# HG changeset patch # User nipkow # Date 1513879758 -3600 # Node ID 1fe0ec14a90ac2b186c3738eb88e860d667cf7f4 # Parent d2be0579a2c8723340728d0662b5aecc3042fdca tuned op's diff -r d2be0579a2c8 -r 1fe0ec14a90a src/HOL/Analysis/Cauchy_Integral_Theorem.thy --- a/src/HOL/Analysis/Cauchy_Integral_Theorem.thy Thu Dec 21 18:11:24 2017 +0100 +++ b/src/HOL/Analysis/Cauchy_Integral_Theorem.thy Thu Dec 21 19:09:18 2017 +0100 @@ -4149,11 +4149,11 @@ assumes \: "path \" and loop: "pathfinish \ = pathstart \" shows "open {z. z \ path_image \ \ winding_number \ z = k}" proof - - have op: "open (- path_image \)" + have opn: "open (- path_image \)" by (simp add: closed_path_image \ open_Compl) { fix z assume z: "z \ path_image \" and k: "k = winding_number \ z" obtain e where e: "e>0" "ball z e \ - path_image \" - using open_contains_ball [of "- path_image \"] op z + using open_contains_ball [of "- path_image \"] opn z by blast have "\e>0. \y. dist y z < e \ y \ path_image \ \ winding_number \ y = winding_number \ z" apply (rule_tac x=e in exI) diff -r d2be0579a2c8 -r 1fe0ec14a90a src/HOL/Analysis/Connected.thy --- a/src/HOL/Analysis/Connected.thy Thu Dec 21 18:11:24 2017 +0100 +++ b/src/HOL/Analysis/Connected.thy Thu Dec 21 19:09:18 2017 +0100 @@ -2266,7 +2266,7 @@ J. C. Burkill and H. Burkill. A Second Course in Mathematical Analysis (CUP, 2002)\ lemma Heine_Borel_lemma: - assumes "compact S" and Ssub: "S \ \\" and op: "\G. G \ \ \ open G" + assumes "compact S" and Ssub: "S \ \\" and opn: "\G. G \ \ \ open G" obtains e where "0 < e" "\x. x \ S \ \G \ \. ball x e \ G" proof - have False if neg: "\e. 0 < e \ \x \ S. \G \ \. \ ball x e \ G" @@ -2280,7 +2280,7 @@ then obtain G where "l \ G" "G \ \" using Ssub by auto then obtain e where "0 < e" and e: "\z. dist z l < e \ z \ G" - using op open_dist by blast + using opn open_dist by blast obtain N1 where N1: "\n. n \ N1 \ dist (f (r n)) l < e/2" using to_l apply (simp add: lim_sequentially) using \0 < e\ half_gt_zero that by blast @@ -4566,7 +4566,7 @@ proof - obtain \ :: "'a set set" where "countable \" - and op: "\C. C \ \ \ open C" + and opn: "\C. C \ \ \ open C" and Un: "\S. open S \ \U. U \ \ \ S = \U" using univ_second_countable by blast have *: "infinite (range (\n. ball (0::'a) (inverse(Suc n))))" @@ -4593,7 +4593,7 @@ done show ?thesis apply (rule that [OF \inj f\ _ *]) - apply (auto simp: \\ = range f\ op) + apply (auto simp: \\ = range f\ opn) done qed diff -r d2be0579a2c8 -r 1fe0ec14a90a src/HOL/Analysis/Path_Connected.thy --- a/src/HOL/Analysis/Path_Connected.thy Thu Dec 21 18:11:24 2017 +0100 +++ b/src/HOL/Analysis/Path_Connected.thy Thu Dec 21 19:09:18 2017 +0100 @@ -8262,10 +8262,10 @@ by (meson Topological_Spaces.connected_continuous_image \connected S\ homeomorphism_cont1 homeomorphism_of_subsets homhj hull_subset top_greatest) have hUS: "h ` U \ h ` S" by (meson homeomorphism_imp_open_map homeomorphism_of_subsets homhj hull_subset opeS opeU open_UNIV openin_open_eq) - have op: "openin (subtopology euclidean (affine hull S)) U \ open (h ` U)" for U + have opn: "openin (subtopology euclidean (affine hull S)) U \ open (h ` U)" for U using homeomorphism_imp_open_map [OF homhj] by simp have "open (h ` U)" "open (h ` S)" - by (auto intro: opeS opeU openin_trans op) + by (auto intro: opeS opeU openin_trans opn) then obtain f g where hom: "homeomorphism (h ` T) (h ` T) f g" and f: "\x. x \ h ` K \ f x \ h ` U" and sub: "{x. \ (f x = x \ g x = x)} \ h ` S"