# HG changeset patch # User hoelzl # Date 1291332961 -3600 # Node ID 1eb1b2f9d0625c1beb3aaa4539bc357d31b6f186 # Parent 6f7292b946520a732ae74d7826de59e1bc8105e9 adapt proofs to changed set_plus_image (cf. ee8d0548c148); diff -r 6f7292b94652 -r 1eb1b2f9d062 src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Thu Dec 02 21:23:56 2010 +0100 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Fri Dec 03 00:36:01 2010 +0100 @@ -313,7 +313,7 @@ lemma snd_linear: "linear snd" unfolding linear_def by (simp add: algebra_simps) -lemma fst_snd_linear: "linear (%z. fst z + snd z)" unfolding linear_def by (simp add: algebra_simps) +lemma fst_snd_linear: "linear (%(x,y). x + y)" unfolding linear_def by (simp add: algebra_simps) lemma scaleR_2: fixes x :: "'a::real_vector" @@ -5451,11 +5451,11 @@ shows "convex hull (S \ T) = (convex hull S) \ (convex hull T)" proof- have "(convex hull S) \ (convex hull T) = - (%z. fst z + snd z) ` ((convex hull S) <*> (convex hull T))" + (%(x,y). x + y) ` ((convex hull S) <*> (convex hull T))" by (simp add: set_plus_image) -also have "... = (%z. fst z + snd z) ` (convex hull (S <*> T))" using convex_hull_direct_sum by auto +also have "... = (%(x,y). x + y) ` (convex hull (S <*> T))" using convex_hull_direct_sum by auto also have "...= convex hull (S \ T)" using fst_snd_linear linear_conv_bounded_linear - convex_hull_linear_image[of "(%z. fst z + snd z)" "S <*> T"] by (auto simp add: set_plus_image) + convex_hull_linear_image[of "(%(x,y). x + y)" "S <*> T"] by (auto simp add: set_plus_image) finally show ?thesis by auto qed @@ -5464,11 +5464,11 @@ assumes "convex S" "convex T" shows "rel_interior (S \ T) = (rel_interior S) \ (rel_interior T)" proof- -have "(rel_interior S) \ (rel_interior T) = (%z. fst z + snd z) ` (rel_interior S <*> rel_interior T)" +have "(rel_interior S) \ (rel_interior T) = (%(x,y). x + y) ` (rel_interior S <*> rel_interior T)" by (simp add: set_plus_image) -also have "... = (%z. fst z + snd z) ` rel_interior (S <*> T)" using rel_interior_direct_sum assms by auto +also have "... = (%(x,y). x + y) ` rel_interior (S <*> T)" using rel_interior_direct_sum assms by auto also have "...= rel_interior (S \ T)" using fst_snd_linear convex_direct_sum assms - rel_interior_convex_linear_image[of "(%z. fst z + snd z)" "S <*> T"] by (auto simp add: set_plus_image) + rel_interior_convex_linear_image[of "(%(x,y). x + y)" "S <*> T"] by (auto simp add: set_plus_image) finally show ?thesis by auto qed