# HG changeset patch # User wenzelm # Date 1463248783 -7200 # Node ID 201480e65b7d2a717bdb36d28c2f54c6a063051b # Parent 056ea294c256a7d8b8d702a356736b4c5eb5fe93 tuned; diff -r 056ea294c256 -r 201480e65b7d src/HOL/Isar_Examples/Fibonacci.thy --- a/src/HOL/Isar_Examples/Fibonacci.thy Sat May 14 19:49:10 2016 +0200 +++ b/src/HOL/Isar_Examples/Fibonacci.thy Sat May 14 19:59:43 2016 +0200 @@ -27,7 +27,8 @@ subsection \Fibonacci numbers\ -fun fib :: "nat \ nat" where +fun fib :: "nat \ nat" +where "fib 0 = 0" | "fib (Suc 0) = 1" | "fib (Suc (Suc x)) = fib x + fib (Suc x)" @@ -38,9 +39,8 @@ text \Alternative induction rule.\ -theorem fib_induct: - fixes n :: nat - shows "P 0 \ P 1 \ (\n. P (n + 1) \ P n \ P (n + 2)) \ P n" +theorem fib_induct: "P 0 \ P 1 \ (\n. P (n + 1) \ P n \ P (n + 2)) \ P n" + for n :: nat by (induct rule: fib.induct) simp_all @@ -48,8 +48,7 @@ text \A few laws taken from @{cite "Concrete-Math"}.\ -lemma fib_add: - "fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n" +lemma fib_add: "fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n" (is "?P n") \ \see @{cite \page 280\ "Concrete-Math"}\ proof (induct n rule: fib_induct) @@ -58,19 +57,16 @@ fix n have "fib (n + 2 + k + 1) = fib (n + k + 1) + fib (n + 1 + k + 1)" by simp - also assume "fib (n + k + 1) - = fib (k + 1) * fib (n + 1) + fib k * fib n" - (is " _ = ?R1") - also assume "fib (n + 1 + k + 1) - = fib (k + 1) * fib (n + 1 + 1) + fib k * fib (n + 1)" - (is " _ = ?R2") - also have "?R1 + ?R2 - = fib (k + 1) * fib (n + 2 + 1) + fib k * fib (n + 2)" + also assume "fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n" (is " _ = ?R1") + also assume "fib (n + 1 + k + 1) = fib (k + 1) * fib (n + 1 + 1) + fib k * fib (n + 1)" + (is " _ = ?R2") + also have "?R1 + ?R2 = fib (k + 1) * fib (n + 2 + 1) + fib k * fib (n + 2)" by (simp add: add_mult_distrib2) finally show "?P (n + 2)" . qed -lemma gcd_fib_Suc_eq_1: "gcd (fib n) (fib (n + 1)) = 1" (is "?P n") +lemma gcd_fib_Suc_eq_1: "gcd (fib n) (fib (n + 1)) = 1" + (is "?P n") proof (induct n rule: fib_induct) show "?P 0" by simp show "?P 1" by simp @@ -105,8 +101,7 @@ case (Suc k) then have "gcd (fib m) (fib (n + m)) = gcd (fib (n + k + 1)) (fib (k + 1))" by (simp add: gcd.commute) - also have "fib (n + k + 1) - = fib (k + 1) * fib (n + 1) + fib k * fib n" + also have "fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n" by (rule fib_add) also have "gcd \ (fib (k + 1)) = gcd (fib k * fib n) (fib (k + 1))" by (simp add: gcd_mult_add) @@ -117,9 +112,7 @@ finally show ?thesis . qed -lemma gcd_fib_diff: - assumes "m \ n" - shows "gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)" +lemma gcd_fib_diff: "gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)" if "m \ n" proof - have "gcd (fib m) (fib (n - m)) = gcd (fib m) (fib (n - m + m))" by (simp add: gcd_fib_add) @@ -128,11 +121,9 @@ finally show ?thesis . qed -lemma gcd_fib_mod: - assumes "0 < m" - shows "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" +lemma gcd_fib_mod: "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" if "0 < m" proof (induct n rule: nat_less_induct) - case (1 n) note hyp = this + case hyp: (1 n) show ?case proof - have "n mod m = (if n < m then n else (n - m) mod m)" @@ -158,12 +149,12 @@ qed qed -theorem fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)" (is "?P m n") +theorem fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)" + (is "?P m n") proof (induct m n rule: gcd_nat_induct) - fix m + fix m n :: nat show "fib (gcd m 0) = gcd (fib m) (fib 0)" by simp - fix n :: nat assume n: "0 < n" then have "gcd m n = gcd n (m mod n)" by (simp add: gcd_non_0_nat)