# HG changeset patch # User huffman # Date 1315157378 25200 # Node ID 1e490e891c88273d925c02917f4a45eba8a0276d # Parent cd8dbfc272df69a8cbc9f1e28c02d68e35a407af replace lemma expi_imaginary with reoriented lemma cis_conv_exp diff -r cd8dbfc272df -r 1e490e891c88 src/HOL/Complex.thy --- a/src/HOL/Complex.thy Sun Sep 04 10:05:52 2011 -0700 +++ b/src/HOL/Complex.thy Sun Sep 04 10:29:38 2011 -0700 @@ -606,7 +606,7 @@ abbreviation expi :: "complex \ complex" where "expi \ exp" -lemma expi_imaginary: "expi (Complex 0 b) = cis b" +lemma cis_conv_exp: "cis b = exp (Complex 0 b)" proof (rule complex_eqI) { fix n have "Complex 0 b ^ n = real (fact n) *\<^sub>R Complex (cos_coeff n * b ^ n) (sin_coeff n * b ^ n)" @@ -614,23 +614,18 @@ apply (simp add: cos_coeff_def sin_coeff_def) apply (simp add: sin_coeff_Suc cos_coeff_Suc del: mult_Suc) done } note * = this - show "Re (exp (Complex 0 b)) = Re (cis b)" + show "Re (cis b) = Re (exp (Complex 0 b))" unfolding exp_def cis_def cos_def by (subst bounded_linear.suminf[OF bounded_linear_Re summable_exp_generic], simp add: * mult_assoc [symmetric]) - show "Im (exp (Complex 0 b)) = Im (cis b)" + show "Im (cis b) = Im (exp (Complex 0 b))" unfolding exp_def cis_def sin_def by (subst bounded_linear.suminf[OF bounded_linear_Im summable_exp_generic], simp add: * mult_assoc [symmetric]) qed lemma expi_def: "expi z = complex_of_real (exp (Re z)) * cis (Im z)" -proof - - have "expi z = expi (complex_of_real (Re z) + Complex 0 (Im z))" - by simp - thus ?thesis - unfolding exp_add exp_of_real expi_imaginary . -qed + unfolding cis_conv_exp exp_of_real [symmetric] mult_exp_exp by simp lemma complex_split_polar: "\r a. z = complex_of_real r * (Complex (cos a) (sin a))"