# HG changeset patch # User paulson # Date 1556494603 -3600 # Node ID 1ececb77b27a5588a151bd0a9eff0809ae2bcf10 # Parent ab29bd01b8b2ca624e77fc749fe026112f39b995 final tidying-up diff -r ab29bd01b8b2 -r 1ececb77b27a src/HOL/Nonstandard_Analysis/HTranscendental.thy --- a/src/HOL/Nonstandard_Analysis/HTranscendental.thy Sun Apr 28 18:06:47 2019 +0100 +++ b/src/HOL/Nonstandard_Analysis/HTranscendental.thy Mon Apr 29 00:36:43 2019 +0100 @@ -8,12 +8,9 @@ section\Nonstandard Extensions of Transcendental Functions\ theory HTranscendental -imports Complex_Main HSeries HDeriv Sketch_and_Explore +imports Complex_Main HSeries HDeriv begin - -sledgehammer_params [timeout = 90] - definition exphr :: "real \ hypreal" where \ \define exponential function using standard part\ @@ -305,242 +302,215 @@ qed lemma starfun_exp_add_HFinite_Infinitesimal_approx: - "\x \ Infinitesimal; z \ HFinite\ \ ( *f* exp) (z + x::hypreal) \ ( *f* exp) z" -apply (simp add: STAR_exp_add) -apply (frule STAR_exp_Infinitesimal) -apply (drule approx_mult2) -apply (auto intro: starfun_exp_HFinite) -done + fixes x :: hypreal + shows "\x \ Infinitesimal; z \ HFinite\ \ ( *f* exp) (z + x::hypreal) \ ( *f* exp) z" + using STAR_exp_Infinitesimal approx_mult2 starfun_exp_HFinite by (fastforce simp add: STAR_exp_add) -(* using previous result to get to result *) lemma starfun_ln_HInfinite: - "\x \ HInfinite; 0 < x\ \ ( *f* real_ln) x \ HInfinite" -apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) -apply (drule starfun_exp_HFinite) -apply (simp add: starfun_exp_ln_iff [THEN iffD2] HFinite_HInfinite_iff) -done + "\x \ HInfinite; 0 < x\ \ ( *f* real_ln) x \ HInfinite" + by (metis HInfinite_HFinite_iff starfun_exp_HFinite starfun_exp_ln_iff) lemma starfun_exp_HInfinite_Infinitesimal_disj: - "x \ HInfinite \ ( *f* exp) x \ HInfinite \ ( *f* exp) (x::hypreal) \ Infinitesimal" -apply (insert linorder_linear [of x 0]) -apply (auto intro: starfun_exp_HInfinite starfun_exp_Infinitesimal) -done + fixes x :: hypreal + shows "x \ HInfinite \ ( *f* exp) x \ HInfinite \ ( *f* exp) (x::hypreal) \ Infinitesimal" + by (meson linear starfun_exp_HInfinite starfun_exp_Infinitesimal) -(* check out this proof\! *) lemma starfun_ln_HFinite_not_Infinitesimal: "\x \ HFinite - Infinitesimal; 0 < x\ \ ( *f* real_ln) x \ HFinite" -apply (rule ccontr, drule HInfinite_HFinite_iff [THEN iffD2]) -apply (drule starfun_exp_HInfinite_Infinitesimal_disj) -apply (simp add: starfun_exp_ln_iff [symmetric] HInfinite_HFinite_iff - del: starfun_exp_ln_iff) -done + by (metis DiffD1 DiffD2 HInfinite_HFinite_iff starfun_exp_HInfinite_Infinitesimal_disj starfun_exp_ln_iff) (* we do proof by considering ln of 1/x *) lemma starfun_ln_Infinitesimal_HInfinite: - "\x \ Infinitesimal; 0 < x\ \ ( *f* real_ln) x \ HInfinite" -apply (drule Infinitesimal_inverse_HInfinite) -apply (frule positive_imp_inverse_positive) -apply (drule_tac [2] starfun_ln_HInfinite) -apply (auto simp add: starfun_ln_inverse HInfinite_minus_iff) -done + assumes "x \ Infinitesimal" "0 < x" + shows "( *f* real_ln) x \ HInfinite" +proof - + have "inverse x \ HInfinite" + using Infinitesimal_inverse_HInfinite assms by blast + then show ?thesis + using HInfinite_minus_iff assms(2) starfun_ln_HInfinite starfun_ln_inverse by fastforce +qed lemma starfun_ln_less_zero: "\x. \0 < x; x < 1\ \ ( *f* real_ln) x < 0" -by transfer (rule ln_less_zero) + by transfer (rule ln_less_zero) lemma starfun_ln_Infinitesimal_less_zero: - "\x \ Infinitesimal; 0 < x\ \ ( *f* real_ln) x < 0" -by (auto intro!: starfun_ln_less_zero simp add: Infinitesimal_def) + "\x \ Infinitesimal; 0 < x\ \ ( *f* real_ln) x < 0" + by (auto intro!: starfun_ln_less_zero simp add: Infinitesimal_def) lemma starfun_ln_HInfinite_gt_zero: - "\x \ HInfinite; 0 < x\ \ 0 < ( *f* real_ln) x" -by (auto intro!: starfun_ln_gt_zero simp add: HInfinite_def) - + "\x \ HInfinite; 0 < x\ \ 0 < ( *f* real_ln) x" + by (auto intro!: starfun_ln_gt_zero simp add: HInfinite_def) -(* -Goalw [NSLIM_def] "(\h. ((x powr h) - 1) / h) \0\\<^sub>N\<^sub>S ln x" -*) lemma HFinite_sin [simp]: "sumhr (0, whn, \n. sin_coeff n * x ^ n) \ HFinite" -unfolding sumhr_app -apply (simp only: star_zero_def starfun2_star_of atLeast0LessThan) -apply (rule NSBseqD2) -apply (rule NSconvergent_NSBseq) -apply (rule convergent_NSconvergent_iff [THEN iffD1]) -apply (rule summable_iff_convergent [THEN iffD1]) -using summable_norm_sin [of x] -apply (simp add: summable_rabs_cancel) -done +proof - + have "summable (\i. sin_coeff i * x ^ i)" + using summable_norm_sin [of x] by (simp add: summable_rabs_cancel) + then have "(*f* (\n. \n HFinite" + unfolding summable_sums_iff sums_NSsums_iff NSsums_def NSLIMSEQ_iff + using HFinite_star_of HNatInfinite_whn approx_HFinite approx_sym by blast + then show ?thesis + unfolding sumhr_app + by (simp only: star_zero_def starfun2_star_of atLeast0LessThan) +qed lemma STAR_sin_zero [simp]: "( *f* sin) 0 = 0" -by transfer (rule sin_zero) + by transfer (rule sin_zero) lemma STAR_sin_Infinitesimal [simp]: fixes x :: "'a::{real_normed_field,banach} star" - shows "x \ Infinitesimal \ ( *f* sin) x \ x" -apply (case_tac "x = 0") -apply (cut_tac [2] x = 0 in DERIV_sin) -apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def) -apply (drule bspec [where x = x], auto) -apply (drule approx_mult1 [where c = x]) -apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD] - simp add: mult.assoc) -done + assumes "x \ Infinitesimal" + shows "( *f* sin) x \ x" +proof (cases "x = 0") + case False + have "NSDERIV sin 0 :> 1" + by (metis DERIV_sin NSDERIV_DERIV_iff cos_zero) + then have "(*f* sin) x / x \ 1" + using False NSDERIVD2 assms by fastforce + with assms show ?thesis + unfolding star_one_def + by (metis False Infinitesimal_approx Infinitesimal_ratio approx_star_of_HFinite) +qed auto lemma HFinite_cos [simp]: "sumhr (0, whn, \n. cos_coeff n * x ^ n) \ HFinite" -unfolding sumhr_app -apply (simp only: star_zero_def starfun2_star_of atLeast0LessThan) -apply (rule NSBseqD2) -apply (rule NSconvergent_NSBseq) -apply (rule convergent_NSconvergent_iff [THEN iffD1]) -apply (rule summable_iff_convergent [THEN iffD1]) -using summable_norm_cos [of x] -apply (simp add: summable_rabs_cancel) -done +proof - + have "summable (\i. cos_coeff i * x ^ i)" + using summable_norm_cos [of x] by (simp add: summable_rabs_cancel) + then have "(*f* (\n. \n HFinite" + unfolding summable_sums_iff sums_NSsums_iff NSsums_def NSLIMSEQ_iff + using HFinite_star_of HNatInfinite_whn approx_HFinite approx_sym by blast + then show ?thesis + unfolding sumhr_app + by (simp only: star_zero_def starfun2_star_of atLeast0LessThan) +qed lemma STAR_cos_zero [simp]: "( *f* cos) 0 = 1" -by transfer (rule cos_zero) + by transfer (rule cos_zero) lemma STAR_cos_Infinitesimal [simp]: fixes x :: "'a::{real_normed_field,banach} star" - shows "x \ Infinitesimal \ ( *f* cos) x \ 1" -apply (case_tac "x = 0") -apply (cut_tac [2] x = 0 in DERIV_cos) -apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def) -apply (drule bspec [where x = x]) -apply auto -apply (drule approx_mult1 [where c = x]) -apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD] - simp add: mult.assoc) -apply (rule approx_add_right_cancel [where d = "-1"]) -apply simp -done + assumes "x \ Infinitesimal" + shows "( *f* cos) x \ 1" +proof (cases "x = 0") + case False + have "NSDERIV cos 0 :> 0" + by (metis DERIV_cos NSDERIV_DERIV_iff add.inverse_neutral sin_zero) + then have "(*f* cos) x - 1 \ 0" + using NSDERIV_approx assms by fastforce + with assms show ?thesis + using approx_minus_iff by blast +qed auto lemma STAR_tan_zero [simp]: "( *f* tan) 0 = 0" -by transfer (rule tan_zero) + by transfer (rule tan_zero) -lemma STAR_tan_Infinitesimal: "x \ Infinitesimal \ ( *f* tan) x \ x" -apply (case_tac "x = 0") -apply (cut_tac [2] x = 0 in DERIV_tan) -apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def) -apply (drule bspec [where x = x], auto) -apply (drule approx_mult1 [where c = x]) -apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD] - simp add: mult.assoc) -done +lemma STAR_tan_Infinitesimal [simp]: + assumes "x \ Infinitesimal" + shows "( *f* tan) x \ x" +proof (cases "x = 0") + case False + have "NSDERIV tan 0 :> 1" + using DERIV_tan [of 0] by (simp add: NSDERIV_DERIV_iff) + then have "(*f* tan) x / x \ 1" + using False NSDERIVD2 assms by fastforce + with assms show ?thesis + unfolding star_one_def + by (metis False Infinitesimal_approx Infinitesimal_ratio approx_star_of_HFinite) +qed auto lemma STAR_sin_cos_Infinitesimal_mult: fixes x :: "'a::{real_normed_field,banach} star" shows "x \ Infinitesimal \ ( *f* sin) x * ( *f* cos) x \ x" -using approx_mult_HFinite [of "( *f* sin) x" _ "( *f* cos) x" 1] -by (simp add: Infinitesimal_subset_HFinite [THEN subsetD]) + using approx_mult_HFinite [of "( *f* sin) x" _ "( *f* cos) x" 1] + by (simp add: Infinitesimal_subset_HFinite [THEN subsetD]) lemma HFinite_pi: "hypreal_of_real pi \ HFinite" -by simp - -(* lemmas *) + by simp -lemma lemma_split_hypreal_of_real: - "N \ HNatInfinite - \ hypreal_of_real a = - hypreal_of_hypnat N * (inverse(hypreal_of_hypnat N) * hypreal_of_real a)" -by (simp add: mult.assoc [symmetric] zero_less_HNatInfinite) lemma STAR_sin_Infinitesimal_divide: fixes x :: "'a::{real_normed_field,banach} star" shows "\x \ Infinitesimal; x \ 0\ \ ( *f* sin) x/x \ 1" -using DERIV_sin [of "0::'a"] -by (simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def) + using DERIV_sin [of "0::'a"] + by (simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def) -(*------------------------------------------------------------------------*) -(* sin* (1/n) * 1/(1/n) \ 1 for n = oo *) -(*------------------------------------------------------------------------*) +subsection \Proving $\sin* (1/n) \times 1/(1/n) \approx 1$ for $n = \infty$ \ lemma lemma_sin_pi: - "n \ HNatInfinite + "n \ HNatInfinite \ ( *f* sin) (inverse (hypreal_of_hypnat n))/(inverse (hypreal_of_hypnat n)) \ 1" -apply (rule STAR_sin_Infinitesimal_divide) -apply (auto simp add: zero_less_HNatInfinite) -done + by (simp add: STAR_sin_Infinitesimal_divide zero_less_HNatInfinite) lemma STAR_sin_inverse_HNatInfinite: "n \ HNatInfinite \ ( *f* sin) (inverse (hypreal_of_hypnat n)) * hypreal_of_hypnat n \ 1" -apply (frule lemma_sin_pi) -apply (simp add: divide_inverse) -done + by (metis field_class.field_divide_inverse inverse_inverse_eq lemma_sin_pi) lemma Infinitesimal_pi_divide_HNatInfinite: "N \ HNatInfinite \ hypreal_of_real pi/(hypreal_of_hypnat N) \ Infinitesimal" -apply (simp add: divide_inverse) -apply (auto intro: Infinitesimal_HFinite_mult2) -done + by (simp add: Infinitesimal_HFinite_mult2 field_class.field_divide_inverse) lemma pi_divide_HNatInfinite_not_zero [simp]: - "N \ HNatInfinite \ hypreal_of_real pi/(hypreal_of_hypnat N) \ 0" -by (simp add: zero_less_HNatInfinite) + "N \ HNatInfinite \ hypreal_of_real pi/(hypreal_of_hypnat N) \ 0" + by (simp add: zero_less_HNatInfinite) lemma STAR_sin_pi_divide_HNatInfinite_approx_pi: - "n \ HNatInfinite - \ ( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n)) * hypreal_of_hypnat n - \ hypreal_of_real pi" -apply (frule STAR_sin_Infinitesimal_divide - [OF Infinitesimal_pi_divide_HNatInfinite - pi_divide_HNatInfinite_not_zero]) -apply (auto) -apply (rule approx_SReal_mult_cancel [of "inverse (hypreal_of_real pi)"]) -apply (auto intro: Reals_inverse simp add: divide_inverse ac_simps) -done + assumes "n \ HNatInfinite" + shows "(*f* sin) (hypreal_of_real pi / hypreal_of_hypnat n) * hypreal_of_hypnat n \ + hypreal_of_real pi" +proof - + have "(*f* sin) (hypreal_of_real pi / hypreal_of_hypnat n) / (hypreal_of_real pi / hypreal_of_hypnat n) \ 1" + using Infinitesimal_pi_divide_HNatInfinite STAR_sin_Infinitesimal_divide assms pi_divide_HNatInfinite_not_zero by blast + then have "hypreal_of_hypnat n * star_of sin \ (hypreal_of_real pi / hypreal_of_hypnat n) / hypreal_of_real pi \ 1" + by (simp add: mult.commute starfun_def) + then show ?thesis + apply (simp add: starfun_def field_simps) + by (metis (no_types, lifting) approx_mult_subst_star_of approx_refl mult_cancel_right1 nonzero_eq_divide_eq pi_neq_zero star_of_eq_0) +qed lemma STAR_sin_pi_divide_HNatInfinite_approx_pi2: "n \ HNatInfinite - \ hypreal_of_hypnat n * - ( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n)) - \ hypreal_of_real pi" -apply (rule mult.commute [THEN subst]) -apply (erule STAR_sin_pi_divide_HNatInfinite_approx_pi) -done + \ hypreal_of_hypnat n * ( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n)) \ hypreal_of_real pi" + by (metis STAR_sin_pi_divide_HNatInfinite_approx_pi mult.commute) lemma starfunNat_pi_divide_n_Infinitesimal: "N \ HNatInfinite \ ( *f* (\x. pi / real x)) N \ Infinitesimal" -by (auto intro!: Infinitesimal_HFinite_mult2 - simp add: starfun_mult [symmetric] divide_inverse - starfun_inverse [symmetric] starfunNat_real_of_nat) + by (simp add: Infinitesimal_HFinite_mult2 divide_inverse starfunNat_real_of_nat) lemma STAR_sin_pi_divide_n_approx: - "N \ HNatInfinite \ - ( *f* sin) (( *f* (\x. pi / real x)) N) \ - hypreal_of_real pi/(hypreal_of_hypnat N)" -apply (simp add: starfunNat_real_of_nat [symmetric]) -apply (rule STAR_sin_Infinitesimal) -apply (simp add: divide_inverse) -apply (rule Infinitesimal_HFinite_mult2) -apply (subst starfun_inverse) -apply (erule starfunNat_inverse_real_of_nat_Infinitesimal) -apply simp -done + assumes "N \ HNatInfinite" + shows "( *f* sin) (( *f* (\x. pi / real x)) N) \ hypreal_of_real pi/(hypreal_of_hypnat N)" +proof - + have "\s. (*f* sin) ((*f* (\n. pi / real n)) N) \ s \ hypreal_of_real pi / hypreal_of_hypnat N \ s" + by (metis (lifting) Infinitesimal_approx Infinitesimal_pi_divide_HNatInfinite STAR_sin_Infinitesimal assms starfunNat_pi_divide_n_Infinitesimal) + then show ?thesis + by (meson approx_trans2) +qed lemma NSLIMSEQ_sin_pi: "(\n. real n * sin (pi / real n)) \\<^sub>N\<^sub>S pi" -apply (auto simp add: NSLIMSEQ_def starfun_mult [symmetric] starfunNat_real_of_nat) -apply (rule_tac f1 = sin in starfun_o2 [THEN subst]) -apply (auto simp add: starfun_mult [symmetric] starfunNat_real_of_nat divide_inverse) -apply (rule_tac f1 = inverse in starfun_o2 [THEN subst]) -apply (auto dest: STAR_sin_pi_divide_HNatInfinite_approx_pi - simp add: starfunNat_real_of_nat mult.commute divide_inverse) -done +proof - + have *: "hypreal_of_hypnat N * (*f* sin) ((*f* (\x. pi / real x)) N) \ hypreal_of_real pi" + if "N \ HNatInfinite" + for N :: "nat star" + using that + by simp (metis STAR_sin_pi_divide_HNatInfinite_approx_pi2 starfunNat_real_of_nat) + show ?thesis + by (simp add: NSLIMSEQ_def starfunNat_real_of_nat) (metis * starfun_o2) +qed lemma NSLIMSEQ_cos_one: "(\n. cos (pi / real n))\\<^sub>N\<^sub>S 1" -apply (simp add: NSLIMSEQ_def, auto) -apply (rule_tac f1 = cos in starfun_o2 [THEN subst]) -apply (rule STAR_cos_Infinitesimal) -apply (auto intro!: Infinitesimal_HFinite_mult2 - simp add: starfun_mult [symmetric] divide_inverse - starfun_inverse [symmetric] starfunNat_real_of_nat) -done +proof - + have "(*f* cos) ((*f* (\x. pi / real x)) N) \ 1" + if "N \ HNatInfinite" for N + using that STAR_cos_Infinitesimal starfunNat_pi_divide_n_Infinitesimal by blast + then show ?thesis + by (simp add: NSLIMSEQ_def) (metis STAR_cos_Infinitesimal starfunNat_pi_divide_n_Infinitesimal starfun_o2) +qed lemma NSLIMSEQ_sin_cos_pi: - "(\n. real n * sin (pi / real n) * cos (pi / real n)) \\<^sub>N\<^sub>S pi" -by (insert NSLIMSEQ_mult [OF NSLIMSEQ_sin_pi NSLIMSEQ_cos_one], simp) + "(\n. real n * sin (pi / real n) * cos (pi / real n)) \\<^sub>N\<^sub>S pi" + using NSLIMSEQ_cos_one NSLIMSEQ_mult NSLIMSEQ_sin_pi by force text\A familiar approximation to \<^term>\cos x\ when \<^term>\x\ is small\ @@ -548,17 +518,18 @@ lemma STAR_cos_Infinitesimal_approx: fixes x :: "'a::{real_normed_field,banach} star" shows "x \ Infinitesimal \ ( *f* cos) x \ 1 - x\<^sup>2" -apply (rule STAR_cos_Infinitesimal [THEN approx_trans]) -apply (auto simp add: Infinitesimal_approx_minus [symmetric] - add.assoc [symmetric] numeral_2_eq_2) -done + by (metis Infinitesimal_square_iff STAR_cos_Infinitesimal approx_diff approx_sym diff_zero mem_infmal_iff power2_eq_square) lemma STAR_cos_Infinitesimal_approx2: fixes x :: hypreal \ \perhaps could be generalised, like many other hypreal results\ - shows "x \ Infinitesimal \ ( *f* cos) x \ 1 - (x\<^sup>2)/2" -apply (rule STAR_cos_Infinitesimal [THEN approx_trans]) -apply (auto intro: Infinitesimal_SReal_divide Infinitesimal_mult - simp add: Infinitesimal_approx_minus [symmetric] numeral_2_eq_2) -done + assumes "x \ Infinitesimal" + shows "( *f* cos) x \ 1 - (x\<^sup>2)/2" +proof - + have "1 \ 1 - x\<^sup>2 / 2" + using assms + by (auto intro: Infinitesimal_SReal_divide simp add: Infinitesimal_approx_minus [symmetric] numeral_2_eq_2) + then show ?thesis + using STAR_cos_Infinitesimal approx_trans assms by blast +qed end