# HG changeset patch # User paulson # Date 971772351 -7200 # Node ID 20cf817f3b4ad6effcda7d6117cd1407f6d6a47f # Parent c8726d4ee89a64e2717eb78f0e66855946507414 renaming of contrapos rules diff -r c8726d4ee89a -r 20cf817f3b4a doc-src/TutorialI/CTL/CTL.thy --- a/doc-src/TutorialI/CTL/CTL.thy Tue Oct 17 10:27:28 2000 +0200 +++ b/doc-src/TutorialI/CTL/CTL.thy Tue Oct 17 10:45:51 2000 +0200 @@ -175,14 +175,14 @@ lemma not_in_lfp_afD: "s \ lfp(af A) \ s \ A \ (\ t. (s,t)\M \ t \ lfp(af A))"; -apply(erule swap); +apply(erule contrapos_np); apply(rule ssubst[OF lfp_unfold[OF mono_af]]); apply(simp add:af_def); done; text{*\noindent -is proved by a variant of contraposition (@{thm[source]swap}: -@{thm swap[no_vars]}), i.e.\ assuming the negation of the conclusion +is proved by a variant of contraposition (@{thm[source]contrapos_np}: +@{thm contrapos_np[no_vars]}), i.e.\ assuming the negation of the conclusion and proving @{term"s : lfp(af A)"}. Unfolding @{term lfp} once and simplifying with the definition of @{term af} finishes the proof. @@ -333,12 +333,12 @@ "{s. \ p \ Paths s. \ i. p i \ A} \ lfp(af A)"; txt{*\noindent -The proof is again pointwise and then by contraposition (@{thm[source]contrapos2} is the rule -@{thm contrapos2}): +The proof is again pointwise and then by contraposition (@{thm[source]contrapos_pp} is the rule +@{thm contrapos_pp}): *}; apply(rule subsetI); -apply(erule contrapos2); +apply(erule contrapos_pp); apply simp; (*pr(latex xsymbols symbols);*) diff -r c8726d4ee89a -r 20cf817f3b4a doc-src/TutorialI/CTL/CTLind.thy --- a/doc-src/TutorialI/CTL/CTLind.thy Tue Oct 17 10:27:28 2000 +0200 +++ b/doc-src/TutorialI/CTL/CTLind.thy Tue Oct 17 10:45:51 2000 +0200 @@ -110,7 +110,7 @@ the contraposition. *} -apply(erule contrapos2); +apply(erule contrapos_pp); apply(simp add:wf_iff_no_infinite_down_chain); apply(erule exE); apply(rule ex_infinite_path);