# HG changeset patch # User immler # Date 1463774499 -7200 # Node ID 2394b0db133ffb2bdc3a730a3c63473578576818 # Parent 71059cf60658458955a901d7b050411c35486502 removed smt proof diff -r 71059cf60658 -r 2394b0db133f src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Fri May 20 07:54:54 2016 +0200 +++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Fri May 20 22:01:39 2016 +0200 @@ -5976,17 +5976,15 @@ thus "isCont ((indicator A)::'a \ real) x" proof assume int: "x \ interior A" - hence "\U. open U \ x \ U \ U \ A" unfolding interior_def by auto - then guess U .. note U = this + then obtain U where U: "open U" "x \ U" "U \ A" unfolding interior_def by auto hence "\y\U. indicator A y = (1::real)" unfolding indicator_def by auto hence "continuous_on U (indicator A)" by (simp add: continuous_on_const indicator_eq_1_iff) thus ?thesis using U continuous_on_eq_continuous_at by auto next assume ext: "x \ interior (-A)" - hence "\U. open U \ x \ U \ U \ -A" unfolding interior_def by auto - then guess U .. note U = this - hence "\y\U. indicator A y = (0::real)" unfolding indicator_def by auto - hence "continuous_on U (indicator A)" by (smt U continuous_on_topological indicator_def) + then obtain U where U: "open U" "x \ U" "U \ -A" unfolding interior_def by auto + then have "continuous_on U (indicator A)" + using continuous_on_topological by (auto simp: subset_iff) thus ?thesis using U continuous_on_eq_continuous_at by auto qed qed