# HG changeset patch # User hoelzl # Date 1412671709 -7200 # Node ID 1f90ea1b40104bded42ad13562624e93196e82b9 # Parent 9c66f7c541fb716275c8afe07023b73b56ad1058 move Stream theory from Datatype_Examples to Library diff -r 9c66f7c541fb -r 1f90ea1b4010 src/HOL/Datatype_Examples/Koenig.thy --- a/src/HOL/Datatype_Examples/Koenig.thy Tue Oct 07 10:34:24 2014 +0200 +++ b/src/HOL/Datatype_Examples/Koenig.thy Tue Oct 07 10:48:29 2014 +0200 @@ -9,7 +9,7 @@ header {* Koenig's Lemma *} theory Koenig -imports TreeFI Stream +imports TreeFI "~~/src/HOL/Library/Stream" begin (* infinite trees: *) diff -r 9c66f7c541fb -r 1f90ea1b4010 src/HOL/Datatype_Examples/Process.thy --- a/src/HOL/Datatype_Examples/Process.thy Tue Oct 07 10:34:24 2014 +0200 +++ b/src/HOL/Datatype_Examples/Process.thy Tue Oct 07 10:48:29 2014 +0200 @@ -8,7 +8,7 @@ header {* Processes *} theory Process -imports Stream +imports "~~/src/HOL/Library/Stream" begin codatatype 'a process = diff -r 9c66f7c541fb -r 1f90ea1b4010 src/HOL/Datatype_Examples/Stream.thy --- a/src/HOL/Datatype_Examples/Stream.thy Tue Oct 07 10:34:24 2014 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,582 +0,0 @@ -(* Title: HOL/Datatype_Examples/Stream.thy - Author: Dmitriy Traytel, TU Muenchen - Author: Andrei Popescu, TU Muenchen - Copyright 2012, 2013 - -Infinite streams. -*) - -header {* Infinite Streams *} - -theory Stream -imports "~~/src/HOL/Library/Nat_Bijection" -begin - -codatatype (sset: 'a) stream = - SCons (shd: 'a) (stl: "'a stream") (infixr "##" 65) -for - map: smap - rel: stream_all2 - -(*for code generation only*) -definition smember :: "'a \ 'a stream \ bool" where - [code_abbrev]: "smember x s \ x \ sset s" - -lemma smember_code[code, simp]: "smember x (y ## s) = (if x = y then True else smember x s)" - unfolding smember_def by auto - -hide_const (open) smember - -lemmas smap_simps[simp] = stream.map_sel -lemmas shd_sset = stream.set_sel(1) -lemmas stl_sset = stream.set_sel(2) - -theorem sset_induct[consumes 1, case_names shd stl, induct set: sset]: - assumes "y \ sset s" and "\s. P (shd s) s" and "\s y. \y \ sset (stl s); P y (stl s)\ \ P y s" - shows "P y s" -using assms by induct (metis stream.sel(1), auto) - - -subsection {* prepend list to stream *} - -primrec shift :: "'a list \ 'a stream \ 'a stream" (infixr "@-" 65) where - "shift [] s = s" -| "shift (x # xs) s = x ## shift xs s" - -lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s" - by (induct xs) auto - -lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s" - by (induct xs) auto - -lemma shift_simps[simp]: - "shd (xs @- s) = (if xs = [] then shd s else hd xs)" - "stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)" - by (induct xs) auto - -lemma sset_shift[simp]: "sset (xs @- s) = set xs \ sset s" - by (induct xs) auto - -lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \ s1 = s2" - by (induct xs) auto - - -subsection {* set of streams with elements in some fixed set *} - -coinductive_set - streams :: "'a set \ 'a stream set" - for A :: "'a set" -where - Stream[intro!, simp, no_atp]: "\a \ A; s \ streams A\ \ a ## s \ streams A" - -lemma shift_streams: "\w \ lists A; s \ streams A\ \ w @- s \ streams A" - by (induct w) auto - -lemma streams_Stream: "x ## s \ streams A \ x \ A \ s \ streams A" - by (auto elim: streams.cases) - -lemma streams_stl: "s \ streams A \ stl s \ streams A" - by (cases s) (auto simp: streams_Stream) - -lemma streams_shd: "s \ streams A \ shd s \ A" - by (cases s) (auto simp: streams_Stream) - -lemma sset_streams: - assumes "sset s \ A" - shows "s \ streams A" -using assms proof (coinduction arbitrary: s) - case streams then show ?case by (cases s) simp -qed - -lemma streams_sset: - assumes "s \ streams A" - shows "sset s \ A" -proof - fix x assume "x \ sset s" from this `s \ streams A` show "x \ A" - by (induct s) (auto intro: streams_shd streams_stl) -qed - -lemma streams_iff_sset: "s \ streams A \ sset s \ A" - by (metis sset_streams streams_sset) - -lemma streams_mono: "s \ streams A \ A \ B \ s \ streams B" - unfolding streams_iff_sset by auto - -lemma smap_streams: "s \ streams A \ (\x. x \ A \ f x \ B) \ smap f s \ streams B" - unfolding streams_iff_sset stream.set_map by auto - -lemma streams_empty: "streams {} = {}" - by (auto elim: streams.cases) - -lemma streams_UNIV[simp]: "streams UNIV = UNIV" - by (auto simp: streams_iff_sset) - -subsection {* nth, take, drop for streams *} - -primrec snth :: "'a stream \ nat \ 'a" (infixl "!!" 100) where - "s !! 0 = shd s" -| "s !! Suc n = stl s !! n" - -lemma snth_smap[simp]: "smap f s !! n = f (s !! n)" - by (induct n arbitrary: s) auto - -lemma shift_snth_less[simp]: "p < length xs \ (xs @- s) !! p = xs ! p" - by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl) - -lemma shift_snth_ge[simp]: "p \ length xs \ (xs @- s) !! p = s !! (p - length xs)" - by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred) - -lemma shift_snth: "(xs @- s) !! n = (if n < length xs then xs ! n else s !! (n - length xs))" - by auto - -lemma snth_sset[simp]: "s !! n \ sset s" - by (induct n arbitrary: s) (auto intro: shd_sset stl_sset) - -lemma sset_range: "sset s = range (snth s)" -proof (intro equalityI subsetI) - fix x assume "x \ sset s" - thus "x \ range (snth s)" - proof (induct s) - case (stl s x) - then obtain n where "x = stl s !! n" by auto - thus ?case by (auto intro: range_eqI[of _ _ "Suc n"]) - qed (auto intro: range_eqI[of _ _ 0]) -qed auto - -primrec stake :: "nat \ 'a stream \ 'a list" where - "stake 0 s = []" -| "stake (Suc n) s = shd s # stake n (stl s)" - -lemma length_stake[simp]: "length (stake n s) = n" - by (induct n arbitrary: s) auto - -lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)" - by (induct n arbitrary: s) auto - -lemma take_stake: "take n (stake m s) = stake (min n m) s" -proof (induct m arbitrary: s n) - case (Suc m) thus ?case by (cases n) auto -qed simp - -primrec sdrop :: "nat \ 'a stream \ 'a stream" where - "sdrop 0 s = s" -| "sdrop (Suc n) s = sdrop n (stl s)" - -lemma sdrop_simps[simp]: - "shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s" - by (induct n arbitrary: s) auto - -lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)" - by (induct n arbitrary: s) auto - -lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)" - by (induct n) auto - -lemma drop_stake: "drop n (stake m s) = stake (m - n) (sdrop n s)" -proof (induct m arbitrary: s n) - case (Suc m) thus ?case by (cases n) auto -qed simp - -lemma stake_sdrop: "stake n s @- sdrop n s = s" - by (induct n arbitrary: s) auto - -lemma id_stake_snth_sdrop: - "s = stake i s @- s !! i ## sdrop (Suc i) s" - by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse) - -lemma smap_alt: "smap f s = s' \ (\n. f (s !! n) = s' !! n)" (is "?L = ?R") -proof - assume ?R - then have "\n. smap f (sdrop n s) = sdrop n s'" - by coinduction (auto intro: exI[of _ 0] simp del: sdrop.simps(2)) - then show ?L using sdrop.simps(1) by metis -qed auto - -lemma stake_invert_Nil[iff]: "stake n s = [] \ n = 0" - by (induct n) auto - -lemma sdrop_shift: "sdrop i (w @- s) = drop i w @- sdrop (i - length w) s" - by (induct i arbitrary: w s) (auto simp: drop_tl drop_Suc neq_Nil_conv) - -lemma stake_shift: "stake i (w @- s) = take i w @ stake (i - length w) s" - by (induct i arbitrary: w s) (auto simp: neq_Nil_conv) - -lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s" - by (induct m arbitrary: s) auto - -lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s" - by (induct m arbitrary: s) auto - -lemma sdrop_snth: "sdrop n s !! m = s !! (n + m)" - by (induct n arbitrary: m s) auto - -partial_function (tailrec) sdrop_while :: "('a \ bool) \ 'a stream \ 'a stream" where - "sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)" - -lemma sdrop_while_SCons[code]: - "sdrop_while P (a ## s) = (if P a then sdrop_while P s else a ## s)" - by (subst sdrop_while.simps) simp - -lemma sdrop_while_sdrop_LEAST: - assumes "\n. P (s !! n)" - shows "sdrop_while (Not o P) s = sdrop (LEAST n. P (s !! n)) s" -proof - - from assms obtain m where "P (s !! m)" "\n. P (s !! n) \ m \ n" - and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le) - thus ?thesis unfolding * - proof (induct m arbitrary: s) - case (Suc m) - hence "sdrop_while (Not \ P) (stl s) = sdrop m (stl s)" - by (metis (full_types) not_less_eq_eq snth.simps(2)) - moreover from Suc(3) have "\ (P (s !! 0))" by blast - ultimately show ?case by (subst sdrop_while.simps) simp - qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1)) -qed - -primcorec sfilter where - "shd (sfilter P s) = shd (sdrop_while (Not o P) s)" -| "stl (sfilter P s) = sfilter P (stl (sdrop_while (Not o P) s))" - -lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)" -proof (cases "P x") - case True thus ?thesis by (subst sfilter.ctr) (simp add: sdrop_while_SCons) -next - case False thus ?thesis by (subst (1 2) sfilter.ctr) (simp add: sdrop_while_SCons) -qed - - -subsection {* unary predicates lifted to streams *} - -definition "stream_all P s = (\p. P (s !! p))" - -lemma stream_all_iff[iff]: "stream_all P s \ Ball (sset s) P" - unfolding stream_all_def sset_range by auto - -lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \ stream_all P s)" - unfolding stream_all_iff list_all_iff by auto - -lemma stream_all_Stream: "stream_all P (x ## X) \ P x \ stream_all P X" - by simp - - -subsection {* recurring stream out of a list *} - -primcorec cycle :: "'a list \ 'a stream" where - "shd (cycle xs) = hd xs" -| "stl (cycle xs) = cycle (tl xs @ [hd xs])" - -lemma cycle_decomp: "u \ [] \ cycle u = u @- cycle u" -proof (coinduction arbitrary: u) - case Eq_stream then show ?case using stream.collapse[of "cycle u"] - by (auto intro!: exI[of _ "tl u @ [hd u]"]) -qed - -lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])" - by (subst cycle.ctr) simp - -lemma cycle_rotated: "\v \ []; cycle u = v @- s\ \ cycle (tl u @ [hd u]) = tl v @- s" - by (auto dest: arg_cong[of _ _ stl]) - -lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s" -proof (induct n arbitrary: u) - case (Suc n) thus ?case by (cases u) auto -qed auto - -lemma stake_cycle_le[simp]: - assumes "u \ []" "n < length u" - shows "stake n (cycle u) = take n u" -using min_absorb2[OF less_imp_le_nat[OF assms(2)]] - by (subst cycle_decomp[OF assms(1)], subst stake_append) auto - -lemma stake_cycle_eq[simp]: "u \ [] \ stake (length u) (cycle u) = u" - by (subst cycle_decomp) (auto simp: stake_shift) - -lemma sdrop_cycle_eq[simp]: "u \ [] \ sdrop (length u) (cycle u) = cycle u" - by (subst cycle_decomp) (auto simp: sdrop_shift) - -lemma stake_cycle_eq_mod_0[simp]: "\u \ []; n mod length u = 0\ \ - stake n (cycle u) = concat (replicate (n div length u) u)" - by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric]) - -lemma sdrop_cycle_eq_mod_0[simp]: "\u \ []; n mod length u = 0\ \ - sdrop n (cycle u) = cycle u" - by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric]) - -lemma stake_cycle: "u \ [] \ - stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u" - by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto - -lemma sdrop_cycle: "u \ [] \ sdrop n (cycle u) = cycle (rotate (n mod length u) u)" - by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric]) - - -subsection {* iterated application of a function *} - -primcorec siterate where - "shd (siterate f x) = x" -| "stl (siterate f x) = siterate f (f x)" - -lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]" - by (induct n arbitrary: s) auto - -lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x" - by (induct n arbitrary: x) (auto simp: funpow_swap1) - -lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)" - by (induct n arbitrary: x) (auto simp: funpow_swap1) - -lemma stake_siterate[simp]: "stake n (siterate f x) = map (\n. (f^^n) x) [0 ..< n]" - by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc) - -lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}" - by (auto simp: sset_range) - -lemma smap_siterate: "smap f (siterate f x) = siterate f (f x)" - by (coinduction arbitrary: x) auto - - -subsection {* stream repeating a single element *} - -abbreviation "sconst \ siterate id" - -lemma shift_replicate_sconst[simp]: "replicate n x @- sconst x = sconst x" - by (subst (3) stake_sdrop[symmetric]) (simp add: map_replicate_trivial) - -lemma sset_sconst[simp]: "sset (sconst x) = {x}" - by (simp add: sset_siterate) - -lemma sconst_alt: "s = sconst x \ sset s = {x}" -proof - assume "sset s = {x}" - then show "s = sconst x" - proof (coinduction arbitrary: s) - case Eq_stream - then have "shd s = x" "sset (stl s) \ {x}" by (case_tac [!] s) auto - then have "sset (stl s) = {x}" by (cases "stl s") auto - with `shd s = x` show ?case by auto - qed -qed simp - -lemma same_cycle: "sconst x = cycle [x]" - by coinduction auto - -lemma smap_sconst: "smap f (sconst x) = sconst (f x)" - by coinduction auto - -lemma sconst_streams: "x \ A \ sconst x \ streams A" - by (simp add: streams_iff_sset) - - -subsection {* stream of natural numbers *} - -abbreviation "fromN \ siterate Suc" - -abbreviation "nats \ fromN 0" - -lemma sset_fromN[simp]: "sset (fromN n) = {n ..}" - by (auto simp add: sset_siterate le_iff_add) - -lemma stream_smap_fromN: "s = smap (\j. let i = j - n in s !! i) (fromN n)" - by (coinduction arbitrary: s n) - (force simp: neq_Nil_conv Let_def snth.simps(2)[symmetric] Suc_diff_Suc - intro: stream.map_cong split: if_splits simp del: snth.simps(2)) - -lemma stream_smap_nats: "s = smap (snth s) nats" - using stream_smap_fromN[where n = 0] by simp - - -subsection {* flatten a stream of lists *} - -primcorec flat where - "shd (flat ws) = hd (shd ws)" -| "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)" - -lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)" - by (subst flat.ctr) simp - -lemma flat_Stream[simp]: "xs \ [] \ flat (xs ## ws) = xs @- flat ws" - by (induct xs) auto - -lemma flat_unfold: "shd ws \ [] \ flat ws = shd ws @- flat (stl ws)" - by (cases ws) auto - -lemma flat_snth: "\xs \ sset s. xs \ [] \ flat s !! n = (if n < length (shd s) then - shd s ! n else flat (stl s) !! (n - length (shd s)))" - by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less) - -lemma sset_flat[simp]: "\xs \ sset s. xs \ [] \ - sset (flat s) = (\xs \ sset s. set xs)" (is "?P \ ?L = ?R") -proof safe - fix x assume ?P "x : ?L" - then obtain m where "x = flat s !! m" by (metis image_iff sset_range) - with `?P` obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)" - proof (atomize_elim, induct m arbitrary: s rule: less_induct) - case (less y) - thus ?case - proof (cases "y < length (shd s)") - case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1)) - next - case False - hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth) - moreover - { from less(2) have *: "length (shd s) > 0" by (cases s) simp_all - with False have "y > 0" by (cases y) simp_all - with * have "y - length (shd s) < y" by simp - } - moreover have "\xs \ sset (stl s). xs \ []" using less(2) by (cases s) auto - ultimately have "\n m'. x = stl s !! n ! m' \ m' < length (stl s !! n)" by (intro less(1)) auto - thus ?thesis by (metis snth.simps(2)) - qed - qed - thus "x \ ?R" by (auto simp: sset_range dest!: nth_mem) -next - fix x xs assume "xs \ sset s" ?P "x \ set xs" thus "x \ ?L" - by (induct rule: sset_induct) - (metis UnI1 flat_unfold shift.simps(1) sset_shift, - metis UnI2 flat_unfold shd_sset stl_sset sset_shift) -qed - - -subsection {* merge a stream of streams *} - -definition smerge :: "'a stream stream \ 'a stream" where - "smerge ss = flat (smap (\n. map (\s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)" - -lemma stake_nth[simp]: "m < n \ stake n s ! m = s !! m" - by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2)) - -lemma snth_sset_smerge: "ss !! n !! m \ sset (smerge ss)" -proof (cases "n \ m") - case False thus ?thesis unfolding smerge_def - by (subst sset_flat) - (auto simp: stream.set_map in_set_conv_nth simp del: stake.simps - intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp]) -next - case True thus ?thesis unfolding smerge_def - by (subst sset_flat) - (auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps - intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp]) -qed - -lemma sset_smerge: "sset (smerge ss) = UNION (sset ss) sset" -proof safe - fix x assume "x \ sset (smerge ss)" - thus "x \ UNION (sset ss) sset" - unfolding smerge_def by (subst (asm) sset_flat) - (auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+) -next - fix s x assume "s \ sset ss" "x \ sset s" - thus "x \ sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range) -qed - - -subsection {* product of two streams *} - -definition sproduct :: "'a stream \ 'b stream \ ('a \ 'b) stream" where - "sproduct s1 s2 = smerge (smap (\x. smap (Pair x) s2) s1)" - -lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \ sset s2" - unfolding sproduct_def sset_smerge by (auto simp: stream.set_map) - - -subsection {* interleave two streams *} - -primcorec sinterleave where - "shd (sinterleave s1 s2) = shd s1" -| "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)" - -lemma sinterleave_code[code]: - "sinterleave (x ## s1) s2 = x ## sinterleave s2 s1" - by (subst sinterleave.ctr) simp - -lemma sinterleave_snth[simp]: - "even n \ sinterleave s1 s2 !! n = s1 !! (n div 2)" - "odd n \ sinterleave s1 s2 !! n = s2 !! (n div 2)" - by (induct n arbitrary: s1 s2) - (auto dest: even_nat_Suc_div_2 odd_nat_plus_one_div_two[folded nat_2]) - -lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \ sset s2" -proof (intro equalityI subsetI) - fix x assume "x \ sset (sinterleave s1 s2)" - then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast - thus "x \ sset s1 \ sset s2" by (cases "even n") auto -next - fix x assume "x \ sset s1 \ sset s2" - thus "x \ sset (sinterleave s1 s2)" - proof - assume "x \ sset s1" - then obtain n where "x = s1 !! n" unfolding sset_range by blast - hence "sinterleave s1 s2 !! (2 * n) = x" by simp - thus ?thesis unfolding sset_range by blast - next - assume "x \ sset s2" - then obtain n where "x = s2 !! n" unfolding sset_range by blast - hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp - thus ?thesis unfolding sset_range by blast - qed -qed - - -subsection {* zip *} - -primcorec szip where - "shd (szip s1 s2) = (shd s1, shd s2)" -| "stl (szip s1 s2) = szip (stl s1) (stl s2)" - -lemma szip_unfold[code]: "szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)" - by (subst szip.ctr) simp - -lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)" - by (induct n arbitrary: s1 s2) auto - -lemma stake_szip[simp]: - "stake n (szip s1 s2) = zip (stake n s1) (stake n s2)" - by (induct n arbitrary: s1 s2) auto - -lemma sdrop_szip[simp]: "sdrop n (szip s1 s2) = szip (sdrop n s1) (sdrop n s2)" - by (induct n arbitrary: s1 s2) auto - -lemma smap_szip_fst: - "smap (\x. f (fst x)) (szip s1 s2) = smap f s1" - by (coinduction arbitrary: s1 s2) auto - -lemma smap_szip_snd: - "smap (\x. g (snd x)) (szip s1 s2) = smap g s2" - by (coinduction arbitrary: s1 s2) auto - - -subsection {* zip via function *} - -primcorec smap2 where - "shd (smap2 f s1 s2) = f (shd s1) (shd s2)" -| "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)" - -lemma smap2_unfold[code]: - "smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)" - by (subst smap2.ctr) simp - -lemma smap2_szip: - "smap2 f s1 s2 = smap (split f) (szip s1 s2)" - by (coinduction arbitrary: s1 s2) auto - -lemma smap_smap2[simp]: - "smap f (smap2 g s1 s2) = smap2 (\x y. f (g x y)) s1 s2" - unfolding smap2_szip stream.map_comp o_def split_def .. - -lemma smap2_alt: - "(smap2 f s1 s2 = s) = (\n. f (s1 !! n) (s2 !! n) = s !! n)" - unfolding smap2_szip smap_alt by auto - -lemma snth_smap2[simp]: - "smap2 f s1 s2 !! n = f (s1 !! n) (s2 !! n)" - by (induct n arbitrary: s1 s2) auto - -lemma stake_smap2[simp]: - "stake n (smap2 f s1 s2) = map (split f) (zip (stake n s1) (stake n s2))" - by (induct n arbitrary: s1 s2) auto - -lemma sdrop_smap2[simp]: - "sdrop n (smap2 f s1 s2) = smap2 f (sdrop n s1) (sdrop n s2)" - by (induct n arbitrary: s1 s2) auto - -end diff -r 9c66f7c541fb -r 1f90ea1b4010 src/HOL/Datatype_Examples/Stream_Processor.thy --- a/src/HOL/Datatype_Examples/Stream_Processor.thy Tue Oct 07 10:34:24 2014 +0200 +++ b/src/HOL/Datatype_Examples/Stream_Processor.thy Tue Oct 07 10:48:29 2014 +0200 @@ -9,7 +9,7 @@ header {* Stream Processors---A Syntactic Representation of Continuous Functions on Streams *} theory Stream_Processor -imports Stream "~~/src/HOL/Library/BNF_Axiomatization" +imports "~~/src/HOL/Library/Stream" "~~/src/HOL/Library/BNF_Axiomatization" begin section {* Continuous Functions on Streams *} diff -r 9c66f7c541fb -r 1f90ea1b4010 src/HOL/Library/Library.thy --- a/src/HOL/Library/Library.thy Tue Oct 07 10:34:24 2014 +0200 +++ b/src/HOL/Library/Library.thy Tue Oct 07 10:48:29 2014 +0200 @@ -65,6 +65,7 @@ Saturated Set_Algebras State_Monad + Stream Sublist Sum_of_Squares Transitive_Closure_Table diff -r 9c66f7c541fb -r 1f90ea1b4010 src/HOL/Library/Stream.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Stream.thy Tue Oct 07 10:48:29 2014 +0200 @@ -0,0 +1,582 @@ +(* Title: HOL/Library/Stream.thy + Author: Dmitriy Traytel, TU Muenchen + Author: Andrei Popescu, TU Muenchen + Copyright 2012, 2013 + +Infinite streams. +*) + +header {* Infinite Streams *} + +theory Stream +imports "~~/src/HOL/Library/Nat_Bijection" +begin + +codatatype (sset: 'a) stream = + SCons (shd: 'a) (stl: "'a stream") (infixr "##" 65) +for + map: smap + rel: stream_all2 + +(*for code generation only*) +definition smember :: "'a \ 'a stream \ bool" where + [code_abbrev]: "smember x s \ x \ sset s" + +lemma smember_code[code, simp]: "smember x (y ## s) = (if x = y then True else smember x s)" + unfolding smember_def by auto + +hide_const (open) smember + +lemmas smap_simps[simp] = stream.map_sel +lemmas shd_sset = stream.set_sel(1) +lemmas stl_sset = stream.set_sel(2) + +theorem sset_induct[consumes 1, case_names shd stl, induct set: sset]: + assumes "y \ sset s" and "\s. P (shd s) s" and "\s y. \y \ sset (stl s); P y (stl s)\ \ P y s" + shows "P y s" +using assms by induct (metis stream.sel(1), auto) + + +subsection {* prepend list to stream *} + +primrec shift :: "'a list \ 'a stream \ 'a stream" (infixr "@-" 65) where + "shift [] s = s" +| "shift (x # xs) s = x ## shift xs s" + +lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s" + by (induct xs) auto + +lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s" + by (induct xs) auto + +lemma shift_simps[simp]: + "shd (xs @- s) = (if xs = [] then shd s else hd xs)" + "stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)" + by (induct xs) auto + +lemma sset_shift[simp]: "sset (xs @- s) = set xs \ sset s" + by (induct xs) auto + +lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \ s1 = s2" + by (induct xs) auto + + +subsection {* set of streams with elements in some fixed set *} + +coinductive_set + streams :: "'a set \ 'a stream set" + for A :: "'a set" +where + Stream[intro!, simp, no_atp]: "\a \ A; s \ streams A\ \ a ## s \ streams A" + +lemma shift_streams: "\w \ lists A; s \ streams A\ \ w @- s \ streams A" + by (induct w) auto + +lemma streams_Stream: "x ## s \ streams A \ x \ A \ s \ streams A" + by (auto elim: streams.cases) + +lemma streams_stl: "s \ streams A \ stl s \ streams A" + by (cases s) (auto simp: streams_Stream) + +lemma streams_shd: "s \ streams A \ shd s \ A" + by (cases s) (auto simp: streams_Stream) + +lemma sset_streams: + assumes "sset s \ A" + shows "s \ streams A" +using assms proof (coinduction arbitrary: s) + case streams then show ?case by (cases s) simp +qed + +lemma streams_sset: + assumes "s \ streams A" + shows "sset s \ A" +proof + fix x assume "x \ sset s" from this `s \ streams A` show "x \ A" + by (induct s) (auto intro: streams_shd streams_stl) +qed + +lemma streams_iff_sset: "s \ streams A \ sset s \ A" + by (metis sset_streams streams_sset) + +lemma streams_mono: "s \ streams A \ A \ B \ s \ streams B" + unfolding streams_iff_sset by auto + +lemma smap_streams: "s \ streams A \ (\x. x \ A \ f x \ B) \ smap f s \ streams B" + unfolding streams_iff_sset stream.set_map by auto + +lemma streams_empty: "streams {} = {}" + by (auto elim: streams.cases) + +lemma streams_UNIV[simp]: "streams UNIV = UNIV" + by (auto simp: streams_iff_sset) + +subsection {* nth, take, drop for streams *} + +primrec snth :: "'a stream \ nat \ 'a" (infixl "!!" 100) where + "s !! 0 = shd s" +| "s !! Suc n = stl s !! n" + +lemma snth_smap[simp]: "smap f s !! n = f (s !! n)" + by (induct n arbitrary: s) auto + +lemma shift_snth_less[simp]: "p < length xs \ (xs @- s) !! p = xs ! p" + by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl) + +lemma shift_snth_ge[simp]: "p \ length xs \ (xs @- s) !! p = s !! (p - length xs)" + by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred) + +lemma shift_snth: "(xs @- s) !! n = (if n < length xs then xs ! n else s !! (n - length xs))" + by auto + +lemma snth_sset[simp]: "s !! n \ sset s" + by (induct n arbitrary: s) (auto intro: shd_sset stl_sset) + +lemma sset_range: "sset s = range (snth s)" +proof (intro equalityI subsetI) + fix x assume "x \ sset s" + thus "x \ range (snth s)" + proof (induct s) + case (stl s x) + then obtain n where "x = stl s !! n" by auto + thus ?case by (auto intro: range_eqI[of _ _ "Suc n"]) + qed (auto intro: range_eqI[of _ _ 0]) +qed auto + +primrec stake :: "nat \ 'a stream \ 'a list" where + "stake 0 s = []" +| "stake (Suc n) s = shd s # stake n (stl s)" + +lemma length_stake[simp]: "length (stake n s) = n" + by (induct n arbitrary: s) auto + +lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)" + by (induct n arbitrary: s) auto + +lemma take_stake: "take n (stake m s) = stake (min n m) s" +proof (induct m arbitrary: s n) + case (Suc m) thus ?case by (cases n) auto +qed simp + +primrec sdrop :: "nat \ 'a stream \ 'a stream" where + "sdrop 0 s = s" +| "sdrop (Suc n) s = sdrop n (stl s)" + +lemma sdrop_simps[simp]: + "shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s" + by (induct n arbitrary: s) auto + +lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)" + by (induct n arbitrary: s) auto + +lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)" + by (induct n) auto + +lemma drop_stake: "drop n (stake m s) = stake (m - n) (sdrop n s)" +proof (induct m arbitrary: s n) + case (Suc m) thus ?case by (cases n) auto +qed simp + +lemma stake_sdrop: "stake n s @- sdrop n s = s" + by (induct n arbitrary: s) auto + +lemma id_stake_snth_sdrop: + "s = stake i s @- s !! i ## sdrop (Suc i) s" + by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse) + +lemma smap_alt: "smap f s = s' \ (\n. f (s !! n) = s' !! n)" (is "?L = ?R") +proof + assume ?R + then have "\n. smap f (sdrop n s) = sdrop n s'" + by coinduction (auto intro: exI[of _ 0] simp del: sdrop.simps(2)) + then show ?L using sdrop.simps(1) by metis +qed auto + +lemma stake_invert_Nil[iff]: "stake n s = [] \ n = 0" + by (induct n) auto + +lemma sdrop_shift: "sdrop i (w @- s) = drop i w @- sdrop (i - length w) s" + by (induct i arbitrary: w s) (auto simp: drop_tl drop_Suc neq_Nil_conv) + +lemma stake_shift: "stake i (w @- s) = take i w @ stake (i - length w) s" + by (induct i arbitrary: w s) (auto simp: neq_Nil_conv) + +lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s" + by (induct m arbitrary: s) auto + +lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s" + by (induct m arbitrary: s) auto + +lemma sdrop_snth: "sdrop n s !! m = s !! (n + m)" + by (induct n arbitrary: m s) auto + +partial_function (tailrec) sdrop_while :: "('a \ bool) \ 'a stream \ 'a stream" where + "sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)" + +lemma sdrop_while_SCons[code]: + "sdrop_while P (a ## s) = (if P a then sdrop_while P s else a ## s)" + by (subst sdrop_while.simps) simp + +lemma sdrop_while_sdrop_LEAST: + assumes "\n. P (s !! n)" + shows "sdrop_while (Not o P) s = sdrop (LEAST n. P (s !! n)) s" +proof - + from assms obtain m where "P (s !! m)" "\n. P (s !! n) \ m \ n" + and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le) + thus ?thesis unfolding * + proof (induct m arbitrary: s) + case (Suc m) + hence "sdrop_while (Not \ P) (stl s) = sdrop m (stl s)" + by (metis (full_types) not_less_eq_eq snth.simps(2)) + moreover from Suc(3) have "\ (P (s !! 0))" by blast + ultimately show ?case by (subst sdrop_while.simps) simp + qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1)) +qed + +primcorec sfilter where + "shd (sfilter P s) = shd (sdrop_while (Not o P) s)" +| "stl (sfilter P s) = sfilter P (stl (sdrop_while (Not o P) s))" + +lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)" +proof (cases "P x") + case True thus ?thesis by (subst sfilter.ctr) (simp add: sdrop_while_SCons) +next + case False thus ?thesis by (subst (1 2) sfilter.ctr) (simp add: sdrop_while_SCons) +qed + + +subsection {* unary predicates lifted to streams *} + +definition "stream_all P s = (\p. P (s !! p))" + +lemma stream_all_iff[iff]: "stream_all P s \ Ball (sset s) P" + unfolding stream_all_def sset_range by auto + +lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \ stream_all P s)" + unfolding stream_all_iff list_all_iff by auto + +lemma stream_all_Stream: "stream_all P (x ## X) \ P x \ stream_all P X" + by simp + + +subsection {* recurring stream out of a list *} + +primcorec cycle :: "'a list \ 'a stream" where + "shd (cycle xs) = hd xs" +| "stl (cycle xs) = cycle (tl xs @ [hd xs])" + +lemma cycle_decomp: "u \ [] \ cycle u = u @- cycle u" +proof (coinduction arbitrary: u) + case Eq_stream then show ?case using stream.collapse[of "cycle u"] + by (auto intro!: exI[of _ "tl u @ [hd u]"]) +qed + +lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])" + by (subst cycle.ctr) simp + +lemma cycle_rotated: "\v \ []; cycle u = v @- s\ \ cycle (tl u @ [hd u]) = tl v @- s" + by (auto dest: arg_cong[of _ _ stl]) + +lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s" +proof (induct n arbitrary: u) + case (Suc n) thus ?case by (cases u) auto +qed auto + +lemma stake_cycle_le[simp]: + assumes "u \ []" "n < length u" + shows "stake n (cycle u) = take n u" +using min_absorb2[OF less_imp_le_nat[OF assms(2)]] + by (subst cycle_decomp[OF assms(1)], subst stake_append) auto + +lemma stake_cycle_eq[simp]: "u \ [] \ stake (length u) (cycle u) = u" + by (subst cycle_decomp) (auto simp: stake_shift) + +lemma sdrop_cycle_eq[simp]: "u \ [] \ sdrop (length u) (cycle u) = cycle u" + by (subst cycle_decomp) (auto simp: sdrop_shift) + +lemma stake_cycle_eq_mod_0[simp]: "\u \ []; n mod length u = 0\ \ + stake n (cycle u) = concat (replicate (n div length u) u)" + by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric]) + +lemma sdrop_cycle_eq_mod_0[simp]: "\u \ []; n mod length u = 0\ \ + sdrop n (cycle u) = cycle u" + by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric]) + +lemma stake_cycle: "u \ [] \ + stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u" + by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto + +lemma sdrop_cycle: "u \ [] \ sdrop n (cycle u) = cycle (rotate (n mod length u) u)" + by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric]) + + +subsection {* iterated application of a function *} + +primcorec siterate where + "shd (siterate f x) = x" +| "stl (siterate f x) = siterate f (f x)" + +lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]" + by (induct n arbitrary: s) auto + +lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x" + by (induct n arbitrary: x) (auto simp: funpow_swap1) + +lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)" + by (induct n arbitrary: x) (auto simp: funpow_swap1) + +lemma stake_siterate[simp]: "stake n (siterate f x) = map (\n. (f^^n) x) [0 ..< n]" + by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc) + +lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}" + by (auto simp: sset_range) + +lemma smap_siterate: "smap f (siterate f x) = siterate f (f x)" + by (coinduction arbitrary: x) auto + + +subsection {* stream repeating a single element *} + +abbreviation "sconst \ siterate id" + +lemma shift_replicate_sconst[simp]: "replicate n x @- sconst x = sconst x" + by (subst (3) stake_sdrop[symmetric]) (simp add: map_replicate_trivial) + +lemma sset_sconst[simp]: "sset (sconst x) = {x}" + by (simp add: sset_siterate) + +lemma sconst_alt: "s = sconst x \ sset s = {x}" +proof + assume "sset s = {x}" + then show "s = sconst x" + proof (coinduction arbitrary: s) + case Eq_stream + then have "shd s = x" "sset (stl s) \ {x}" by (case_tac [!] s) auto + then have "sset (stl s) = {x}" by (cases "stl s") auto + with `shd s = x` show ?case by auto + qed +qed simp + +lemma same_cycle: "sconst x = cycle [x]" + by coinduction auto + +lemma smap_sconst: "smap f (sconst x) = sconst (f x)" + by coinduction auto + +lemma sconst_streams: "x \ A \ sconst x \ streams A" + by (simp add: streams_iff_sset) + + +subsection {* stream of natural numbers *} + +abbreviation "fromN \ siterate Suc" + +abbreviation "nats \ fromN 0" + +lemma sset_fromN[simp]: "sset (fromN n) = {n ..}" + by (auto simp add: sset_siterate le_iff_add) + +lemma stream_smap_fromN: "s = smap (\j. let i = j - n in s !! i) (fromN n)" + by (coinduction arbitrary: s n) + (force simp: neq_Nil_conv Let_def snth.simps(2)[symmetric] Suc_diff_Suc + intro: stream.map_cong split: if_splits simp del: snth.simps(2)) + +lemma stream_smap_nats: "s = smap (snth s) nats" + using stream_smap_fromN[where n = 0] by simp + + +subsection {* flatten a stream of lists *} + +primcorec flat where + "shd (flat ws) = hd (shd ws)" +| "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)" + +lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)" + by (subst flat.ctr) simp + +lemma flat_Stream[simp]: "xs \ [] \ flat (xs ## ws) = xs @- flat ws" + by (induct xs) auto + +lemma flat_unfold: "shd ws \ [] \ flat ws = shd ws @- flat (stl ws)" + by (cases ws) auto + +lemma flat_snth: "\xs \ sset s. xs \ [] \ flat s !! n = (if n < length (shd s) then + shd s ! n else flat (stl s) !! (n - length (shd s)))" + by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less) + +lemma sset_flat[simp]: "\xs \ sset s. xs \ [] \ + sset (flat s) = (\xs \ sset s. set xs)" (is "?P \ ?L = ?R") +proof safe + fix x assume ?P "x : ?L" + then obtain m where "x = flat s !! m" by (metis image_iff sset_range) + with `?P` obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)" + proof (atomize_elim, induct m arbitrary: s rule: less_induct) + case (less y) + thus ?case + proof (cases "y < length (shd s)") + case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1)) + next + case False + hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth) + moreover + { from less(2) have *: "length (shd s) > 0" by (cases s) simp_all + with False have "y > 0" by (cases y) simp_all + with * have "y - length (shd s) < y" by simp + } + moreover have "\xs \ sset (stl s). xs \ []" using less(2) by (cases s) auto + ultimately have "\n m'. x = stl s !! n ! m' \ m' < length (stl s !! n)" by (intro less(1)) auto + thus ?thesis by (metis snth.simps(2)) + qed + qed + thus "x \ ?R" by (auto simp: sset_range dest!: nth_mem) +next + fix x xs assume "xs \ sset s" ?P "x \ set xs" thus "x \ ?L" + by (induct rule: sset_induct) + (metis UnI1 flat_unfold shift.simps(1) sset_shift, + metis UnI2 flat_unfold shd_sset stl_sset sset_shift) +qed + + +subsection {* merge a stream of streams *} + +definition smerge :: "'a stream stream \ 'a stream" where + "smerge ss = flat (smap (\n. map (\s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)" + +lemma stake_nth[simp]: "m < n \ stake n s ! m = s !! m" + by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2)) + +lemma snth_sset_smerge: "ss !! n !! m \ sset (smerge ss)" +proof (cases "n \ m") + case False thus ?thesis unfolding smerge_def + by (subst sset_flat) + (auto simp: stream.set_map in_set_conv_nth simp del: stake.simps + intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp]) +next + case True thus ?thesis unfolding smerge_def + by (subst sset_flat) + (auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps + intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp]) +qed + +lemma sset_smerge: "sset (smerge ss) = UNION (sset ss) sset" +proof safe + fix x assume "x \ sset (smerge ss)" + thus "x \ UNION (sset ss) sset" + unfolding smerge_def by (subst (asm) sset_flat) + (auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+) +next + fix s x assume "s \ sset ss" "x \ sset s" + thus "x \ sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range) +qed + + +subsection {* product of two streams *} + +definition sproduct :: "'a stream \ 'b stream \ ('a \ 'b) stream" where + "sproduct s1 s2 = smerge (smap (\x. smap (Pair x) s2) s1)" + +lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \ sset s2" + unfolding sproduct_def sset_smerge by (auto simp: stream.set_map) + + +subsection {* interleave two streams *} + +primcorec sinterleave where + "shd (sinterleave s1 s2) = shd s1" +| "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)" + +lemma sinterleave_code[code]: + "sinterleave (x ## s1) s2 = x ## sinterleave s2 s1" + by (subst sinterleave.ctr) simp + +lemma sinterleave_snth[simp]: + "even n \ sinterleave s1 s2 !! n = s1 !! (n div 2)" + "odd n \ sinterleave s1 s2 !! n = s2 !! (n div 2)" + by (induct n arbitrary: s1 s2) + (auto dest: even_nat_Suc_div_2 odd_nat_plus_one_div_two[folded nat_2]) + +lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \ sset s2" +proof (intro equalityI subsetI) + fix x assume "x \ sset (sinterleave s1 s2)" + then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast + thus "x \ sset s1 \ sset s2" by (cases "even n") auto +next + fix x assume "x \ sset s1 \ sset s2" + thus "x \ sset (sinterleave s1 s2)" + proof + assume "x \ sset s1" + then obtain n where "x = s1 !! n" unfolding sset_range by blast + hence "sinterleave s1 s2 !! (2 * n) = x" by simp + thus ?thesis unfolding sset_range by blast + next + assume "x \ sset s2" + then obtain n where "x = s2 !! n" unfolding sset_range by blast + hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp + thus ?thesis unfolding sset_range by blast + qed +qed + + +subsection {* zip *} + +primcorec szip where + "shd (szip s1 s2) = (shd s1, shd s2)" +| "stl (szip s1 s2) = szip (stl s1) (stl s2)" + +lemma szip_unfold[code]: "szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)" + by (subst szip.ctr) simp + +lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)" + by (induct n arbitrary: s1 s2) auto + +lemma stake_szip[simp]: + "stake n (szip s1 s2) = zip (stake n s1) (stake n s2)" + by (induct n arbitrary: s1 s2) auto + +lemma sdrop_szip[simp]: "sdrop n (szip s1 s2) = szip (sdrop n s1) (sdrop n s2)" + by (induct n arbitrary: s1 s2) auto + +lemma smap_szip_fst: + "smap (\x. f (fst x)) (szip s1 s2) = smap f s1" + by (coinduction arbitrary: s1 s2) auto + +lemma smap_szip_snd: + "smap (\x. g (snd x)) (szip s1 s2) = smap g s2" + by (coinduction arbitrary: s1 s2) auto + + +subsection {* zip via function *} + +primcorec smap2 where + "shd (smap2 f s1 s2) = f (shd s1) (shd s2)" +| "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)" + +lemma smap2_unfold[code]: + "smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)" + by (subst smap2.ctr) simp + +lemma smap2_szip: + "smap2 f s1 s2 = smap (split f) (szip s1 s2)" + by (coinduction arbitrary: s1 s2) auto + +lemma smap_smap2[simp]: + "smap f (smap2 g s1 s2) = smap2 (\x y. f (g x y)) s1 s2" + unfolding smap2_szip stream.map_comp o_def split_def .. + +lemma smap2_alt: + "(smap2 f s1 s2 = s) = (\n. f (s1 !! n) (s2 !! n) = s !! n)" + unfolding smap2_szip smap_alt by auto + +lemma snth_smap2[simp]: + "smap2 f s1 s2 !! n = f (s1 !! n) (s2 !! n)" + by (induct n arbitrary: s1 s2) auto + +lemma stake_smap2[simp]: + "stake n (smap2 f s1 s2) = map (split f) (zip (stake n s1) (stake n s2))" + by (induct n arbitrary: s1 s2) auto + +lemma sdrop_smap2[simp]: + "sdrop n (smap2 f s1 s2) = smap2 f (sdrop n s1) (sdrop n s2)" + by (induct n arbitrary: s1 s2) auto + +end diff -r 9c66f7c541fb -r 1f90ea1b4010 src/HOL/Probability/Stream_Space.thy --- a/src/HOL/Probability/Stream_Space.thy Tue Oct 07 10:34:24 2014 +0200 +++ b/src/HOL/Probability/Stream_Space.thy Tue Oct 07 10:48:29 2014 +0200 @@ -4,7 +4,7 @@ theory Stream_Space imports Infinite_Product_Measure - "~~/src/HOL/Datatype_Examples/Stream" + "~~/src/HOL/Library/Stream" begin lemma stream_eq_Stream_iff: "s = x ## t \ (shd s = x \ stl s = t)"