# HG changeset patch # User huffman # Date 1178759463 -7200 # Node ID 681700e1d6932e648014d1bf52609edafabfbe3d # Parent f76298ee7bac846fa0ec7c1eaeb8735667c07e88 remove redundant lemmas diff -r f76298ee7bac -r 681700e1d693 src/HOL/Complex/Complex.thy --- a/src/HOL/Complex/Complex.thy Thu May 10 03:07:26 2007 +0200 +++ b/src/HOL/Complex/Complex.thy Thu May 10 03:11:03 2007 +0200 @@ -447,15 +447,6 @@ lemma complex_mod_triangle_ineq2 [simp]: "cmod(b + a) - cmod b \ cmod a" by (rule ord_le_eq_trans [OF norm_triangle_ineq2], simp) -lemma complex_mod_diff_ineq [simp]: "cmod(a) - cmod(b) \ cmod(a + b)" -(* TODO: generalize *) -proof - - have "cmod a - cmod b = cmod a - cmod (- b)" by simp - also have "\ \ cmod (a - - b)" by (rule norm_triangle_ineq2) - also have "\ = cmod (a + b)" by simp - finally show ?thesis . -qed - lemmas real_sum_squared_expand = power2_sum [where 'a=real] @@ -561,9 +552,6 @@ (* many of the theorems are not used - so should they be kept? *) (*----------------------------------------------------------------------------*) -lemma complex_of_real_zero_iff: "(complex_of_real y = 0) = (y = 0)" -by (rule of_real_eq_0_iff) - lemma cos_arg_i_mult_zero_pos: "0 < y ==> cos (arg(Complex 0 y)) = 0" apply (simp add: arg_def abs_if) @@ -739,9 +727,7 @@ instance complex :: number_ring by (intro_classes, simp add: complex_number_of_def) - -text{*Collapse applications of @{term complex_of_real} to @{term number_of}*} -lemma complex_number_of [simp]: "complex_of_real (number_of w) = number_of w" +lemma complex_number_of: "complex_of_real (number_of w) = number_of w" by (rule of_real_number_of_eq) lemma complex_number_of_cnj [simp]: "cnj(number_of v :: complex) = number_of v" diff -r f76298ee7bac -r 681700e1d693 src/HOL/Complex/NSComplex.thy --- a/src/HOL/Complex/NSComplex.thy Thu May 10 03:07:26 2007 +0200 +++ b/src/HOL/Complex/NSComplex.thy Thu May 10 03:11:03 2007 +0200 @@ -349,7 +349,7 @@ by transfer (rule complex_mod_triangle_ineq2) lemma hcmod_diff_ineq [simp]: "!!a b. hcmod(a) - hcmod(b) \ hcmod(a + b)" -by transfer (rule complex_mod_diff_ineq) +by transfer (rule norm_diff_ineq) subsection{*Exponentiation*}