# HG changeset patch # User wenzelm # Date 1132786820 -3600 # Node ID 2215049cd29cfd6fc4774f48164e5f8b12bb3c3d # Parent afdba6b3e3833d9d6d7cee3034b86cf7edcfdb71 tuned induct proofs; diff -r afdba6b3e383 -r 2215049cd29c src/HOL/Induct/Mutil.thy --- a/src/HOL/Induct/Mutil.thy Wed Nov 23 22:26:13 2005 +0100 +++ b/src/HOL/Induct/Mutil.thy Thu Nov 24 00:00:20 2005 +0100 @@ -72,7 +72,7 @@ done lemma dominoes_tile_matrix: "(lessThan m) \ lessThan (2 * n) \ tiling domino" - by (induct m, auto) + by (induct m) auto text {* \medskip @{term coloured} and Dominoes *} @@ -98,7 +98,7 @@ text {* \medskip Tilings of dominoes *} lemma tiling_domino_finite [simp]: "t \ tiling domino ==> finite t" - by (induct set: tiling, auto) + by (induct set: tiling) auto declare Int_Un_distrib [simp] diff -r afdba6b3e383 -r 2215049cd29c src/HOL/Induct/QuoNestedDataType.thy --- a/src/HOL/Induct/QuoNestedDataType.thy Wed Nov 23 22:26:13 2005 +0100 +++ b/src/HOL/Induct/QuoNestedDataType.thy Thu Nov 24 00:00:20 2005 +0100 @@ -265,7 +265,7 @@ lemma listset_Rep_Exp_Abs_Exp: "listset (map Rep_Exp (Abs_ExpList Us)) = listrel exprel `` {Us}"; -by (induct_tac Us, simp_all add: listrel_Cons Abs_ExpList_def) +by (induct Us, simp_all add: listrel_Cons Abs_ExpList_def) lemma FnCall: "FnCall F (Abs_ExpList Us) = Abs_Exp (exprel``{FNCALL F Us})" @@ -459,4 +459,3 @@ qed end - diff -r afdba6b3e383 -r 2215049cd29c src/HOL/Induct/Tree.thy --- a/src/HOL/Induct/Tree.thy Wed Nov 23 22:26:13 2005 +0100 +++ b/src/HOL/Induct/Tree.thy Thu Nov 24 00:00:20 2005 +0100 @@ -46,7 +46,7 @@ "add i (Lim f) = Lim (%n. add i (f n))" lemma add_assoc: "add (add i j) k = add i (add j k)" -by (induct k, auto) + by (induct k) auto text{*Multiplication of ordinals*} consts @@ -57,14 +57,10 @@ "mult i (Lim f) = Lim (%n. mult i (f n))" lemma add_mult_distrib: "mult i (add j k) = add (mult i j) (mult i k)" -apply (induct k) -apply (auto simp add: add_assoc) -done + by (induct k) (auto simp add: add_assoc) lemma mult_assoc: "mult (mult i j) k = mult i (mult j k)" -apply (induct k) -apply (auto simp add: add_mult_distrib) -done + by (induct k) (auto simp add: add_mult_distrib) text{*We could probably instantiate some axiomatic type classes and use the standard infix operators.*} @@ -104,7 +100,6 @@ (hints recdef_wf: wf_brouwer_order) lemma add2_assoc: "add2 (add2 (i, j), k) = add2 (i, add2 (j, k))" -by (induct k, auto) - + by (induct k) auto end