# HG changeset patch # User lcp # Date 785718064 -3600 # Node ID 2054fa3c8d76c6d237e7cf13a5c08cd9b0fa3e54 # Parent 9dcce140bdfce7b284a7e2b374ae6fe8998faf6d tidied proofs, using fast_tac etc. as much as possible diff -r 9dcce140bdfc -r 2054fa3c8d76 src/ZF/Fixedpt.ML --- a/src/ZF/Fixedpt.ML Fri Nov 25 00:00:35 1994 +0100 +++ b/src/ZF/Fixedpt.ML Fri Nov 25 00:01:04 1994 +0100 @@ -54,10 +54,10 @@ (**** Proof of Knaster-Tarski Theorem for the lfp ****) (*lfp is contained in each pre-fixedpoint*) -val prems = goalw Fixedpt.thy [lfp_def] - "[| h(A) <= A; A<=D |] ==> lfp(D,h) <= A"; -by (rtac (PowI RS CollectI RS Inter_lower) 1); -by (REPEAT (resolve_tac prems 1)); +goalw Fixedpt.thy [lfp_def] + "!!A. [| h(A) <= A; A<=D |] ==> lfp(D,h) <= A"; +by (fast_tac ZF_cs 1); +(*or by (rtac (PowI RS CollectI RS Inter_lower) 1); *) val lfp_lowerbound = result(); (*Unfolding the defn of Inter dispenses with the premise bnd_mono(D,h)!*) diff -r 9dcce140bdfc -r 2054fa3c8d76 src/ZF/QPair.ML --- a/src/ZF/QPair.ML Fri Nov 25 00:00:35 1994 +0100 +++ b/src/ZF/QPair.ML Fri Nov 25 00:01:04 1994 +0100 @@ -1,9 +1,9 @@ -(* Title: ZF/qpair.ML +(* Title: ZF/QPair.ML ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1993 University of Cambridge -For qpair.thy. +For QPair.thy. Quine-inspired ordered pairs and disjoint sums, for non-well-founded data structures in ZF. Does not precisely follow Quine's construction. Thanks @@ -71,23 +71,26 @@ (fn [major]=> [ (rtac (major RS QSigmaE2) 1), (assume_tac 1) ]); +val qpair_cs = ZF_cs addSIs [QSigmaI] addSEs [QSigmaE2, QSigmaE, QPair_inject]; + + val QSigma_cong = prove_goalw QPair.thy [QSigma_def] "[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==> \ \ QSigma(A,B) = QSigma(A',B')" (fn prems=> [ (simp_tac (ZF_ss addsimps prems) 1) ]); val QSigma_empty1 = prove_goal QPair.thy "QSigma(0,B) = 0" - (fn _ => [ (fast_tac (ZF_cs addIs [equalityI] addSEs [QSigmaE]) 1) ]); + (fn _ => [ (fast_tac (qpair_cs addIs [equalityI]) 1) ]); val QSigma_empty2 = prove_goal QPair.thy "A <*> 0 = 0" - (fn _ => [ (fast_tac (ZF_cs addIs [equalityI] addSEs [QSigmaE]) 1) ]); + (fn _ => [ (fast_tac (qpair_cs addIs [equalityI]) 1) ]); (*** Eliminator - qsplit ***) val qsplit = prove_goalw QPair.thy [qsplit_def] "qsplit(%x y.c(x,y), ) = c(a,b)" - (fn _ => [ (fast_tac (ZF_cs addIs [the_equality] addEs [QPair_inject]) 1) ]); + (fn _ => [ (fast_tac (qpair_cs addIs [the_equality]) 1) ]); val qsplit_type = prove_goal QPair.thy "[| p:QSigma(A,B); \ @@ -99,8 +102,6 @@ (REPEAT (ares_tac (prems @ [qsplit RS ssubst]) 1)) ]); -val qpair_cs = ZF_cs addSIs [QSigmaI] addSEs [QSigmaE2, QSigmaE, QPair_inject]; - (*** qconverse ***) val qconverseI = prove_goalw QPair.thy [qconverse_def] @@ -208,8 +209,9 @@ val QInr_neq_QInl = standard (QInr_QInl_iff RS iffD1 RS FalseE); val qsum_cs = - qpair_cs addIs [QInlI,QInrI] addSEs [qsumE,QInl_neq_QInr,QInr_neq_QInl] - addSDs [QInl_inject,QInr_inject]; + qpair_cs addSIs [PartI, QInlI, QInrI] + addSEs [PartE, qsumE, QInl_neq_QInr, QInr_neq_QInl] + addSDs [QInl_inject, QInr_inject]; goal QPair.thy "!!A B. QInl(a): A<+>B ==> a: A"; by (fast_tac qsum_cs 1); @@ -261,21 +263,17 @@ (** Rules for the Part primitive **) goal QPair.thy "Part(A <+> B,QInl) = {QInl(x). x: A}"; -by (fast_tac (qsum_cs addIs [PartI,equalityI] addSEs [PartE]) 1); +by (fast_tac (qsum_cs addIs [equalityI]) 1); val Part_QInl = result(); goal QPair.thy "Part(A <+> B,QInr) = {QInr(y). y: B}"; -by (fast_tac (qsum_cs addIs [PartI,equalityI] addSEs [PartE]) 1); +by (fast_tac (qsum_cs addIs [equalityI]) 1); val Part_QInr = result(); goal QPair.thy "Part(A <+> B, %x.QInr(h(x))) = {QInr(y). y: Part(B,h)}"; -by (fast_tac (qsum_cs addIs [PartI,equalityI] addSEs [PartE]) 1); +by (fast_tac (qsum_cs addIs [equalityI]) 1); val Part_QInr2 = result(); goal QPair.thy "!!A B C. C <= A <+> B ==> Part(C,QInl) Un Part(C,QInr) = C"; -by (rtac equalityI 1); -by (rtac Un_least 1); -by (rtac Part_subset 1); -by (rtac Part_subset 1); -by (fast_tac (ZF_cs addIs [PartI] addSEs [qsumE]) 1); +by (fast_tac (qsum_cs addIs [equalityI]) 1); val Part_qsum_equality = result(); diff -r 9dcce140bdfc -r 2054fa3c8d76 src/ZF/Sum.ML --- a/src/ZF/Sum.ML Fri Nov 25 00:00:35 1994 +0100 +++ b/src/ZF/Sum.ML Fri Nov 25 00:01:04 1994 +0100 @@ -1,4 +1,4 @@ -(* Title: ZF/sum +(* Title: ZF/Sum ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1992 University of Cambridge @@ -8,6 +8,35 @@ open Sum; +(*** Rules for the Part primitive ***) + +goalw Sum.thy [Part_def] + "a : Part(A,h) <-> a:A & (EX y. a=h(y))"; +by (rtac separation 1); +val Part_iff = result(); + +goalw Sum.thy [Part_def] + "!!a b A h. [| a : A; a=h(b) |] ==> a : Part(A,h)"; +by (REPEAT (ares_tac [exI,CollectI] 1)); +val Part_eqI = result(); + +val PartI = refl RSN (2,Part_eqI); + +val major::prems = goalw Sum.thy [Part_def] + "[| a : Part(A,h); !!z. [| a : A; a=h(z) |] ==> P \ +\ |] ==> P"; +by (rtac (major RS CollectE) 1); +by (etac exE 1); +by (REPEAT (ares_tac prems 1)); +val PartE = result(); + +goalw Sum.thy [Part_def] "Part(A,h) <= A"; +by (rtac Collect_subset 1); +val Part_subset = result(); + + +(*** Rules for Disjoint Sums ***) + val sum_defs = [sum_def,Inl_def,Inr_def,case_def]; goalw Sum.thy (bool_def::sum_defs) "Sigma(bool,C) = C(0) + C(1)"; @@ -61,8 +90,9 @@ val Inl_neq_Inr = standard (Inl_Inr_iff RS iffD1 RS FalseE); val Inr_neq_Inl = standard (Inr_Inl_iff RS iffD1 RS FalseE); -val sum_cs = ZF_cs addSIs [InlI,InrI] addSEs [sumE,Inl_neq_Inr,Inr_neq_Inl] - addSDs [Inl_inject,Inr_inject]; +val sum_cs = ZF_cs addSIs [PartI, InlI, InrI] + addSEs [PartE, sumE, Inl_neq_Inr, Inr_neq_Inl] + addSDs [Inl_inject, Inr_inject]; val sum_ss = ZF_ss addsimps [InlI, InrI, Inl_iff, Inr_iff, Inl_Inr_iff, Inr_Inl_iff]; @@ -125,37 +155,23 @@ val expand_case = result(); -(** Rules for the Part primitive **) - -goalw Sum.thy [Part_def] - "!!a b A h. [| a : A; a=h(b) |] ==> a : Part(A,h)"; -by (REPEAT (ares_tac [exI,CollectI] 1)); -val Part_eqI = result(); - -val PartI = refl RSN (2,Part_eqI); - -val major::prems = goalw Sum.thy [Part_def] - "[| a : Part(A,h); !!z. [| a : A; a=h(z) |] ==> P \ -\ |] ==> P"; -by (rtac (major RS CollectE) 1); -by (etac exE 1); -by (REPEAT (ares_tac prems 1)); -val PartE = result(); - -goalw Sum.thy [Part_def] "Part(A,h) <= A"; -by (rtac Collect_subset 1); -val Part_subset = result(); - goal Sum.thy "!!A B h. A<=B ==> Part(A,h)<=Part(B,h)"; -by (fast_tac (ZF_cs addIs [PartI] addSEs [PartE]) 1); +by (fast_tac sum_cs 1); val Part_mono = result(); +goal Sum.thy "Part(Collect(A,P), h) = Collect(Part(A,h), P)"; +by (fast_tac (sum_cs addSIs [equalityI]) 1); +val Part_Collect = result(); + +val Part_CollectE = + Part_Collect RS equalityD1 RS subsetD RS CollectE |> standard; + goal Sum.thy "Part(A+B,Inl) = {Inl(x). x: A}"; -by (fast_tac (sum_cs addIs [PartI,equalityI] addSEs [PartE]) 1); +by (fast_tac (sum_cs addIs [equalityI]) 1); val Part_Inl = result(); goal Sum.thy "Part(A+B,Inr) = {Inr(y). y: B}"; -by (fast_tac (sum_cs addIs [PartI,equalityI] addSEs [PartE]) 1); +by (fast_tac (sum_cs addIs [equalityI]) 1); val Part_Inr = result(); goalw Sum.thy [Part_def] "!!a. a : Part(A,h) ==> a : A"; @@ -163,17 +179,13 @@ val PartD1 = result(); goal Sum.thy "Part(A,%x.x) = A"; -by (fast_tac (ZF_cs addIs [PartI,equalityI] addSEs [PartE]) 1); +by (fast_tac (sum_cs addIs [equalityI]) 1); val Part_id = result(); goal Sum.thy "Part(A+B, %x.Inr(h(x))) = {Inr(y). y: Part(B,h)}"; -by (fast_tac (sum_cs addIs [PartI,equalityI] addSEs [PartE]) 1); +by (fast_tac (sum_cs addIs [equalityI]) 1); val Part_Inr2 = result(); goal Sum.thy "!!A B C. C <= A+B ==> Part(C,Inl) Un Part(C,Inr) = C"; -by (rtac equalityI 1); -by (rtac Un_least 1); -by (rtac Part_subset 1); -by (rtac Part_subset 1); -by (fast_tac (ZF_cs addIs [PartI] addSEs [sumE]) 1); +by (fast_tac (sum_cs addIs [equalityI]) 1); val Part_sum_equality = result(); diff -r 9dcce140bdfc -r 2054fa3c8d76 src/ZF/mono.ML --- a/src/ZF/mono.ML Fri Nov 25 00:00:35 1994 +0100 +++ b/src/ZF/mono.ML Fri Nov 25 00:01:04 1994 +0100 @@ -82,7 +82,7 @@ goal QPair.thy "!!A B C D. [| A<=C; ALL x:A. B(x) <= D(x) |] ==> \ \ QSigma(A,B) <= QSigma(C,D)"; -by (fast_tac (ZF_cs addIs [QSigmaI] addSEs [QSigmaE]) 1); +by (fast_tac qpair_cs 1); val QSigma_mono_lemma = result(); val QSigma_mono = ballI RSN (2,QSigma_mono_lemma); @@ -109,17 +109,15 @@ by (fast_tac ZF_cs 1); val domain_mono = result(); -val [prem] = goal ZF.thy "r <= Sigma(A,B) ==> domain(r) <= A"; -by (rtac (domain_subset RS (prem RS domain_mono RS subset_trans)) 1); -val domain_rel_subset = result(); +val domain_rel_subset = + [domain_mono, domain_subset] MRS subset_trans |> standard; goal ZF.thy "!!r s. r<=s ==> range(r)<=range(s)"; by (fast_tac ZF_cs 1); val range_mono = result(); -val [prem] = goal ZF.thy "r <= A*B ==> range(r) <= B"; -by (rtac (range_subset RS (prem RS range_mono RS subset_trans)) 1); -val range_rel_subset = result(); +val range_rel_subset = + [range_mono, range_subset] MRS subset_trans |> standard; goal ZF.thy "!!r s. r<=s ==> field(r)<=field(s)"; by (fast_tac ZF_cs 1); @@ -159,9 +157,7 @@ (** Monotonicity of implications -- some could go to FOL **) goal ZF.thy "!!A B x. A<=B ==> x:A --> x:B"; -by (rtac impI 1); -by (etac subsetD 1); -by (assume_tac 1); +by (fast_tac ZF_cs 1); val in_mono = result(); goal IFOL.thy "!!P1 P2 Q1 Q2. [| P1-->Q1; P2-->Q2 |] ==> (P1&P2) --> (Q1&Q2)";