notation (HTML output) - Rep_CFun ("(_\/_)" [999,1000] 999) + Rep_cfun ("(_\/_)" [999,1000] 999) subsection {* Syntax for continuous lambda abstraction *} syntax "_cabs" :: "'a" parse_translation {* -(* rewrite (_cabs x t) => (Abs_CFun (%x. t)) *) - [mk_binder_tr (@{syntax_const "_cabs"}, @{const_syntax Abs_CFun})]; +(* rewrite (_cabs x t) => (Abs_cfun (%x. t)) *) + [mk_binder_tr (@{syntax_const "_cabs"}, @{const_syntax Abs_cfun})]; *} text {* To avoid eta-contraction of body: *} @@ -50,7 +50,7 @@ val (x,t') = atomic_abs_tr' abs'; in Syntax.const @{syntax_const "_cabs"} $ x $ t' end; - in [(@{const_syntax Abs_CFun}, cabs_tr')] end; + in [(@{const_syntax Abs_cfun}, cabs_tr')] end; *} text {* Syntax for nested abstractions *} @@ -88,32 +88,32 @@ text {* Dummy patterns for continuous abstraction *} translations - "\ _. t" => "CONST Abs_CFun (\ _. t)" + "\ _. t" => "CONST Abs_cfun (\ _. t)" subsection {* Continuous function space is pointed *} -lemma UU_CFun: "\ \ CFun" -by (simp add: CFun_def inst_fun_pcpo) +lemma UU_cfun: "\ \ cfun" +by (simp add: cfun_def inst_fun_pcpo) instance cfun :: (cpo, discrete_cpo) discrete_cpo -by intro_classes (simp add: below_CFun_def Rep_CFun_inject) +by intro_classes (simp add: below_cfun_def Rep_cfun_inject) instance cfun :: (cpo, pcpo) pcpo -by (rule typedef_pcpo [OF type_definition_CFun below_CFun_def UU_CFun]) +by (rule typedef_pcpo [OF type_definition_cfun below_cfun_def UU_cfun]) -lemmas Rep_CFun_strict = - typedef_Rep_strict [OF type_definition_CFun below_CFun_def UU_CFun] +lemmas Rep_cfun_strict = + typedef_Rep_strict [OF type_definition_cfun below_cfun_def UU_cfun] -lemmas Abs_CFun_strict = - typedef_Abs_strict [OF type_definition_CFun below_CFun_def UU_CFun] +lemmas Abs_cfun_strict = + typedef_Abs_strict [OF type_definition_cfun below_cfun_def UU_cfun] text {* function application is strict in its first argument *} -lemma Rep_CFun_strict1 [simp]: "\\x = \" -by (simp add: Rep_CFun_strict) +lemma Rep_cfun_strict1 [simp]: "\\x = \" +by (simp add: Rep_cfun_strict) lemma LAM_strict [simp]: "(\ x. \) = \" -by (simp add: inst_fun_pcpo [symmetric] Abs_CFun_strict) +by (simp add: inst_fun_pcpo [symmetric] Abs_cfun_strict) text {* for compatibility with old HOLCF-Version *} lemma inst_cfun_pcpo: "\ = (\ x. \)" @@ -123,11 +123,11 @@ text {* Beta-equality for continuous functions *} -lemma Abs_CFun_inverse2: "cont f \ Rep_CFun (Abs_CFun f) = f" -by (simp add: Abs_CFun_inverse CFun_def) +lemma Abs_cfun_inverse2: "cont f \ Rep_cfun (Abs_cfun f) = f" +by (simp add: Abs_cfun_inverse cfun_def) lemma beta_cfun: "cont f \ (\ x. f x)\u = f u" -by (simp add: Abs_CFun_inverse2) +by (simp add: Abs_cfun_inverse2) text {* Beta-reduction simproc *} @@ -144,7 +144,7 @@ that would otherwise be caused by large continuity side conditions. *} -simproc_setup beta_cfun_proc ("Abs_CFun f\x") = {* +simproc_setup beta_cfun_proc ("Abs_cfun f\x") = {* fn phi => fn ss => fn ct => let val dest = Thm.dest_comb; @@ -160,12 +160,12 @@ text {* Eta-equality for continuous functions *} lemma eta_cfun: "(\ x. f\x) = f" -by (rule Rep_CFun_inverse) +by (rule Rep_cfun_inverse) text {* Extensionality for continuous functions *} lemma cfun_eq_iff: "f = g \ (\x. f\x = g\x)" -by (simp add: Rep_CFun_inject [symmetric] fun_eq_iff) +by (simp add: Rep_cfun_inject [symmetric] fun_eq_iff) lemma cfun_eqI: "(\x. f\x = g\x) \ f = g" by (simp add: cfun_eq_iff) @@ -173,7 +173,7 @@ text {* Extensionality wrt. ordering for continuous functions *} lemma cfun_below_iff: "f \ g \ (\x. f\x \ g\x)" -by (simp add: below_CFun_def fun_below_iff) +by (simp add: below_cfun_def fun_below_iff) lemma cfun_belowI: "(\x. f\x \ g\x) \ f \ g" by (simp add: cfun_below_iff) @@ -191,32 +191,32 @@ subsection {* Continuity of application *} -lemma cont_Rep_CFun1: "cont (\f. f\x)" -by (rule cont_Rep_CFun [THEN cont2cont_fun]) +lemma cont_Rep_cfun1: "cont (\f. f\x)" +by (rule cont_Rep_cfun [THEN cont2cont_fun]) -lemma cont_Rep_CFun2: "cont (\x. f\x)" -apply (cut_tac x=f in Rep_CFun) -apply (simp add: CFun_def) +lemma cont_Rep_cfun2: "cont (\x. f\x)" +apply (cut_tac x=f in Rep_cfun) +apply (simp add: cfun_def) done -lemmas monofun_Rep_CFun = cont_Rep_CFun [THEN cont2mono] +lemmas monofun_Rep_cfun = cont_Rep_cfun [THEN cont2mono] -lemmas monofun_Rep_CFun1 = cont_Rep_CFun1 [THEN cont2mono, standard] -lemmas monofun_Rep_CFun2 = cont_Rep_CFun2 [THEN cont2mono, standard] +lemmas monofun_Rep_cfun1 = cont_Rep_cfun1 [THEN cont2mono, standard] +lemmas monofun_Rep_cfun2 = cont_Rep_cfun2 [THEN cont2mono, standard] -text {* contlub, cont properties of @{term Rep_CFun} in each argument *} +text {* contlub, cont properties of @{term Rep_cfun} in each argument *} lemma contlub_cfun_arg: "chain Y \ f\(\i. Y i) = (\i. f\(Y i))" -by (rule cont_Rep_CFun2 [THEN cont2contlubE]) +by (rule cont_Rep_cfun2 [THEN cont2contlubE]) lemma cont_cfun_arg: "chain Y \ range (\i. f\(Y i)) <<| f\(\i. Y i)" -by (rule cont_Rep_CFun2 [THEN contE]) +by (rule cont_Rep_cfun2 [THEN contE]) lemma contlub_cfun_fun: "chain F \ (\i. F i)\x = (\i. F i\x)" -by (rule cont_Rep_CFun1 [THEN cont2contlubE]) +by (rule cont_Rep_cfun1 [THEN cont2contlubE]) lemma cont_cfun_fun: "chain F \ range (\i. F i\x) <<| (\i. F i)\x" -by (rule cont_Rep_CFun1 [THEN contE]) +by (rule cont_Rep_cfun1 [THEN contE]) text {* monotonicity of application *} @@ -224,7 +224,7 @@ by (simp add: cfun_below_iff) lemma monofun_cfun_arg: "x \ y \ f\x \ f\y" -by (rule monofun_Rep_CFun2 [THEN monofunE]) +by (rule monofun_Rep_cfun2 [THEN monofunE]) lemma monofun_cfun: "\f \ g; x \ y\ \ f\x \ g\y" by (rule below_trans [OF monofun_cfun_fun monofun_cfun_arg]) @@ -232,15 +232,15 @@ text {* ch2ch - rules for the type @{typ "'a -> 'b"} *} lemma chain_monofun: "chain Y \ chain (\i. f\(Y i))" -by (erule monofun_Rep_CFun2 [THEN ch2ch_monofun]) +by (erule monofun_Rep_cfun2 [THEN ch2ch_monofun]) -lemma ch2ch_Rep_CFunR: "chain Y \ chain (\i. f\(Y i))" -by (rule monofun_Rep_CFun2 [THEN ch2ch_monofun]) +lemma ch2ch_Rep_cfunR: "chain Y \ chain (\i. f\(Y i))" +by (rule monofun_Rep_cfun2 [THEN ch2ch_monofun]) -lemma ch2ch_Rep_CFunL: "chain F \ chain (\i. (F i)\x)" -by (rule monofun_Rep_CFun1 [THEN ch2ch_monofun]) +lemma ch2ch_Rep_cfunL: "chain F \ chain (\i. (F i)\x)" +by (rule monofun_Rep_cfun1 [THEN ch2ch_monofun]) -lemma ch2ch_Rep_CFun [simp]: +lemma ch2ch_Rep_cfun [simp]: "\chain F; chain Y\ \ chain (\i. (F i)\(Y i))" by (simp add: chain_def monofun_cfun) @@ -248,7 +248,7 @@ "\\x. chain (\i. S i x); \i. cont (\x. S i x)\ \ chain (\i. \ x. S i x)" by (simp add: chain_def cfun_below_iff) -text {* contlub, cont properties of @{term Rep_CFun} in both arguments *} +text {* contlub, cont properties of @{term Rep_cfun} in both arguments *} lemma contlub_cfun: "\chain F; chain Y\ \ (\i. F i)\(\i. Y i) = (\i. F i\(Y i))" @@ -257,15 +257,15 @@ lemma cont_cfun: "\chain F; chain Y\ \ range (\i. F i\(Y i)) <<| (\i. F i)\(\i. Y i)" apply (rule thelubE) -apply (simp only: ch2ch_Rep_CFun) +apply (simp only: ch2ch_Rep_cfun) apply (simp only: contlub_cfun) done lemma contlub_LAM: "\\x. chain (\i. F i x); \i. cont (\x. F i x)\ \ (\ x. \i. F i x) = (\i. \ x. F i x)" -apply (simp add: thelub_CFun) -apply (simp add: Abs_CFun_inverse2) +apply (simp add: thelub_cfun) +apply (simp add: Abs_cfun_inverse2) apply (simp add: thelub_fun ch2ch_lambda) done @@ -291,7 +291,7 @@ subsection {* Continuity simplification procedure *} -text {* cont2cont lemma for @{term Rep_CFun} *} +text {* cont2cont lemma for @{term Rep_cfun} *} lemma cont2cont_APP [simp, cont2cont]: assumes f: "cont (\x. f x)" @@ -299,9 +299,9 @@ shows "cont (\x. (f x)\(t x))" proof - have 1: "\y. cont (\x. (f x)\y)" - using cont_Rep_CFun1 f by (rule cont_compose) + using cont_Rep_cfun1 f by (rule cont_compose) show "cont (\x. (f x)\(t x))" - using t cont_Rep_CFun2 1 by (rule cont_apply) + using t cont_Rep_cfun2 1 by (rule cont_apply) qed text {* @@ -334,9 +334,9 @@ assumes f1: "\x. cont (\y. f x y)" assumes f2: "\y. cont (\x. f x y)" shows "cont (\x. \ y. f x y)" -proof (rule cont_Abs_CFun) +proof (rule cont_Abs_cfun) fix x - from f1 show "f x \ CFun" by (simp add: CFun_def) + from f1 show "f x \ cfun" by (simp add: cfun_def) from f2 show "cont f" by (rule cont2cont_lambda) qed @@ -356,24 +356,24 @@ by (simp add: cont2cont_LAM) lemmas cont_lemmas1 = - cont_const cont_id cont_Rep_CFun2 cont2cont_APP cont2cont_LAM + cont_const cont_id cont_Rep_cfun2 cont2cont_APP cont2cont_LAM subsection {* Miscellaneous *} -text {* Monotonicity of @{term Abs_CFun} *} +text {* Monotonicity of @{term Abs_cfun} *} -lemma semi_monofun_Abs_CFun: - "\cont f; cont g; f \ g\ \ Abs_CFun f \ Abs_CFun g" -by (simp add: below_CFun_def Abs_CFun_inverse2) +lemma semi_monofun_Abs_cfun: + "\cont f; cont g; f \ g\ \ Abs_cfun f \ Abs_cfun g" +by (simp add: below_cfun_def Abs_cfun_inverse2) text {* some lemmata for functions with flat/chfin domain/range types *} -lemma chfin_Rep_CFunR: "chain (Y::nat => 'a::cpo->'b::chfin) +lemma chfin_Rep_cfunR: "chain (Y::nat => 'a::cpo->'b::chfin) ==> !s. ? n. (LUB i. Y i)$s = Y n$s" apply (rule allI) apply (subst contlub_cfun_fun) apply assumption -apply (fast intro!: thelubI chfin lub_finch2 chfin2finch ch2ch_Rep_CFunL) +apply (fast intro!: thelubI chfin lub_finch2 chfin2finch ch2ch_Rep_cfunL) done lemma adm_chfindom: "adm (\(u::'a::cpo \ 'b::chfin). P(u\s))" diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/ConvexPD.thy --- a/src/HOLCF/ConvexPD.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/ConvexPD.thy Fri Oct 29 17:15:28 2010 -0700 @@ -265,7 +265,7 @@ lemma compact_convex_unit_iff [simp]: "compact {x}\ \ compact x" apply (safe elim!: compact_convex_unit) apply (simp only: compact_def convex_unit_below_iff [symmetric]) -apply (erule adm_subst [OF cont_Rep_CFun2]) +apply (erule adm_subst [OF cont_Rep_cfun2]) done lemma compact_convex_plus [simp]: diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Deflation.thy --- a/src/HOLCF/Deflation.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Deflation.thy Fri Oct 29 17:15:28 2010 -0700 @@ -207,7 +207,7 @@ proof - assume "compact (e\x)" hence "adm (\y. \ e\x \ y)" by (rule compactD) - hence "adm (\y. \ e\x \ e\y)" by (rule adm_subst [OF cont_Rep_CFun2]) + hence "adm (\y. \ e\x \ e\y)" by (rule adm_subst [OF cont_Rep_cfun2]) hence "adm (\y. \ x \ y)" by simp thus "compact x" by (rule compactI) qed @@ -216,7 +216,7 @@ proof - assume "compact x" hence "adm (\y. \ x \ y)" by (rule compactD) - hence "adm (\y. \ x \ p\y)" by (rule adm_subst [OF cont_Rep_CFun2]) + hence "adm (\y. \ x \ p\y)" by (rule adm_subst [OF cont_Rep_cfun2]) hence "adm (\y. \ e\x \ y)" by (simp add: e_below_iff_below_p) thus "compact (e\x)" by (rule compactI) qed diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Domain_Aux.thy --- a/src/HOLCF/Domain_Aux.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Domain_Aux.thy Fri Oct 29 17:15:28 2010 -0700 @@ -83,7 +83,7 @@ lemma compact_abs_rev: "compact (abs\x) \ compact x" proof (unfold compact_def) assume "adm (\y. \ abs\x \ y)" - with cont_Rep_CFun2 + with cont_Rep_cfun2 have "adm (\y. \ abs\x \ abs\y)" by (rule adm_subst) then show "adm (\y. \ x \ y)" using abs_below by simp qed diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Fixrec.thy --- a/src/HOLCF/Fixrec.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Fixrec.thy Fri Oct 29 17:15:28 2010 -0700 @@ -222,11 +222,11 @@ by simp lemma def_cont_fix_eq: - "\f \ fix\(Abs_CFun F); cont F\ \ f = F f" + "\f \ fix\(Abs_cfun F); cont F\ \ f = F f" by (simp, subst fix_eq, simp) lemma def_cont_fix_ind: - "\f \ fix\(Abs_CFun F); cont F; adm P; P \; \x. P x \ P (F x)\ \ P f" + "\f \ fix\(Abs_cfun F); cont F; adm P; P \; \x. P x \ P (F x)\ \ P f" by (simp add: fix_ind) text {* lemma for proving rewrite rules *} diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/IOA/meta_theory/Sequence.thy --- a/src/HOLCF/IOA/meta_theory/Sequence.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/IOA/meta_theory/Sequence.thy Fri Oct 29 17:15:28 2010 -0700 @@ -901,8 +901,8 @@ apply (rule_tac t="s1" in seq.reach [THEN subst]) apply (rule_tac t="s2" in seq.reach [THEN subst]) apply (rule lub_mono) -apply (rule seq.chain_take [THEN ch2ch_Rep_CFunL]) -apply (rule seq.chain_take [THEN ch2ch_Rep_CFunL]) +apply (rule seq.chain_take [THEN ch2ch_Rep_cfunL]) +apply (rule seq.chain_take [THEN ch2ch_Rep_cfunL]) apply (rule assms) done diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Library/Stream.thy --- a/src/HOLCF/Library/Stream.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Library/Stream.thy Fri Oct 29 17:15:28 2010 -0700 @@ -921,7 +921,7 @@ by (rule monofun_cfun_arg,simp) lemma contlub_scons_lemma: "chain S ==> (LUB i. a && S i) = a && (LUB i. S i)" -by (rule cont2contlubE [OF cont_Rep_CFun2, symmetric]) +by (rule cont2contlubE [OF cont_Rep_cfun2, symmetric]) lemma finite_lub_sconc: "chain Y ==> (stream_finite x) ==> (LUB i. x ooo Y i) = (x ooo (LUB i. Y i))" diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/LowerPD.thy --- a/src/HOLCF/LowerPD.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/LowerPD.thy Fri Oct 29 17:15:28 2010 -0700 @@ -256,7 +256,7 @@ lemma compact_lower_unit_iff [simp]: "compact {x}\ \ compact x" apply (safe elim!: compact_lower_unit) apply (simp only: compact_def lower_unit_below_iff [symmetric]) -apply (erule adm_subst [OF cont_Rep_CFun2]) +apply (erule adm_subst [OF cont_Rep_cfun2]) done lemma compact_lower_plus [simp]: diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Ssum.thy --- a/src/HOLCF/Ssum.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Ssum.thy Fri Oct 29 17:15:28 2010 -0700 @@ -120,11 +120,11 @@ lemma compact_sinlD: "compact (sinl\x) \ compact x" unfolding compact_def -by (drule adm_subst [OF cont_Rep_CFun2 [where f=sinl]], simp) +by (drule adm_subst [OF cont_Rep_cfun2 [where f=sinl]], simp) lemma compact_sinrD: "compact (sinr\x) \ compact x" unfolding compact_def -by (drule adm_subst [OF cont_Rep_CFun2 [where f=sinr]], simp) +by (drule adm_subst [OF cont_Rep_cfun2 [where f=sinr]], simp) lemma compact_sinl_iff [simp]: "compact (sinl\x) = compact x" by (safe elim!: compact_sinl compact_sinlD) diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Tools/Domain/domain_constructors.ML --- a/src/HOLCF/Tools/Domain/domain_constructors.ML Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Tools/Domain/domain_constructors.ML Fri Oct 29 17:15:28 2010 -0700 @@ -453,7 +453,7 @@ fun argvars n args = map_index (argvar n) args; fun app s (l, r) = mk_appl (Constant s) [l, r]; val cabs = app "_cabs"; - val capp = app @{const_syntax Rep_CFun}; + val capp = app @{const_syntax Rep_cfun}; val capps = Library.foldl capp fun con1 authentic n (con,args) = Library.foldl capp (c_ast authentic con, argvars n args); diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Tools/Domain/domain_induction.ML --- a/src/HOLCF/Tools/Domain/domain_induction.ML Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Tools/Domain/domain_induction.ML Fri Oct 29 17:15:28 2010 -0700 @@ -132,7 +132,7 @@ mk_trp (p $ HOLCF_Library.mk_bottom T) :: map (con_assm true p) cons; val assms = maps eq_assms (Ps ~~ newTs ~~ map #con_specs constr_infos); - val take_ss = HOL_ss addsimps (@{thm Rep_CFun_strict1} :: take_rews); + val take_ss = HOL_ss addsimps (@{thm Rep_cfun_strict1} :: take_rews); fun quant_tac ctxt i = EVERY (map (fn name => res_inst_tac ctxt [(("x", 0), name)] spec i) x_names); @@ -317,7 +317,7 @@ end; val goal = mk_trp (foldr1 mk_conj (map one (newTs ~~ Rs ~~ take_consts))); - val rules = @{thm Rep_CFun_strict1} :: take_0_thms; + val rules = @{thm Rep_cfun_strict1} :: take_0_thms; fun tacf {prems, context} = let val prem' = rewrite_rule [bisim_def_thm] (hd prems); diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Tools/Domain/domain_isomorphism.ML --- a/src/HOLCF/Tools/Domain/domain_isomorphism.ML Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Tools/Domain/domain_isomorphism.ML Fri Oct 29 17:15:28 2010 -0700 @@ -155,7 +155,7 @@ (* convert parameters to lambda abstractions *) fun mk_eqn (lhs, rhs) = case lhs of - Const (@{const_name Rep_CFun}, _) $ f $ (x as Free _) => + Const (@{const_name Rep_cfun}, _) $ f $ (x as Free _) => mk_eqn (f, big_lambda x rhs) | f $ Const (@{const_name TYPE}, T) => mk_eqn (f, Abs ("t", T, rhs)) diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Tools/cont_consts.ML --- a/src/HOLCF/Tools/cont_consts.ML Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Tools/cont_consts.ML Fri Oct 29 17:15:28 2010 -0700 @@ -28,7 +28,7 @@ in [Syntax.ParsePrintRule (Syntax.mk_appl (Constant name2) (map Variable vnames), - fold (fn a => fn t => Syntax.mk_appl (Constant @{const_syntax Rep_CFun}) [t, Variable a]) + fold (fn a => fn t => Syntax.mk_appl (Constant @{const_syntax Rep_cfun}) [t, Variable a]) vnames (Constant name1))] @ (case mx of Infix _ => [extra_parse_rule] diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Tools/cont_proc.ML --- a/src/HOLCF/Tools/cont_proc.ML Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Tools/cont_proc.ML Fri Oct 29 17:15:28 2010 -0700 @@ -21,17 +21,17 @@ val cont_I = @{thm cont_id}; val cont_A = @{thm cont2cont_APP}; val cont_L = @{thm cont2cont_LAM}; -val cont_R = @{thm cont_Rep_CFun2}; +val cont_R = @{thm cont_Rep_cfun2}; (* checks whether a term contains no dangling bound variables *) fun is_closed_term t = not (Term.loose_bvar (t, 0)); (* checks whether a term is written entirely in the LCF sublanguage *) -fun is_lcf_term (Const (@{const_name Rep_CFun}, _) $ t $ u) = +fun is_lcf_term (Const (@{const_name Rep_cfun}, _) $ t $ u) = is_lcf_term t andalso is_lcf_term u - | is_lcf_term (Const (@{const_name Abs_CFun}, _) $ Abs (_, _, t)) = + | is_lcf_term (Const (@{const_name Abs_cfun}, _) $ Abs (_, _, t)) = is_lcf_term t - | is_lcf_term (Const (@{const_name Abs_CFun}, _) $ t) = + | is_lcf_term (Const (@{const_name Abs_cfun}, _) $ t) = is_lcf_term (Term.incr_boundvars 1 t $ Bound 0) | is_lcf_term (Bound _) = true | is_lcf_term t = is_closed_term t; @@ -67,17 +67,17 @@ (* first list: cont thm for each dangling bound variable *) (* second list: cont thm for each LAM in t *) (* if b = false, only return cont thm for outermost LAMs *) - fun cont_thms1 b (Const (@{const_name Rep_CFun}, _) $ f $ t) = + fun cont_thms1 b (Const (@{const_name Rep_cfun}, _) $ f $ t) = let val (cs1,ls1) = cont_thms1 b f; val (cs2,ls2) = cont_thms1 b t; in (zip cs1 cs2, if b then ls1 @ ls2 else []) end - | cont_thms1 b (Const (@{const_name Abs_CFun}, _) $ Abs (_, _, t)) = + | cont_thms1 b (Const (@{const_name Abs_cfun}, _) $ Abs (_, _, t)) = let val (cs, ls) = cont_thms1 b t; val (cs', l) = lam cs; in (cs', l::ls) end - | cont_thms1 b (Const (@{const_name Abs_CFun}, _) $ t) = + | cont_thms1 b (Const (@{const_name Abs_cfun}, _) $ t) = let val t' = Term.incr_boundvars 1 t $ Bound 0; val (cs, ls) = cont_thms1 b t'; @@ -109,7 +109,7 @@ fun cont_tac_of_term (Const (@{const_name cont}, _) $ f) = let - val f' = Const (@{const_name Abs_CFun}, dummyT) $ f; + val f' = Const (@{const_name Abs_cfun}, dummyT) $ f; in if is_lcf_term f' then new_cont_tac f' diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Tools/fixrec.ML --- a/src/HOLCF/Tools/fixrec.ML Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Tools/fixrec.ML Fri Oct 29 17:15:28 2010 -0700 @@ -65,7 +65,7 @@ fun dest_eqs t = HOLogic.dest_eq (HOLogic.dest_Trueprop t); (* similar to Thm.head_of, but for continuous application *) -fun chead_of (Const(@{const_name Rep_CFun},_)$f$t) = chead_of f +fun chead_of (Const(@{const_name Rep_cfun},_)$f$t) = chead_of f | chead_of u = u; infix 0 ==; val (op ==) = Logic.mk_equals; @@ -82,7 +82,7 @@ val run = Const(@{const_name Fixrec.run}, mT ->> T) in case t of - Const(@{const_name Rep_CFun}, _) $ + Const(@{const_name Rep_cfun}, _) $ Const(@{const_name Fixrec.succeed}, _) $ u => u | _ => run ` t end; @@ -226,7 +226,7 @@ (* compiles a monadic term for a constructor pattern *) and comp_con T p rhs vs taken = case p of - Const(@{const_name Rep_CFun},_) $ f $ x => + Const(@{const_name Rep_cfun},_) $ f $ x => let val (rhs', v, taken') = comp_pat x rhs taken in comp_con T f rhs' (v::vs) taken' end | f $ x => @@ -250,7 +250,7 @@ (* returns (constant, (vars, matcher)) *) fun compile_lhs match_name pat rhs vs taken = case pat of - Const(@{const_name Rep_CFun}, _) $ f $ x => + Const(@{const_name Rep_cfun}, _) $ f $ x => let val (rhs', v, taken') = compile_pat match_name x rhs taken; in compile_lhs match_name f rhs' (v::vs) taken' end | Free(_,_) => (pat, (vs, rhs)) diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Tools/holcf_library.ML --- a/src/HOLCF/Tools/holcf_library.ML Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Tools/holcf_library.ML Fri Oct 29 17:15:28 2010 -0700 @@ -76,10 +76,10 @@ | dest_cfunT T = raise TYPE ("dest_cfunT", [T], []); fun capply_const (S, T) = - Const(@{const_name Rep_CFun}, (S ->> T) --> (S --> T)); + Const(@{const_name Rep_cfun}, (S ->> T) --> (S --> T)); fun cabs_const (S, T) = - Const(@{const_name Abs_CFun}, (S --> T) --> (S ->> T)); + Const(@{const_name Abs_cfun}, (S --> T) --> (S ->> T)); fun mk_cabs t = let val T = fastype_of t diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/Up.thy --- a/src/HOLCF/Up.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/Up.thy Fri Oct 29 17:15:28 2010 -0700 @@ -237,7 +237,7 @@ lemma compact_upD: "compact (up\x) \ compact x" unfolding compact_def -by (drule adm_subst [OF cont_Rep_CFun2 [where f=up]], simp) +by (drule adm_subst [OF cont_Rep_cfun2 [where f=up]], simp) lemma compact_up_iff [simp]: "compact (up\x) = compact x" by (safe elim!: compact_up compact_upD) diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/UpperPD.thy --- a/src/HOLCF/UpperPD.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/UpperPD.thy Fri Oct 29 17:15:28 2010 -0700 @@ -252,7 +252,7 @@ lemma compact_upper_unit_iff [simp]: "compact {x}\ \ compact x" apply (safe elim!: compact_upper_unit) apply (simp only: compact_def upper_unit_below_iff [symmetric]) -apply (erule adm_subst [OF cont_Rep_CFun2]) +apply (erule adm_subst [OF cont_Rep_cfun2]) done lemma compact_upper_plus [simp]: diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/ex/Domain_Proofs.thy --- a/src/HOLCF/ex/Domain_Proofs.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/ex/Domain_Proofs.thy Fri Oct 29 17:15:28 2010 -0700 @@ -31,7 +31,7 @@ foo_bar_baz_deflF :: "defl \ defl \ defl \ defl \ defl \ defl \ defl" where - "foo_bar_baz_deflF = (\ a. Abs_CFun (\(t1, t2, t3). + "foo_bar_baz_deflF = (\ a. Abs_cfun (\(t1, t2, t3). ( ssum_defl\DEFL(one)\(sprod_defl\(u_defl\a)\(u_defl\t2)) , u_defl\(cfun_defl\t3\DEFL(tr)) , u_defl\(cfun_defl\(convex_defl\t1)\DEFL(tr)))))" @@ -269,7 +269,7 @@ ('a foo \ 'b foo) \ ('a bar \ 'b bar) \ ('b baz \ 'a baz) \ ('a foo \ 'b foo) \ ('a bar \ 'b bar) \ ('b baz \ 'a baz)" where - "foo_bar_baz_mapF = (\ f. Abs_CFun (\(d1, d2, d3). + "foo_bar_baz_mapF = (\ f. Abs_cfun (\(d1, d2, d3). ( foo_abs oo ssum_map\ID\(sprod_map\(u_map\f)\(u_map\d2)) diff -r 73d45866dbda -r 1dfdbd66093a src/HOLCF/ex/Pattern_Match.thy --- a/src/HOLCF/ex/Pattern_Match.thy Fri Oct 29 16:51:40 2010 -0700 +++ b/src/HOLCF/ex/Pattern_Match.thy Fri Oct 29 17:15:28 2010 -0700 @@ -115,9 +115,9 @@ parse_translation {* (* rewrite (_pat x) => (succeed) *) -(* rewrite (_variable x t) => (Abs_CFun (%x. t)) *) +(* rewrite (_variable x t) => (Abs_cfun (%x. t)) *) [(@{syntax_const "_pat"}, fn _ => Syntax.const @{const_syntax Fixrec.succeed}), - mk_binder_tr (@{syntax_const "_variable"}, @{const_syntax Abs_CFun})]; + mk_binder_tr (@{syntax_const "_variable"}, @{const_syntax Abs_cfun})]; *} text {* Printing Case expressions *} @@ -127,14 +127,14 @@ print_translation {* let - fun dest_LAM (Const (@{const_syntax Rep_CFun},_) $ Const (@{const_syntax unit_when},_) $ t) = + fun dest_LAM (Const (@{const_syntax Rep_cfun},_) $ Const (@{const_syntax unit_when},_) $ t) = (Syntax.const @{syntax_const "_noargs"}, t) - | dest_LAM (Const (@{const_syntax Rep_CFun},_) $ Const (@{const_syntax csplit},_) $ t) = + | dest_LAM (Const (@{const_syntax Rep_cfun},_) $ Const (@{const_syntax csplit},_) $ t) = let val (v1, t1) = dest_LAM t; val (v2, t2) = dest_LAM t1; in (Syntax.const @{syntax_const "_args"} $ v1 $ v2, t2) end - | dest_LAM (Const (@{const_syntax Abs_CFun},_) $ t) = + | dest_LAM (Const (@{const_syntax Abs_cfun},_) $ t) = let val abs = case t of Abs abs => abs @@ -149,7 +149,7 @@ (Syntax.const @{syntax_const "_match"} $ p $ v) $ t end; - in [(@{const_syntax Rep_CFun}, Case1_tr')] end; + in [(@{const_syntax Rep_cfun}, Case1_tr')] end; *} translations @@ -485,7 +485,7 @@ open Syntax fun syntax c = Syntax.mark_const (fst (dest_Const c)); fun app s (l, r) = Syntax.mk_appl (Constant s) [l, r]; - val capp = app @{const_syntax Rep_CFun}; + val capp = app @{const_syntax Rep_cfun}; val capps = Library.foldl capp fun app_var x = Syntax.mk_appl (Constant "_variable") [x, Variable "rhs"];