# HG changeset patch # User wenzelm # Date 1021280727 -7200 # Node ID 1ebd8ed5a1a01e74fe0f462b8beea168072d4fc8 # Parent f4ed10eaaff89f0a573d8b3c10454a61bcd66687 tuned document; diff -r f4ed10eaaff8 -r 1ebd8ed5a1a0 src/HOL/List.thy --- a/src/HOL/List.thy Mon May 13 10:40:59 2002 +0200 +++ b/src/HOL/List.thy Mon May 13 11:05:27 2002 +0200 @@ -8,54 +8,56 @@ theory List = PreList: -datatype 'a list = Nil ("[]") | Cons 'a "'a list" (infixr "#" 65) +datatype 'a list = + Nil ("[]") + | Cons 'a "'a list" (infixr "#" 65) consts - "@" :: "'a list \ 'a list \ 'a list" (infixr 65) - filter :: "('a \ bool) \ 'a list \ 'a list" - concat :: "'a list list \ 'a list" - foldl :: "('b \ 'a \ 'b) \ 'b \ 'a list \ 'b" - foldr :: "('a \ 'b \ 'b) \ 'a list \ 'b \ 'b" - hd :: "'a list \ 'a" - tl :: "'a list \ 'a list" - last :: "'a list \ 'a" - butlast :: "'a list \ 'a list" - set :: "'a list \ 'a set" - list_all :: "('a \ bool) \ ('a list \ bool)" - list_all2 :: "('a \ 'b \ bool) \ 'a list \ 'b list \ bool" - map :: "('a\'b) \ ('a list \ 'b list)" - mem :: "'a \ 'a list \ bool" (infixl 55) - nth :: "'a list \ nat \ 'a" (infixl "!" 100) - list_update :: "'a list \ nat \ 'a \ 'a list" - take :: "nat \ 'a list \ 'a list" - drop :: "nat \ 'a list \ 'a list" - takeWhile :: "('a \ bool) \ 'a list \ 'a list" - dropWhile :: "('a \ bool) \ 'a list \ 'a list" - rev :: "'a list \ 'a list" - zip :: "'a list \ 'b list \ ('a * 'b) list" - upt :: "nat \ nat \ nat list" ("(1[_../_'(])") - remdups :: "'a list \ 'a list" - null :: "'a list \ bool" - "distinct" :: "'a list \ bool" - replicate :: "nat \ 'a \ 'a list" + "@" :: "'a list => 'a list => 'a list" (infixr 65) + filter :: "('a => bool) => 'a list => 'a list" + concat :: "'a list list => 'a list" + foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b" + foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b" + hd :: "'a list => 'a" + tl :: "'a list => 'a list" + last :: "'a list => 'a" + butlast :: "'a list => 'a list" + set :: "'a list => 'a set" + list_all :: "('a => bool) => ('a list => bool)" + list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" + map :: "('a=>'b) => ('a list => 'b list)" + mem :: "'a => 'a list => bool" (infixl 55) + nth :: "'a list => nat => 'a" (infixl "!" 100) + list_update :: "'a list => nat => 'a => 'a list" + take :: "nat => 'a list => 'a list" + drop :: "nat => 'a list => 'a list" + takeWhile :: "('a => bool) => 'a list => 'a list" + dropWhile :: "('a => bool) => 'a list => 'a list" + rev :: "'a list => 'a list" + zip :: "'a list => 'b list => ('a * 'b) list" + upt :: "nat => nat => nat list" ("(1[_../_'(])") + remdups :: "'a list => 'a list" + null :: "'a list => bool" + "distinct" :: "'a list => bool" + replicate :: "nat => 'a => 'a list" nonterminals lupdbinds lupdbind syntax - (* list Enumeration *) - "@list" :: "args \ 'a list" ("[(_)]") + -- {* list Enumeration *} + "@list" :: "args => 'a list" ("[(_)]") - (* Special syntax for filter *) - "@filter" :: "[pttrn, 'a list, bool] \ 'a list" ("(1[_:_./ _])") + -- {* Special syntax for filter *} + "@filter" :: "[pttrn, 'a list, bool] => 'a list" ("(1[_:_./ _])") - (* list update *) - "_lupdbind" :: "['a, 'a] \ lupdbind" ("(2_ :=/ _)") - "" :: "lupdbind \ lupdbinds" ("_") - "_lupdbinds" :: "[lupdbind, lupdbinds] \ lupdbinds" ("_,/ _") - "_LUpdate" :: "['a, lupdbinds] \ 'a" ("_/[(_)]" [900,0] 900) + -- {* list update *} + "_lupdbind" :: "['a, 'a] => lupdbind" ("(2_ :=/ _)") + "" :: "lupdbind => lupdbinds" ("_") + "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds" ("_,/ _") + "_LUpdate" :: "['a, lupdbinds] => 'a" ("_/[(_)]" [900,0] 900) - upto :: "nat \ nat \ nat list" ("(1[_../_])") + upto :: "nat => nat => nat list" ("(1[_../_])") translations "[x, xs]" == "x#[xs]" @@ -69,31 +71,22 @@ syntax (xsymbols) - "@filter" :: "[pttrn, 'a list, bool] \ 'a list" ("(1[_\_ ./ _])") - - -consts - lists :: "'a set \ 'a list set" - -inductive "lists A" -intros -Nil: "[]: lists A" -Cons: "\ a: A; l: lists A \ \ a#l : lists A" + "@filter" :: "[pttrn, 'a list, bool] => 'a list" ("(1[_\_ ./ _])") -(*Function "size" is overloaded for all datatypes. Users may refer to the - list version as "length".*) -syntax length :: "'a list \ nat" -translations "length" => "size:: _ list \ nat" +text {* + Function @{text size} is overloaded for all datatypes. Users may + refer to the list version as @{text length}. *} + +syntax length :: "'a list => nat" +translations "length" => "size :: _ list => nat" -(* translating size::list -> length *) -typed_print_translation -{* -let -fun size_tr' _ (Type ("fun", (Type ("list", _) :: _))) [t] = - Syntax.const "length" $ t - | size_tr' _ _ _ = raise Match; -in [("size", size_tr')] end +typed_print_translation {* + let + fun size_tr' _ (Type ("fun", (Type ("list", _) :: _))) [t] = + Syntax.const "length" $ t + | size_tr' _ _ _ = raise Match; + in [("size", size_tr')] end *} primrec @@ -117,7 +110,7 @@ "set (x#xs) = insert x (set xs)" primrec list_all_Nil: "list_all P [] = True" - list_all_Cons: "list_all P (x#xs) = (P(x) & list_all P xs)" + list_all_Cons: "list_all P (x#xs) = (P(x) \ list_all P xs)" primrec "map f [] = []" "map f (x#xs) = f(x)#map f xs" @@ -141,22 +134,23 @@ "concat(x#xs) = x @ concat(xs)" primrec drop_Nil: "drop n [] = []" - drop_Cons: "drop n (x#xs) = (case n of 0 \ x#xs | Suc(m) \ drop m xs)" - (* Warning: simpset does not contain this definition but separate theorems - for n=0 / n=Suc k*) + drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)" + -- {* Warning: simpset does not contain this definition *} + -- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *} primrec take_Nil: "take n [] = []" - take_Cons: "take n (x#xs) = (case n of 0 \ [] | Suc(m) \ x # take m xs)" - (* Warning: simpset does not contain this definition but separate theorems - for n=0 / n=Suc k*) -primrec - nth_Cons: "(x#xs)!n = (case n of 0 \ x | (Suc k) \ xs!k)" - (* Warning: simpset does not contain this definition but separate theorems - for n=0 / n=Suc k*) + take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)" + -- {* Warning: simpset does not contain this definition *} + -- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *} primrec - " [][i:=v] = []" - "(x#xs)[i:=v] = (case i of 0 \ v # xs - | Suc j \ x # xs[j:=v])" + nth_Cons: "(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)" + -- {* Warning: simpset does not contain this definition *} + -- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *} +primrec + "[][i:=v] = []" + "(x#xs)[i:=v] = + (case i of 0 => v # xs + | Suc j => x # xs[j:=v])" primrec "takeWhile P [] = []" "takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])" @@ -165,16 +159,15 @@ "dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)" primrec "zip xs [] = []" -zip_Cons: - "zip xs (y#ys) = (case xs of [] \ [] | z#zs \ (z,y)#zip zs ys)" - (* Warning: simpset does not contain this definition but separate theorems - for xs=[] / xs=z#zs *) + zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)" + -- {* Warning: simpset does not contain this definition *} + -- {* but separate theorems for @{text "xs = []"} and @{text "xs = z # zs"} *} primrec upt_0: "[i..0(] = []" upt_Suc: "[i..(Suc j)(] = (if i <= j then [i..j(] @ [j] else [])" primrec "distinct [] = True" - "distinct (x#xs) = (x ~: set xs & distinct xs)" + "distinct (x#xs) = (x ~: set xs \ distinct xs)" primrec "remdups [] = []" "remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)" @@ -183,180 +176,190 @@ replicate_Suc: "replicate (Suc n) x = x # replicate n x" defs list_all2_def: - "list_all2 P xs ys == length xs = length ys & (!(x,y):set(zip xs ys). P x y)" + "list_all2 P xs ys == length xs = length ys \ (\(x, y) \ set (zip xs ys). P x y)" -(** Lexicographic orderings on lists **) +subsection {* Lexicographic orderings on lists *} consts - lexn :: "('a * 'a)set \ nat \ ('a list * 'a list)set" + lexn :: "('a * 'a)set => nat => ('a list * 'a list)set" primrec -"lexn r 0 = {}" -"lexn r (Suc n) = (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int - {(xs,ys). length xs = Suc n & length ys = Suc n}" + "lexn r 0 = {}" + "lexn r (Suc n) = + (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int + {(xs,ys). length xs = Suc n \ length ys = Suc n}" constdefs - lex :: "('a * 'a)set \ ('a list * 'a list)set" - "lex r == UN n. lexn r n" + lex :: "('a \ 'a) set => ('a list \ 'a list) set" + "lex r == \n. lexn r n" - lexico :: "('a * 'a)set \ ('a list * 'a list)set" - "lexico r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))" + lexico :: "('a \ 'a) set => ('a list \ 'a list) set" + "lexico r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))" - sublist :: "['a list, nat set] \ 'a list" - "sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..size xs(]))" + sublist :: "'a list => nat set => 'a list" + "sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..size xs(]))" -lemma not_Cons_self[simp]: "\x. xs ~= x#xs" -by(induct_tac "xs", auto) +lemma not_Cons_self [simp]: "xs \ x # xs" + by (induct xs) auto -lemmas not_Cons_self2[simp] = not_Cons_self[THEN not_sym] +lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric] -lemma neq_Nil_conv: "(xs ~= []) = (? y ys. xs = y#ys)" -by(induct_tac "xs", auto) +lemma neq_Nil_conv: "(xs \ []) = (\y ys. xs = y # ys)" + by (induct xs) auto -(* Induction over the length of a list: *) -(* "(!!xs. (!ys. length ys < length xs --> P ys) ==> P xs) ==> P(xs)" *) -lemmas length_induct = measure_induct[of length] +lemma length_induct: + "(!!xs. \ys. length ys < length xs --> P ys ==> P xs) ==> P xs" + by (rule measure_induct [of length]) rules -(** "lists": the list-forming operator over sets **) +subsection {* @{text lists}: the list-forming operator over sets *} -lemma lists_mono: "A<=B ==> lists A <= lists B" -apply(unfold lists.defs) -apply(blast intro!:lfp_mono) -done +consts lists :: "'a set => 'a list set" +inductive "lists A" + intros + Nil [intro!]: "[]: lists A" + Cons [intro!]: "[| a: A; l: lists A |] ==> a#l : lists A" -inductive_cases listsE[elim!]: "x#l : lists A" -declare lists.intros[intro!] +inductive_cases listsE [elim!]: "x#l : lists A" -lemma lists_IntI[rule_format]: - "l: lists A ==> l: lists B --> l: lists (A Int B)" -apply(erule lists.induct) -apply blast+ -done +lemma lists_mono: "A \ B ==> lists A \ lists B" + by (unfold lists.defs) (blast intro!: lfp_mono) -lemma lists_Int_eq[simp]: "lists (A Int B) = lists A Int lists B" -apply(rule mono_Int[THEN equalityI]) -apply(simp add:mono_def lists_mono) -apply(blast intro!: lists_IntI) -done +lemma lists_IntI [rule_format]: + "l: lists A ==> l: lists B --> l: lists (A Int B)" + apply (erule lists.induct) + apply blast+ + done + +lemma lists_Int_eq [simp]: "lists (A \ B) = lists A \ lists B" + apply (rule mono_Int [THEN equalityI]) + apply (simp add: mono_def lists_mono) + apply (blast intro!: lists_IntI) + done -lemma append_in_lists_conv[iff]: - "(xs@ys : lists A) = (xs : lists A & ys : lists A)" -by(induct_tac "xs", auto) +lemma append_in_lists_conv [iff]: + "(xs @ ys : lists A) = (xs : lists A \ ys : lists A)" + by (induct xs) auto + + +subsection {* @{text length} *} -(** length **) -(* needs to come before "@" because of thm append_eq_append_conv *) +text {* + Needs to come before @{text "@"} because of theorem @{text + append_eq_append_conv}. +*} -section "length" - -lemma length_append[simp]: "length(xs@ys) = length(xs)+length(ys)" -by(induct_tac "xs", auto) +lemma length_append [simp]: "length (xs @ ys) = length xs + length ys" + by (induct xs) auto -lemma length_map[simp]: "length (map f xs) = length xs" -by(induct_tac "xs", auto) +lemma length_map [simp]: "length (map f xs) = length xs" + by (induct xs) auto -lemma length_rev[simp]: "length(rev xs) = length(xs)" -by(induct_tac "xs", auto) +lemma length_rev [simp]: "length (rev xs) = length xs" + by (induct xs) auto -lemma length_tl[simp]: "length(tl xs) = (length xs) - 1" -by(case_tac "xs", auto) +lemma length_tl [simp]: "length (tl xs) = length xs - 1" + by (cases xs) auto -lemma length_0_conv[iff]: "(length xs = 0) = (xs = [])" -by(induct_tac "xs", auto) +lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])" + by (induct xs) auto -lemma length_greater_0_conv[iff]: "(0 < length xs) = (xs ~= [])" -by(induct_tac xs, auto) +lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \ [])" + by (induct xs) auto lemma length_Suc_conv: - "(length xs = Suc n) = (? y ys. xs = y#ys & length ys = n)" -by(induct_tac "xs", auto) + "(length xs = Suc n) = (\y ys. xs = y # ys \ length ys = n)" + by (induct xs) auto + -(** @ - append **) +subsection {* @{text "@"} -- append *} -section "@ - append" +lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)" + by (induct xs) auto -lemma append_assoc[simp]: "(xs@ys)@zs = xs@(ys@zs)" -by(induct_tac "xs", auto) +lemma append_Nil2 [simp]: "xs @ [] = xs" + by (induct xs) auto -lemma append_Nil2[simp]: "xs @ [] = xs" -by(induct_tac "xs", auto) +lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \ ys = [])" + by (induct xs) auto -lemma append_is_Nil_conv[iff]: "(xs@ys = []) = (xs=[] & ys=[])" -by(induct_tac "xs", auto) +lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \ ys = [])" + by (induct xs) auto -lemma Nil_is_append_conv[iff]: "([] = xs@ys) = (xs=[] & ys=[])" -by(induct_tac "xs", auto) +lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])" + by (induct xs) auto -lemma append_self_conv[iff]: "(xs @ ys = xs) = (ys=[])" -by(induct_tac "xs", auto) +lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])" + by (induct xs) auto -lemma self_append_conv[iff]: "(xs = xs @ ys) = (ys=[])" -by(induct_tac "xs", auto) - -lemma append_eq_append_conv[rule_format,simp]: - "!ys. length xs = length ys | length us = length vs - --> (xs@us = ys@vs) = (xs=ys & us=vs)" -apply(induct_tac "xs") - apply(rule allI) - apply(case_tac "ys") +lemma append_eq_append_conv [rule_format, simp]: + "\ys. length xs = length ys \ length us = length vs + --> (xs@us = ys@vs) = (xs=ys \ us=vs)" + apply (induct_tac xs) + apply(rule allI) + apply (case_tac ys) + apply simp + apply force + apply (rule allI) + apply (case_tac ys) + apply force apply simp - apply force -apply(rule allI) -apply(case_tac "ys") - apply force -apply simp -done + done + +lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)" + by simp + +lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \ x = y)" + by simp -lemma same_append_eq[iff]: "(xs @ ys = xs @ zs) = (ys=zs)" -by simp - -lemma append1_eq_conv[iff]: "(xs @ [x] = ys @ [y]) = (xs = ys & x = y)" -by simp +lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)" + by simp -lemma append_same_eq[iff]: "(ys @ xs = zs @ xs) = (ys=zs)" -by simp +lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])" + using append_same_eq [of _ _ "[]"] by auto -lemma append_self_conv2[iff]: "(xs @ ys = ys) = (xs=[])" -by(insert append_same_eq[of _ _ "[]"], auto) +lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])" + using append_same_eq [of "[]"] by auto -lemma self_append_conv2[iff]: "(ys = xs @ ys) = (xs=[])" -by(auto simp add: append_same_eq[of "[]", simplified]) +lemma hd_Cons_tl [simp]: "xs \ [] ==> hd xs # tl xs = xs" + by (induct xs) auto -lemma hd_Cons_tl[rule_format,simp]: "xs ~= [] --> hd xs # tl xs = xs" -by(induct_tac "xs", auto) +lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)" + by (induct xs) auto -lemma hd_append: "hd(xs@ys) = (if xs=[] then hd ys else hd xs)" -by(induct_tac "xs", auto) +lemma hd_append2 [simp]: "xs \ [] ==> hd (xs @ ys) = hd xs" + by (simp add: hd_append split: list.split) -lemma hd_append2[simp]: "xs ~= [] ==> hd(xs @ ys) = hd xs" -by(simp add: hd_append split: list.split) +lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)" + by (simp split: list.split) -lemma tl_append: "tl(xs@ys) = (case xs of [] => tl(ys) | z#zs => zs@ys)" -by(simp split: list.split) +lemma tl_append2 [simp]: "xs \ [] ==> tl (xs @ ys) = tl xs @ ys" + by (simp add: tl_append split: list.split) -lemma tl_append2[simp]: "xs ~= [] ==> tl(xs @ ys) = (tl xs) @ ys" -by(simp add: tl_append split: list.split) -(* trivial rules for solving @-equations automatically *) +text {* Trivial rules for solving @{text "@"}-equations automatically. *} lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys" -by simp + by simp -lemma Cons_eq_appendI: "[| x#xs1 = ys; xs = xs1 @ zs |] ==> x#xs = ys@zs" -by(drule sym, simp) +lemma Cons_eq_appendI: + "[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs" + by (drule sym) simp -lemma append_eq_appendI: "[| xs@xs1 = zs; ys = xs1 @ us |] ==> xs@ys = zs@us" -by(drule sym, simp) +lemma append_eq_appendI: + "[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us" + by (drule sym) simp -(*** -Simplification procedure for all list equalities. -Currently only tries to rearrange @ to see if -- both lists end in a singleton list, -- or both lists end in the same list. -***) -ML_setup{* +text {* + Simplification procedure for all list equalities. + Currently only tries to rearrange @{text "@"} to see if + - both lists end in a singleton list, + - or both lists end in the same list. +*} + +ML_setup {* local val append_assoc = thm "append_assoc"; @@ -415,967 +418,947 @@ *} -(** map **) +subsection {* @{text map} *} -section "map" +lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs" + by (induct xs) simp_all -lemma map_ext: "(\x. x : set xs \ f x = g x) \ map f xs = map g xs" -by (induct xs, simp_all) +lemma map_ident [simp]: "map (\x. x) = (\xs. xs)" + by (rule ext, induct_tac xs) auto -lemma map_ident[simp]: "map (%x. x) = (%xs. xs)" -by(rule ext, induct_tac "xs", auto) +lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys" + by (induct xs) auto -lemma map_append[simp]: "map f (xs@ys) = map f xs @ map f ys" -by(induct_tac "xs", auto) +lemma map_compose: "map (f o g) xs = map f (map g xs)" + by (induct xs) (auto simp add: o_def) -lemma map_compose(*[simp]*): "map (f o g) xs = map f (map g xs)" -by(unfold o_def, induct_tac "xs", auto) +lemma rev_map: "rev (map f xs) = map f (rev xs)" + by (induct xs) auto -lemma rev_map: "rev(map f xs) = map f (rev xs)" -by(induct_tac xs, auto) - -(* a congruence rule for map: *) lemma map_cong: - "xs=ys ==> (!!x. x : set ys \ f x = g x) \ map f xs = map g ys" -by (clarify, induct ys, auto) + "xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys" + -- {* a congruence rule for @{text map} *} + by (clarify, induct ys) auto -lemma map_is_Nil_conv[iff]: "(map f xs = []) = (xs = [])" -by(case_tac xs, auto) +lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])" + by (cases xs) auto -lemma Nil_is_map_conv[iff]: "([] = map f xs) = (xs = [])" -by(case_tac xs, auto) +lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])" + by (cases xs) auto lemma map_eq_Cons: - "(map f xs = y#ys) = (? x xs'. xs = x#xs' & f x = y & map f xs' = ys)" -by(case_tac xs, auto) + "(map f xs = y # ys) = (\x xs'. xs = x # xs' \ f x = y \ map f xs' = ys)" + by (cases xs) auto lemma map_injective: - "\xs. map f xs = map f ys \ (!x y. f x = f y --> x=y) \ xs=ys" -by(induct "ys", simp, fastsimp simp add:map_eq_Cons) + "!!xs. map f xs = map f ys ==> (\x y. f x = f y --> x = y) ==> xs = ys" + by (induct ys) (auto simp add: map_eq_Cons) lemma inj_mapI: "inj f ==> inj (map f)" -by(blast dest:map_injective injD intro:injI) + by (rules dest: map_injective injD intro: injI) lemma inj_mapD: "inj (map f) ==> inj f" -apply(unfold inj_on_def) -apply clarify -apply(erule_tac x = "[x]" in ballE) - apply(erule_tac x = "[y]" in ballE) - apply simp - apply blast -apply blast -done + apply (unfold inj_on_def) + apply clarify + apply (erule_tac x = "[x]" in ballE) + apply (erule_tac x = "[y]" in ballE) + apply simp + apply blast + apply blast + done lemma inj_map: "inj (map f) = inj f" -by(blast dest:inj_mapD intro:inj_mapI) + by (blast dest: inj_mapD intro: inj_mapI) -(** rev **) -section "rev" +subsection {* @{text rev} *} -lemma rev_append[simp]: "rev(xs@ys) = rev(ys) @ rev(xs)" -by(induct_tac xs, auto) +lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs" + by (induct xs) auto -lemma rev_rev_ident[simp]: "rev(rev xs) = xs" -by(induct_tac xs, auto) +lemma rev_rev_ident [simp]: "rev (rev xs) = xs" + by (induct xs) auto -lemma rev_is_Nil_conv[iff]: "(rev xs = []) = (xs = [])" -by(induct_tac xs, auto) +lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])" + by (induct xs) auto -lemma Nil_is_rev_conv[iff]: "([] = rev xs) = (xs = [])" -by(induct_tac xs, auto) +lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])" + by (induct xs) auto -lemma rev_is_rev_conv[iff]: "!!ys. (rev xs = rev ys) = (xs = ys)" -apply(induct "xs" ) - apply force -apply(case_tac ys) - apply simp -apply force -done +lemma rev_is_rev_conv [iff]: "!!ys. (rev xs = rev ys) = (xs = ys)" + apply (induct xs) + apply force + apply (case_tac ys) + apply simp + apply force + done -lemma rev_induct: "[| P []; !!x xs. P xs ==> P(xs@[x]) |] ==> P xs" -apply(subst rev_rev_ident[symmetric]) -apply(rule_tac list = "rev xs" in list.induct, simp_all) -done +lemma rev_induct: "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs" + apply(subst rev_rev_ident[symmetric]) + apply(rule_tac list = "rev xs" in list.induct, simp_all) + done -(* Instead of (rev_induct_tac xs) use (induct_tac xs rule: rev_induct) *) +ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *} -- "compatibility" -lemma rev_exhaust: "(xs = [] \ P) \ (!!ys y. xs = ys@[y] \ P) \ P" -by(induct xs rule: rev_induct, auto) +lemma rev_exhaust: "(xs = [] ==> P) ==> (!!ys y. xs = ys @ [y] ==> P) ==> P" + by (induct xs rule: rev_induct) auto -(** set **) +subsection {* @{text set} *} -section "set" +lemma finite_set [iff]: "finite (set xs)" + by (induct xs) auto -lemma finite_set[iff]: "finite (set xs)" -by(induct_tac xs, auto) +lemma set_append [simp]: "set (xs @ ys) = (set xs \ set ys)" + by (induct xs) auto -lemma set_append[simp]: "set (xs@ys) = (set xs Un set ys)" -by(induct_tac xs, auto) +lemma set_subset_Cons: "set xs \ set (x # xs)" + by auto -lemma set_subset_Cons: "set xs \ set (x#xs)" -by auto +lemma set_empty [iff]: "(set xs = {}) = (xs = [])" + by (induct xs) auto -lemma set_empty[iff]: "(set xs = {}) = (xs = [])" -by(induct_tac xs, auto) +lemma set_rev [simp]: "set (rev xs) = set xs" + by (induct xs) auto -lemma set_rev[simp]: "set(rev xs) = set(xs)" -by(induct_tac xs, auto) +lemma set_map [simp]: "set (map f xs) = f`(set xs)" + by (induct xs) auto -lemma set_map[simp]: "set(map f xs) = f`(set xs)" -by(induct_tac xs, auto) +lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \ P x}" + by (induct xs) auto -lemma set_filter[simp]: "set(filter P xs) = {x. x : set xs & P x}" -by(induct_tac xs, auto) - -lemma set_upt[simp]: "set[i..j(] = {k. i <= k & k < j}" -apply(induct_tac j) - apply simp_all -apply(erule ssubst) -apply auto -apply arith -done +lemma set_upt [simp]: "set[i..j(] = {k. i \ k \ k < j}" + apply (induct j) + apply simp_all + apply(erule ssubst) + apply auto + apply arith + done -lemma in_set_conv_decomp: "(x : set xs) = (? ys zs. xs = ys@x#zs)" -apply(induct_tac "xs") - apply simp -apply simp -apply(rule iffI) - apply(blast intro: eq_Nil_appendI Cons_eq_appendI) -apply(erule exE)+ -apply(case_tac "ys") -apply auto -done +lemma in_set_conv_decomp: "(x : set xs) = (\ys zs. xs = ys @ x # zs)" + apply (induct xs) + apply simp + apply simp + apply (rule iffI) + apply (blast intro: eq_Nil_appendI Cons_eq_appendI) + apply (erule exE)+ + apply (case_tac ys) + apply auto + done + +lemma in_lists_conv_set: "(xs : lists A) = (\x \ set xs. x : A)" + -- {* eliminate @{text lists} in favour of @{text set} *} + by (induct xs) auto + +lemma in_listsD [dest!]: "xs \ lists A ==> \x\set xs. x \ A" + by (rule in_lists_conv_set [THEN iffD1]) + +lemma in_listsI [intro!]: "\x\set xs. x \ A ==> xs \ lists A" + by (rule in_lists_conv_set [THEN iffD2]) -(* eliminate `lists' in favour of `set' *) - -lemma in_lists_conv_set: "(xs : lists A) = (!x : set xs. x : A)" -by(induct_tac xs, auto) - -lemmas in_listsD[dest!] = in_lists_conv_set[THEN iffD1] -lemmas in_listsI[intro!] = in_lists_conv_set[THEN iffD2] - - -(** mem **) - -section "mem" +subsection {* @{text mem} *} lemma set_mem_eq: "(x mem xs) = (x : set xs)" -by(induct_tac xs, auto) + by (induct xs) auto -(** list_all **) - -section "list_all" +subsection {* @{text list_all} *} -lemma list_all_conv: "list_all P xs = (!x:set xs. P x)" -by(induct_tac xs, auto) +lemma list_all_conv: "list_all P xs = (\x \ set xs. P x)" + by (induct xs) auto -lemma list_all_append[simp]: - "list_all P (xs@ys) = (list_all P xs & list_all P ys)" -by(induct_tac xs, auto) +lemma list_all_append [simp]: + "list_all P (xs @ ys) = (list_all P xs \ list_all P ys)" + by (induct xs) auto -(** filter **) - -section "filter" +subsection {* @{text filter} *} -lemma filter_append[simp]: "filter P (xs@ys) = filter P xs @ filter P ys" -by(induct_tac xs, auto) +lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys" + by (induct xs) auto -lemma filter_filter[simp]: "filter P (filter Q xs) = filter (%x. Q x & P x) xs" -by(induct_tac xs, auto) +lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\x. Q x \ P x) xs" + by (induct xs) auto -lemma filter_True[simp]: "!x : set xs. P x \ filter P xs = xs" -by(induct xs, auto) +lemma filter_True [simp]: "\x \ set xs. P x ==> filter P xs = xs" + by (induct xs) auto -lemma filter_False[simp]: "!x : set xs. ~P x \ filter P xs = []" -by(induct xs, auto) +lemma filter_False [simp]: "\x \ set xs. \ P x ==> filter P xs = []" + by (induct xs) auto -lemma length_filter[simp]: "length (filter P xs) <= length xs" -by(induct xs, auto simp add: le_SucI) +lemma length_filter [simp]: "length (filter P xs) \ length xs" + by (induct xs) (auto simp add: le_SucI) -lemma filter_is_subset[simp]: "set (filter P xs) <= set xs" -by auto +lemma filter_is_subset [simp]: "set (filter P xs) \ set xs" + by auto -section "concat" +subsection {* @{text concat} *} -lemma concat_append[simp]: "concat(xs@ys) = concat(xs)@concat(ys)" -by(induct xs, auto) +lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys" + by (induct xs) auto -lemma concat_eq_Nil_conv[iff]: "(concat xss = []) = (!xs:set xss. xs=[])" -by(induct xss, auto) +lemma concat_eq_Nil_conv [iff]: "(concat xss = []) = (\xs \ set xss. xs = [])" + by (induct xss) auto -lemma Nil_eq_concat_conv[iff]: "([] = concat xss) = (!xs:set xss. xs=[])" -by(induct xss, auto) +lemma Nil_eq_concat_conv [iff]: "([] = concat xss) = (\xs \ set xss. xs = [])" + by (induct xss) auto -lemma set_concat[simp]: "set(concat xs) = Union(set ` set xs)" -by(induct xs, auto) +lemma set_concat [simp]: "set (concat xs) = \(set ` set xs)" + by (induct xs) auto -lemma map_concat: "map f (concat xs) = concat (map (map f) xs)" -by(induct xs, auto) +lemma map_concat: "map f (concat xs) = concat (map (map f) xs)" + by (induct xs) auto -lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)" -by(induct xs, auto) +lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)" + by (induct xs) auto -lemma rev_concat: "rev(concat xs) = concat (map rev (rev xs))" -by(induct xs, auto) +lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))" + by (induct xs) auto -(** nth **) -section "nth" +subsection {* @{text nth} *} -lemma nth_Cons_0[simp]: "(x#xs)!0 = x" -by auto +lemma nth_Cons_0 [simp]: "(x # xs)!0 = x" + by auto -lemma nth_Cons_Suc[simp]: "(x#xs)!(Suc n) = xs!n" -by auto +lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n" + by auto -declare nth.simps[simp del] +declare nth.simps [simp del] lemma nth_append: - "!!n. (xs@ys)!n = (if n < length xs then xs!n else ys!(n - length xs))" -apply(induct "xs") - apply simp -apply(case_tac "n" ) - apply auto -done + "!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))" + apply(induct "xs") + apply simp + apply (case_tac n) + apply auto + done -lemma nth_map[simp]: "!!n. n < length xs \ (map f xs)!n = f(xs!n)" -apply(induct "xs" ) - apply simp -apply(case_tac "n") - apply auto -done +lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)" + apply(induct xs) + apply simp + apply (case_tac n) + apply auto + done -lemma set_conv_nth: "set xs = {xs!i |i. i < length xs}" -apply(induct_tac "xs") - apply simp -apply simp -apply safe - apply(rule_tac x = 0 in exI) +lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}" + apply (induct_tac xs) + apply simp apply simp - apply(rule_tac x = "Suc i" in exI) - apply simp -apply(case_tac "i") - apply simp -apply(rename_tac "j") -apply(rule_tac x = "j" in exI) -apply simp -done + apply safe + apply (rule_tac x = 0 in exI) + apply simp + apply (rule_tac x = "Suc i" in exI) + apply simp + apply (case_tac i) + apply simp + apply (rename_tac j) + apply (rule_tac x = j in exI) + apply simp + done -lemma list_ball_nth: "\ n < length xs; !x : set xs. P x \ \ P(xs!n)" -by(simp add:set_conv_nth, blast) +lemma list_ball_nth: "[| n < length xs; !x : set xs. P x |] ==> P(xs!n)" + by (auto simp add: set_conv_nth) -lemma nth_mem[simp]: "n < length xs ==> xs!n : set xs" -by(simp add:set_conv_nth, blast) +lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs" + by (auto simp add: set_conv_nth) lemma all_nth_imp_all_set: - "\ !i < length xs. P(xs!i); x : set xs \ \ P x" -by(simp add:set_conv_nth, blast) + "[| !i < length xs. P(xs!i); x : set xs |] ==> P x" + by (auto simp add: set_conv_nth) lemma all_set_conv_all_nth: - "(!x : set xs. P x) = (!i. i P (xs ! i))" -by(simp add:set_conv_nth, blast) + "(\x \ set xs. P x) = (\i. i < length xs --> P (xs ! i))" + by (auto simp add: set_conv_nth) -(** list update **) +subsection {* @{text list_update} *} -section "list update" - -lemma length_list_update[simp]: "!!i. length(xs[i:=x]) = length xs" -by(induct xs, simp, simp split:nat.split) +lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs" + by (induct xs) (auto split: nat.split) lemma nth_list_update: - "!!i j. i < length xs \ (xs[i:=x])!j = (if i=j then x else xs!j)" -by(induct xs, simp, auto simp add:nth_Cons split:nat.split) + "!!i j. i < length xs ==> (xs[i:=x])!j = (if i = j then x else xs!j)" + by (induct xs) (auto simp add: nth_Cons split: nat.split) -lemma nth_list_update_eq[simp]: "i < length xs ==> (xs[i:=x])!i = x" -by(simp add:nth_list_update) +lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x" + by (simp add: nth_list_update) -lemma nth_list_update_neq[simp]: "!!i j. i ~= j \ xs[i:=x]!j = xs!j" -by(induct xs, simp, auto simp add:nth_Cons split:nat.split) +lemma nth_list_update_neq [simp]: "!!i j. i \ j ==> xs[i:=x]!j = xs!j" + by (induct xs) (auto simp add: nth_Cons split: nat.split) -lemma list_update_overwrite[simp]: - "!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]" -by(induct xs, simp, simp split:nat.split) +lemma list_update_overwrite [simp]: + "!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]" + by (induct xs) (auto split: nat.split) lemma list_update_same_conv: - "!!i. i < length xs \ (xs[i := x] = xs) = (xs!i = x)" -by(induct xs, simp, simp split:nat.split, blast) + "!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)" + by (induct xs) (auto split: nat.split) lemma update_zip: -"!!i xy xs. length xs = length ys \ + "!!i xy xs. length xs = length ys ==> (zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])" -by(induct ys, auto, case_tac xs, auto split:nat.split) + by (induct ys) (auto, case_tac xs, auto split: nat.split) lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)" -by(induct xs, simp, simp split:nat.split, fast) + by (induct xs) (auto split: nat.split) lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A" -by(fast dest!:set_update_subset_insert[THEN subsetD]) + by (blast dest!: set_update_subset_insert [THEN subsetD]) -(** last & butlast **) +subsection {* @{text last} and @{text butlast} *} -section "last / butlast" +lemma last_snoc [simp]: "last (xs @ [x]) = x" + by (induct xs) auto -lemma last_snoc[simp]: "last(xs@[x]) = x" -by(induct xs, auto) +lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs" + by (induct xs) auto -lemma butlast_snoc[simp]:"butlast(xs@[x]) = xs" -by(induct xs, auto) - -lemma length_butlast[simp]: "length(butlast xs) = length xs - 1" -by(induct xs rule:rev_induct, auto) +lemma length_butlast [simp]: "length (butlast xs) = length xs - 1" + by (induct xs rule: rev_induct) auto lemma butlast_append: - "!!ys. butlast (xs@ys) = (if ys=[] then butlast xs else xs@butlast ys)" -by(induct xs, auto) + "!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)" + by (induct xs) auto -lemma append_butlast_last_id[simp]: - "xs ~= [] --> butlast xs @ [last xs] = xs" -by(induct xs, auto) +lemma append_butlast_last_id [simp]: + "xs \ [] ==> butlast xs @ [last xs] = xs" + by (induct xs) auto -lemma in_set_butlastD: "x:set(butlast xs) ==> x:set xs" -by(induct xs, auto split:split_if_asm) +lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs" + by (induct xs) (auto split: split_if_asm) lemma in_set_butlast_appendI: - "x:set(butlast xs) | x:set(butlast ys) ==> x:set(butlast(xs@ys))" -by(auto dest:in_set_butlastD simp add:butlast_append) + "x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))" + by (auto dest: in_set_butlastD simp add: butlast_append) -(** take & drop **) -section "take & drop" + +subsection {* @{text take} and @{text drop} *} -lemma take_0[simp]: "take 0 xs = []" -by(induct xs, auto) +lemma take_0 [simp]: "take 0 xs = []" + by (induct xs) auto -lemma drop_0[simp]: "drop 0 xs = xs" -by(induct xs, auto) +lemma drop_0 [simp]: "drop 0 xs = xs" + by (induct xs) auto -lemma take_Suc_Cons[simp]: "take (Suc n) (x#xs) = x # take n xs" -by simp +lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs" + by simp -lemma drop_Suc_Cons[simp]: "drop (Suc n) (x#xs) = drop n xs" -by simp +lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs" + by simp -declare take_Cons[simp del] drop_Cons[simp del] +declare take_Cons [simp del] and drop_Cons [simp del] -lemma length_take[simp]: "!!xs. length(take n xs) = min (length xs) n" -by(induct n, auto, case_tac xs, auto) +lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n" + by (induct n) (auto, case_tac xs, auto) -lemma length_drop[simp]: "!!xs. length(drop n xs) = (length xs - n)" -by(induct n, auto, case_tac xs, auto) +lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)" + by (induct n) (auto, case_tac xs, auto) -lemma take_all[simp]: "!!xs. length xs <= n ==> take n xs = xs" -by(induct n, auto, case_tac xs, auto) +lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs" + by (induct n) (auto, case_tac xs, auto) -lemma drop_all[simp]: "!!xs. length xs <= n ==> drop n xs = []" -by(induct n, auto, case_tac xs, auto) +lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []" + by (induct n) (auto, case_tac xs, auto) -lemma take_append[simp]: - "!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)" -by(induct n, auto, case_tac xs, auto) +lemma take_append [simp]: + "!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)" + by (induct n) (auto, case_tac xs, auto) -lemma drop_append[simp]: - "!!xs. drop n (xs@ys) = drop n xs @ drop (n - length xs) ys" -by(induct n, auto, case_tac xs, auto) +lemma drop_append [simp]: + "!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys" + by (induct n) (auto, case_tac xs, auto) -lemma take_take[simp]: "!!xs n. take n (take m xs) = take (min n m) xs" -apply(induct m) - apply auto -apply(case_tac xs) - apply auto -apply(case_tac na) - apply auto -done +lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs" + apply (induct m) + apply auto + apply (case_tac xs) + apply auto + apply (case_tac na) + apply auto + done -lemma drop_drop[simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs" -apply(induct m) - apply auto -apply(case_tac xs) - apply auto -done +lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs" + apply (induct m) + apply auto + apply (case_tac xs) + apply auto + done lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)" -apply(induct m) - apply auto -apply(case_tac xs) - apply auto -done + apply (induct m) + apply auto + apply (case_tac xs) + apply auto + done -lemma append_take_drop_id[simp]: "!!xs. take n xs @ drop n xs = xs" -apply(induct n) - apply auto -apply(case_tac xs) - apply auto -done +lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs" + apply (induct n) + apply auto + apply (case_tac xs) + apply auto + done lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)" -apply(induct n) - apply auto -apply(case_tac xs) - apply auto -done + apply (induct n) + apply auto + apply (case_tac xs) + apply auto + done -lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)" -apply(induct n) - apply auto -apply(case_tac xs) - apply auto -done +lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)" + apply (induct n) + apply auto + apply (case_tac xs) + apply auto + done lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)" -apply(induct xs) - apply auto -apply(case_tac i) - apply auto -done + apply (induct xs) + apply auto + apply (case_tac i) + apply auto + done lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)" -apply(induct xs) - apply auto -apply(case_tac i) - apply auto -done + apply (induct xs) + apply auto + apply (case_tac i) + apply auto + done -lemma nth_take[simp]: "!!n i. i < n ==> (take n xs)!i = xs!i" -apply(induct xs) - apply auto -apply(case_tac n) - apply(blast ) -apply(case_tac i) - apply auto -done +lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i" + apply (induct xs) + apply auto + apply (case_tac n) + apply(blast ) + apply (case_tac i) + apply auto + done -lemma nth_drop[simp]: "!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n+i)" -apply(induct n) - apply auto -apply(case_tac xs) - apply auto -done +lemma nth_drop [simp]: + "!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)" + apply (induct n) + apply auto + apply (case_tac xs) + apply auto + done lemma append_eq_conv_conj: - "!!zs. (xs@ys = zs) = (xs = take (length xs) zs & ys = drop (length xs) zs)" -apply(induct xs) - apply simp -apply clarsimp -apply(case_tac zs) -apply auto -done + "!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \ ys = drop (length xs) zs)" + apply(induct xs) + apply simp + apply clarsimp + apply (case_tac zs) + apply auto + done + -(** takeWhile & dropWhile **) +subsection {* @{text takeWhile} and @{text dropWhile} *} -section "takeWhile & dropWhile" +lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs" + by (induct xs) auto -lemma takeWhile_dropWhile_id[simp]: "takeWhile P xs @ dropWhile P xs = xs" -by(induct xs, auto) +lemma takeWhile_append1 [simp]: + "[| x:set xs; ~P(x) |] ==> takeWhile P (xs @ ys) = takeWhile P xs" + by (induct xs) auto -lemma takeWhile_append1[simp]: - "\ x:set xs; ~P(x) \ \ takeWhile P (xs @ ys) = takeWhile P xs" -by(induct xs, auto) +lemma takeWhile_append2 [simp]: + "(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys" + by (induct xs) auto -lemma takeWhile_append2[simp]: - "(!!x. x : set xs \ P(x)) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys" -by(induct xs, auto) - -lemma takeWhile_tail: "~P(x) ==> takeWhile P (xs @ (x#l)) = takeWhile P xs" -by(induct xs, auto) +lemma takeWhile_tail: "\ P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs" + by (induct xs) auto -lemma dropWhile_append1[simp]: - "\ x : set xs; ~P(x) \ \ dropWhile P (xs @ ys) = (dropWhile P xs)@ys" -by(induct xs, auto) +lemma dropWhile_append1 [simp]: + "[| x : set xs; ~P(x) |] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys" + by (induct xs) auto -lemma dropWhile_append2[simp]: - "(!!x. x:set xs \ P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys" -by(induct xs, auto) +lemma dropWhile_append2 [simp]: + "(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys" + by (induct xs) auto -lemma set_take_whileD: "x:set(takeWhile P xs) ==> x:set xs & P x" -by(induct xs, auto split:split_if_asm) +lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \ P x" + by (induct xs) (auto split: split_if_asm) -(** zip **) -section "zip" +subsection {* @{text zip} *} -lemma zip_Nil[simp]: "zip [] ys = []" -by(induct ys, auto) +lemma zip_Nil [simp]: "zip [] ys = []" + by (induct ys) auto -lemma zip_Cons_Cons[simp]: "zip (x#xs) (y#ys) = (x,y)#zip xs ys" -by simp +lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys" + by simp -declare zip_Cons[simp del] +declare zip_Cons [simp del] -lemma length_zip[simp]: - "!!xs. length (zip xs ys) = min (length xs) (length ys)" -apply(induct ys) - apply simp -apply(case_tac xs) - apply auto -done +lemma length_zip [simp]: + "!!xs. length (zip xs ys) = min (length xs) (length ys)" + apply(induct ys) + apply simp + apply (case_tac xs) + apply auto + done lemma zip_append1: - "!!xs. zip (xs@ys) zs = - zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)" -apply(induct zs) - apply simp -apply(case_tac xs) - apply simp_all -done + "!!xs. zip (xs @ ys) zs = + zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)" + apply (induct zs) + apply simp + apply (case_tac xs) + apply simp_all + done lemma zip_append2: - "!!ys. zip xs (ys@zs) = - zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs" -apply(induct xs) - apply simp -apply(case_tac ys) - apply simp_all -done + "!!ys. zip xs (ys @ zs) = + zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs" + apply (induct xs) + apply simp + apply (case_tac ys) + apply simp_all + done -lemma zip_append[simp]: - "[| length xs = length us; length ys = length vs |] ==> \ -\ zip (xs@ys) (us@vs) = zip xs us @ zip ys vs" -by(simp add: zip_append1) +lemma zip_append [simp]: + "[| length xs = length us; length ys = length vs |] ==> + zip (xs@ys) (us@vs) = zip xs us @ zip ys vs" + by (simp add: zip_append1) lemma zip_rev: - "!!xs. length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)" -apply(induct ys) - apply simp -apply(case_tac xs) - apply simp_all -done + "!!xs. length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)" + apply(induct ys) + apply simp + apply (case_tac xs) + apply simp_all + done -lemma nth_zip[simp]: -"!!i xs. \ i < length xs; i < length ys \ \ (zip xs ys)!i = (xs!i, ys!i)" -apply(induct ys) - apply simp -apply(case_tac xs) - apply (simp_all add: nth.simps split:nat.split) -done +lemma nth_zip [simp]: + "!!i xs. [| i < length xs; i < length ys |] ==> (zip xs ys)!i = (xs!i, ys!i)" + apply (induct ys) + apply simp + apply (case_tac xs) + apply (simp_all add: nth.simps split: nat.split) + done lemma set_zip: - "set(zip xs ys) = {(xs!i,ys!i) |i. i < min (length xs) (length ys)}" -by(simp add: set_conv_nth cong: rev_conj_cong) + "set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}" + by (simp add: set_conv_nth cong: rev_conj_cong) lemma zip_update: - "length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]" -by(rule sym, simp add: update_zip) + "length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]" + by (rule sym, simp add: update_zip) -lemma zip_replicate[simp]: - "!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)" -apply(induct i) - apply auto -apply(case_tac j) - apply auto -done +lemma zip_replicate [simp]: + "!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)" + apply (induct i) + apply auto + apply (case_tac j) + apply auto + done -(** list_all2 **) -section "list_all2" + +subsection {* @{text list_all2} *} lemma list_all2_lengthD: "list_all2 P xs ys ==> length xs = length ys" -by(simp add:list_all2_def) + by (simp add: list_all2_def) -lemma list_all2_Nil[iff]: "list_all2 P [] ys = (ys=[])" -by(simp add:list_all2_def) +lemma list_all2_Nil [iff]: "list_all2 P [] ys = (ys = [])" + by (simp add: list_all2_def) -lemma list_all2_Nil2[iff]: "list_all2 P xs [] = (xs=[])" -by(simp add:list_all2_def) +lemma list_all2_Nil2[iff]: "list_all2 P xs [] = (xs = [])" + by (simp add: list_all2_def) -lemma list_all2_Cons[iff]: - "list_all2 P (x#xs) (y#ys) = (P x y & list_all2 P xs ys)" -by(auto simp add:list_all2_def) +lemma list_all2_Cons [iff]: + "list_all2 P (x # xs) (y # ys) = (P x y \ list_all2 P xs ys)" + by (auto simp add: list_all2_def) lemma list_all2_Cons1: - "list_all2 P (x#xs) ys = (? z zs. ys = z#zs & P x z & list_all2 P xs zs)" -by(case_tac ys, auto) + "list_all2 P (x # xs) ys = (\z zs. ys = z # zs \ P x z \ list_all2 P xs zs)" + by (cases ys) auto lemma list_all2_Cons2: - "list_all2 P xs (y#ys) = (? z zs. xs = z#zs & P z y & list_all2 P zs ys)" -by(case_tac xs, auto) + "list_all2 P xs (y # ys) = (\z zs. xs = z # zs \ P z y \ list_all2 P zs ys)" + by (cases xs) auto -lemma list_all2_rev[iff]: - "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys" -by(simp add:list_all2_def zip_rev cong:conj_cong) +lemma list_all2_rev [iff]: + "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys" + by (simp add: list_all2_def zip_rev cong: conj_cong) lemma list_all2_append1: - "list_all2 P (xs@ys) zs = - (EX us vs. zs = us@vs & length us = length xs & length vs = length ys & - list_all2 P xs us & list_all2 P ys vs)" -apply(simp add:list_all2_def zip_append1) -apply(rule iffI) - apply(rule_tac x = "take (length xs) zs" in exI) - apply(rule_tac x = "drop (length xs) zs" in exI) - apply(force split: nat_diff_split simp add:min_def) -apply clarify -apply(simp add: ball_Un) -done + "list_all2 P (xs @ ys) zs = + (EX us vs. zs = us @ vs \ length us = length xs \ length vs = length ys \ + list_all2 P xs us \ list_all2 P ys vs)" + apply (simp add: list_all2_def zip_append1) + apply (rule iffI) + apply (rule_tac x = "take (length xs) zs" in exI) + apply (rule_tac x = "drop (length xs) zs" in exI) + apply (force split: nat_diff_split simp add: min_def) + apply clarify + apply (simp add: ball_Un) + done lemma list_all2_append2: - "list_all2 P xs (ys@zs) = - (EX us vs. xs = us@vs & length us = length ys & length vs = length zs & - list_all2 P us ys & list_all2 P vs zs)" -apply(simp add:list_all2_def zip_append2) -apply(rule iffI) - apply(rule_tac x = "take (length ys) xs" in exI) - apply(rule_tac x = "drop (length ys) xs" in exI) - apply(force split: nat_diff_split simp add:min_def) -apply clarify -apply(simp add: ball_Un) -done + "list_all2 P xs (ys @ zs) = + (EX us vs. xs = us @ vs \ length us = length ys \ length vs = length zs \ + list_all2 P us ys \ list_all2 P vs zs)" + apply (simp add: list_all2_def zip_append2) + apply (rule iffI) + apply (rule_tac x = "take (length ys) xs" in exI) + apply (rule_tac x = "drop (length ys) xs" in exI) + apply (force split: nat_diff_split simp add: min_def) + apply clarify + apply (simp add: ball_Un) + done lemma list_all2_conv_all_nth: "list_all2 P xs ys = - (length xs = length ys & (!i (\i < length xs. P (xs!i) (ys!i)))" + by (force simp add: list_all2_def set_zip) lemma list_all2_trans[rule_format]: - "ALL a b c. P1 a b --> P2 b c --> P3 a c ==> - ALL bs cs. list_all2 P1 as bs --> list_all2 P2 bs cs --> list_all2 P3 as cs" -apply(induct_tac as) - apply simp -apply(rule allI) -apply(induct_tac bs) - apply simp -apply(rule allI) -apply(induct_tac cs) - apply auto -done + "\a b c. P1 a b --> P2 b c --> P3 a c ==> + \bs cs. list_all2 P1 as bs --> list_all2 P2 bs cs --> list_all2 P3 as cs" + apply(induct_tac as) + apply simp + apply(rule allI) + apply(induct_tac bs) + apply simp + apply(rule allI) + apply(induct_tac cs) + apply auto + done + + +subsection {* @{text foldl} *} + +lemma foldl_append [simp]: + "!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys" + by (induct xs) auto + +text {* + Note: @{text "n \ foldl (op +) n ns"} looks simpler, but is more + difficult to use because it requires an additional transitivity step. +*} + +lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns" + by (induct ns) auto + +lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns" + by (force intro: start_le_sum simp add: in_set_conv_decomp) + +lemma sum_eq_0_conv [iff]: + "!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \ (\n \ set ns. n = 0))" + by (induct ns) auto -section "foldl" - -lemma foldl_append[simp]: - "!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys" -by(induct xs, auto) +subsection {* @{text upto} *} -(* Note: `n <= foldl op+ n ns' looks simpler, but is more difficult to use - because it requires an additional transitivity step -*) -lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl op+ n ns" -by(induct ns, auto) +lemma upt_rec: "[i..j(] = (if i [i..j(] = []" + by (subst upt_rec) simp -lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl op+ 0 ns" -by(force intro: start_le_sum simp add:in_set_conv_decomp) - -lemma sum_eq_0_conv[iff]: - "!!m::nat. (foldl op+ m ns = 0) = (m=0 & (!n : set ns. n=0))" -by(induct ns, auto) +lemma upt_Suc_append: "i <= j ==> [i..(Suc j)(] = [i..j(]@[j]" + -- {* Only needed if @{text upt_Suc} is deleted from the simpset. *} + by simp -(** upto **) - -(* Does not terminate! *) -lemma upt_rec: "[i..j(] = (if i [i..j(] = []" -by(subst upt_rec, simp) +lemma upt_conv_Cons: "i < j ==> [i..j(] = i # [Suc i..j(]" + apply(rule trans) + apply(subst upt_rec) + prefer 2 apply(rule refl) + apply simp + done -(*Only needed if upt_Suc is deleted from the simpset*) -lemma upt_Suc_append: "i<=j ==> [i..(Suc j)(] = [i..j(]@[j]" -by simp +lemma upt_add_eq_append: "i<=j ==> [i..j+k(] = [i..j(]@[j..j+k(]" + -- {* LOOPS as a simprule, since @{text "j <= j"}. *} + by (induct k) auto -lemma upt_conv_Cons: "i [i..j(] = i#[Suc i..j(]" -apply(rule trans) -apply(subst upt_rec) - prefer 2 apply(rule refl) -apply simp -done - -(*LOOPS as a simprule, since j<=j*) -lemma upt_add_eq_append: "i<=j ==> [i..j+k(] = [i..j(]@[j..j+k(]" -by(induct_tac "k", auto) +lemma length_upt [simp]: "length [i..j(] = j - i" + by (induct j) (auto simp add: Suc_diff_le) -lemma length_upt[simp]: "length [i..j(] = j-i" -by(induct_tac j, simp, simp add: Suc_diff_le) - -lemma nth_upt[simp]: "i+k < j ==> [i..j(] ! k = i+k" -apply(induct j) -apply(auto simp add: less_Suc_eq nth_append split:nat_diff_split) -done +lemma nth_upt [simp]: "i + k < j ==> [i..j(] ! k = i + k" + apply (induct j) + apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split) + done -lemma take_upt[simp]: "!!i. i+m <= n ==> take m [i..n(] = [i..i+m(]" -apply(induct m) - apply simp -apply(subst upt_rec) -apply(rule sym) -apply(subst upt_rec) -apply(simp del: upt.simps) -done +lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..n(] = [i..i+m(]" + apply (induct m) + apply simp + apply (subst upt_rec) + apply (rule sym) + apply (subst upt_rec) + apply (simp del: upt.simps) + done lemma map_Suc_upt: "map Suc [m..n(] = [Suc m..n]" -by(induct n, auto) + by (induct n) auto lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..n(]) ! i = f(m+i)" -thm diff_induct -apply(induct n m rule: diff_induct) -prefer 3 apply(subst map_Suc_upt[symmetric]) -apply(auto simp add: less_diff_conv nth_upt) -done + apply (induct n m rule: diff_induct) + prefer 3 apply (subst map_Suc_upt[symmetric]) + apply (auto simp add: less_diff_conv nth_upt) + done -lemma nth_take_lemma[rule_format]: - "ALL xs ys. k <= length xs --> k <= length ys - --> (ALL i. i < k --> xs!i = ys!i) - --> take k xs = take k ys" -apply(induct_tac k) -apply(simp_all add: less_Suc_eq_0_disj all_conj_distrib) -apply clarify -(*Both lists must be non-empty*) -apply(case_tac xs) - apply simp -apply(case_tac ys) - apply clarify - apply(simp (no_asm_use)) -apply clarify -(*prenexing's needed, not miniscoping*) -apply(simp (no_asm_use) add: all_simps[symmetric] del: all_simps) -apply blast -(*prenexing's needed, not miniscoping*) -done +lemma nth_take_lemma [rule_format]: + "ALL xs ys. k <= length xs --> k <= length ys + --> (ALL i. i < k --> xs!i = ys!i) + --> take k xs = take k ys" + apply (induct k) + apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib) + apply clarify + txt {* Both lists must be non-empty *} + apply (case_tac xs) + apply simp + apply (case_tac ys) + apply clarify + apply (simp (no_asm_use)) + apply clarify + txt {* prenexing's needed, not miniscoping *} + apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps) + apply blast + done lemma nth_equalityI: "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys" -apply(frule nth_take_lemma[OF le_refl eq_imp_le]) -apply(simp_all add: take_all) -done + apply (frule nth_take_lemma [OF le_refl eq_imp_le]) + apply (simp_all add: take_all) + done + +lemma take_equalityI: "(\i. take i xs = take i ys) ==> xs = ys" + -- {* The famous take-lemma. *} + apply (drule_tac x = "max (length xs) (length ys)" in spec) + apply (simp add: le_max_iff_disj take_all) + done + + +subsection {* @{text "distinct"} and @{text remdups} *} + +lemma distinct_append [simp]: + "distinct (xs @ ys) = (distinct xs \ distinct ys \ set xs \ set ys = {})" + by (induct xs) auto + +lemma set_remdups [simp]: "set (remdups xs) = set xs" + by (induct xs) (auto simp add: insert_absorb) + +lemma distinct_remdups [iff]: "distinct (remdups xs)" + by (induct xs) auto + +lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)" + by (induct xs) auto -(*The famous take-lemma*) -lemma take_equalityI: "(ALL i. take i xs = take i ys) ==> xs = ys" -apply(drule_tac x = "max (length xs) (length ys)" in spec) -apply(simp add: le_max_iff_disj take_all) -done +text {* + It is best to avoid this indexed version of distinct, but sometimes + it is useful. *} +lemma distinct_conv_nth: + "distinct xs = (\i j. i < size xs \ j < size xs \ i \ j --> xs!i \ xs!j)" + apply (induct_tac xs) + apply simp + apply simp + apply (rule iffI) + apply clarsimp + apply (case_tac i) + apply (case_tac j) + apply simp + apply (simp add: set_conv_nth) + apply (case_tac j) + apply (clarsimp simp add: set_conv_nth) + apply simp + apply (rule conjI) + apply (clarsimp simp add: set_conv_nth) + apply (erule_tac x = 0 in allE) + apply (erule_tac x = "Suc i" in allE) + apply simp + apply clarsimp + apply (erule_tac x = "Suc i" in allE) + apply (erule_tac x = "Suc j" in allE) + apply simp + done -(** distinct & remdups **) -section "distinct & remdups" - -lemma distinct_append[simp]: - "distinct(xs@ys) = (distinct xs & distinct ys & set xs Int set ys = {})" -by(induct xs, auto) - -lemma set_remdups[simp]: "set(remdups xs) = set xs" -by(induct xs, simp, simp add:insert_absorb) - -lemma distinct_remdups[iff]: "distinct(remdups xs)" -by(induct xs, auto) - -lemma distinct_filter[simp]: "distinct xs ==> distinct (filter P xs)" -by(induct xs, auto) +subsection {* @{text replicate} *} -(* It is best to avoid this indexed version of distinct, - but sometimes it is useful *) -lemma distinct_conv_nth: - "distinct xs = (\i j. i < size xs \ j < size xs \ i \ j \ xs!i \ xs!j)" -apply(induct_tac xs) - apply simp -apply simp -apply(rule iffI) - apply(clarsimp) - apply(case_tac i) - apply(case_tac j) - apply simp - apply(simp add:set_conv_nth) - apply(case_tac j) - apply(clarsimp simp add:set_conv_nth) - apply simp -apply(rule conjI) - apply(clarsimp simp add:set_conv_nth) - apply(erule_tac x = 0 in allE) - apply(erule_tac x = "Suc i" in allE) - apply simp -apply clarsimp -apply(erule_tac x = "Suc i" in allE) -apply(erule_tac x = "Suc j" in allE) -apply simp -done +lemma length_replicate [simp]: "length (replicate n x) = n" + by (induct n) auto -(** replicate **) -section "replicate" - -lemma length_replicate[simp]: "length(replicate n x) = n" -by(induct n, auto) - -lemma map_replicate[simp]: "map f (replicate n x) = replicate n (f x)" -by(induct n, auto) +lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)" + by (induct n) auto lemma replicate_app_Cons_same: - "(replicate n x) @ (x#xs) = x # replicate n x @ xs" -by(induct n, auto) + "(replicate n x) @ (x # xs) = x # replicate n x @ xs" + by (induct n) auto -lemma rev_replicate[simp]: "rev(replicate n x) = replicate n x" -apply(induct n) - apply simp -apply(simp add: replicate_app_Cons_same) -done +lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x" + apply(induct n) + apply simp + apply (simp add: replicate_app_Cons_same) + done -lemma replicate_add: "replicate (n+m) x = replicate n x @ replicate m x" -by(induct n, auto) +lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x" + by (induct n) auto -lemma hd_replicate[simp]: "n ~= 0 ==> hd(replicate n x) = x" -by(induct n, auto) +lemma hd_replicate [simp]: "n \ 0 ==> hd (replicate n x) = x" + by (induct n) auto -lemma tl_replicate[simp]: "n ~= 0 ==> tl(replicate n x) = replicate (n - 1) x" -by(induct n, auto) +lemma tl_replicate [simp]: "n \ 0 ==> tl (replicate n x) = replicate (n - 1) x" + by (induct n) auto -lemma last_replicate[rule_format,simp]: - "n ~= 0 --> last(replicate n x) = x" -by(induct_tac n, auto) +lemma last_replicate [simp]: "n \ 0 ==> last (replicate n x) = x" + by (atomize (full), induct n) auto -lemma nth_replicate[simp]: "!!i. i (replicate n x)!i = x" -apply(induct n) - apply simp -apply(simp add: nth_Cons split:nat.split) -done +lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x" + apply(induct n) + apply simp + apply (simp add: nth_Cons split: nat.split) + done -lemma set_replicate_Suc: "set(replicate (Suc n) x) = {x}" -by(induct n, auto) +lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}" + by (induct n) auto -lemma set_replicate[simp]: "n ~= 0 ==> set(replicate n x) = {x}" -by(fast dest!: not0_implies_Suc intro!: set_replicate_Suc) +lemma set_replicate [simp]: "n \ 0 ==> set (replicate n x) = {x}" + by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc) -lemma set_replicate_conv_if: "set(replicate n x) = (if n=0 then {} else {x})" -by auto +lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})" + by auto -lemma in_set_replicateD: "x : set(replicate n y) ==> x=y" -by(simp add: set_replicate_conv_if split:split_if_asm) +lemma in_set_replicateD: "x : set (replicate n y) ==> x = y" + by (simp add: set_replicate_conv_if split: split_if_asm) -(*** Lexcicographic orderings on lists ***) -section"Lexcicographic orderings on lists" +subsection {* Lexcicographic orderings on lists *} -lemma wf_lexn: "wf r ==> wf(lexn r n)" -apply(induct_tac n) - apply simp -apply simp -apply(rule wf_subset) - prefer 2 apply(rule Int_lower1) -apply(rule wf_prod_fun_image) - prefer 2 apply(rule injI) -apply auto -done +lemma wf_lexn: "wf r ==> wf (lexn r n)" + apply (induct_tac n) + apply simp + apply simp + apply(rule wf_subset) + prefer 2 apply (rule Int_lower1) + apply(rule wf_prod_fun_image) + prefer 2 apply (rule injI) + apply auto + done lemma lexn_length: - "!!xs ys. (xs,ys) : lexn r n ==> length xs = n & length ys = n" -by(induct n, auto) + "!!xs ys. (xs, ys) : lexn r n ==> length xs = n \ length ys = n" + by (induct n) auto -lemma wf_lex[intro!]: "wf r ==> wf(lex r)" -apply(unfold lex_def) -apply(rule wf_UN) -apply(blast intro: wf_lexn) -apply clarify -apply(rename_tac m n) -apply(subgoal_tac "m ~= n") - prefer 2 apply blast -apply(blast dest: lexn_length not_sym) -done - +lemma wf_lex [intro!]: "wf r ==> wf (lex r)" + apply (unfold lex_def) + apply (rule wf_UN) + apply (blast intro: wf_lexn) + apply clarify + apply (rename_tac m n) + apply (subgoal_tac "m \ n") + prefer 2 apply blast + apply (blast dest: lexn_length not_sym) + done lemma lexn_conv: - "lexn r n = - {(xs,ys). length xs = n & length ys = n & - (? xys x y xs' ys'. xs= xys @ x#xs' & ys= xys @ y#ys' & (x,y):r)}" -apply(induct_tac n) - apply simp - apply blast -apply(simp add: image_Collect lex_prod_def) -apply auto + "lexn r n = + {(xs,ys). length xs = n \ length ys = n \ + (\xys x y xs' ys'. xs= xys @ x#xs' \ ys= xys @ y # ys' \ (x, y):r)}" + apply (induct_tac n) + apply simp + apply blast + apply (simp add: image_Collect lex_prod_def) + apply auto + apply blast + apply (rename_tac a xys x xs' y ys') + apply (rule_tac x = "a # xys" in exI) + apply simp + apply (case_tac xys) + apply simp_all apply blast - apply(rename_tac a xys x xs' y ys') - apply(rule_tac x = "a#xys" in exI) - apply simp -apply(case_tac xys) - apply simp_all -apply blast -done + done lemma lex_conv: - "lex r = - {(xs,ys). length xs = length ys & - (? xys x y xs' ys'. xs= xys @ x#xs' & ys= xys @ y#ys' & (x,y):r)}" -by(force simp add: lex_def lexn_conv) + "lex r = + {(xs,ys). length xs = length ys \ + (\xys x y xs' ys'. xs = xys @ x # xs' \ ys = xys @ y # ys' \ (x, y):r)}" + by (force simp add: lex_def lexn_conv) -lemma wf_lexico[intro!]: "wf r ==> wf(lexico r)" -by(unfold lexico_def, blast) +lemma wf_lexico [intro!]: "wf r ==> wf (lexico r)" + by (unfold lexico_def) blast lemma lexico_conv: -"lexico r = {(xs,ys). length xs < length ys | - length xs = length ys & (xs,ys) : lex r}" -by(simp add: lexico_def diag_def lex_prod_def measure_def inv_image_def) + "lexico r = {(xs,ys). length xs < length ys | + length xs = length ys \ (xs, ys) : lex r}" + by (simp add: lexico_def diag_def lex_prod_def measure_def inv_image_def) -lemma Nil_notin_lex[iff]: "([],ys) ~: lex r" -by(simp add:lex_conv) +lemma Nil_notin_lex [iff]: "([], ys) \ lex r" + by (simp add: lex_conv) -lemma Nil2_notin_lex[iff]: "(xs,[]) ~: lex r" -by(simp add:lex_conv) +lemma Nil2_notin_lex [iff]: "(xs, []) \ lex r" + by (simp add:lex_conv) -lemma Cons_in_lex[iff]: - "((x#xs,y#ys) : lex r) = - ((x,y) : r & length xs = length ys | x=y & (xs,ys) : lex r)" -apply(simp add:lex_conv) -apply(rule iffI) - prefer 2 apply(blast intro: Cons_eq_appendI) -apply clarify -apply(case_tac xys) - apply simp -apply simp -apply blast -done +lemma Cons_in_lex [iff]: + "((x # xs, y # ys) : lex r) = + ((x, y) : r \ length xs = length ys | x = y \ (xs, ys) : lex r)" + apply (simp add: lex_conv) + apply (rule iffI) + prefer 2 apply (blast intro: Cons_eq_appendI) + apply clarify + apply (case_tac xys) + apply simp + apply simp + apply blast + done -(*** sublist (a generalization of nth to sets) ***) +subsection {* @{text sublist} --- a generalization of @{text nth} to sets *} -lemma sublist_empty[simp]: "sublist xs {} = []" -by(auto simp add:sublist_def) +lemma sublist_empty [simp]: "sublist xs {} = []" + by (auto simp add: sublist_def) -lemma sublist_nil[simp]: "sublist [] A = []" -by(auto simp add:sublist_def) +lemma sublist_nil [simp]: "sublist [] A = []" + by (auto simp add: sublist_def) lemma sublist_shift_lemma: - "map fst [p:zip xs [i..i + length xs(] . snd p : A] = - map fst [p:zip xs [0..length xs(] . snd p + i : A]" -apply(induct_tac xs rule: rev_induct) - apply simp -apply(simp add:add_commute) -done + "map fst [p:zip xs [i..i + length xs(] . snd p : A] = + map fst [p:zip xs [0..length xs(] . snd p + i : A]" + by (induct xs rule: rev_induct) (simp_all add: add_commute) lemma sublist_append: - "sublist (l@l') A = sublist l A @ sublist l' {j. j + length l : A}" -apply(unfold sublist_def) -apply(induct_tac l' rule: rev_induct) - apply simp -apply(simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma) -apply(simp add:add_commute) -done + "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}" + apply (unfold sublist_def) + apply (induct l' rule: rev_induct) + apply simp + apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma) + apply (simp add: add_commute) + done lemma sublist_Cons: - "sublist (x#l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}" -apply(induct_tac l rule: rev_induct) - apply(simp add:sublist_def) -apply(simp del: append_Cons add: append_Cons[symmetric] sublist_append) -done + "sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}" + apply (induct l rule: rev_induct) + apply (simp add: sublist_def) + apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append) + done -lemma sublist_singleton[simp]: "sublist [x] A = (if 0 : A then [x] else [])" -by(simp add:sublist_Cons) +lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])" + by (simp add: sublist_Cons) -lemma sublist_upt_eq_take[simp]: "sublist l {..n(} = take n l" -apply(induct_tac l rule: rev_induct) - apply simp -apply(simp split:nat_diff_split add:sublist_append) -done +lemma sublist_upt_eq_take [simp]: "sublist l {..n(} = take n l" + apply (induct l rule: rev_induct) + apply simp + apply (simp split: nat_diff_split add: sublist_append) + done -lemma take_Cons': "take n (x#xs) = (if n=0 then [] else x # take (n - 1) xs)" -by(case_tac n, simp_all) - -lemma drop_Cons': "drop n (x#xs) = (if n=0 then x#xs else drop (n - 1) xs)" -by(case_tac n, simp_all) +lemma take_Cons': + "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)" + by (cases n) simp_all -lemma nth_Cons': "(x#xs)!n = (if n=0 then x else xs!(n - 1))" -by(case_tac n, simp_all) +lemma drop_Cons': + "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)" + by (cases n) simp_all -lemmas [simp] = take_Cons'[of "number_of v",standard] - drop_Cons'[of "number_of v",standard] - nth_Cons'[of "number_of v",standard] +lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))" + by (cases n) simp_all + +lemmas [of "number_of v", standard, simp] = + take_Cons' drop_Cons' nth_Cons' end