# HG changeset patch # User wenzelm # Date 938612109 -7200 # Node ID 21b7b0fd41bdf61dddc57b684f7b339f76349008 # Parent 57c4cea8b1373b435d1defd6fcdb9a089152ae7b The Hahn-Banach theorem for real vectorspaces; diff -r 57c4cea8b137 -r 21b7b0fd41bd src/HOL/Real/HahnBanach/README.html --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Real/HahnBanach/README.html Wed Sep 29 15:35:09 1999 +0200 @@ -0,0 +1,27 @@ +HOL/Real/HahnBanach/README + +

The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar).

+ +Author: Gertrud Bauer, Technische Universität München

+ +This directory contains the proof of the Hahn-Banach theorem for real vectorspaces, +following H. Heuser, Funktionalanalysis, p. 228 -232. +The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis. +It is a conclusion of Zorn's lemma.

+ +Two different formaulations of the theorem are presented, one for general real vectorspaces +and its application to normed vectorspaces.

+ +The theorem says, that every continous linearform, defined on arbitrary subspaces +(not only one-dimensional subspaces), can be extended to a continous linearform on +the whole vectorspace. + + +


+ +
+bauerg@in.tum.de +
+ + +