# HG changeset patch # User wenzelm # Date 881343896 -3600 # Node ID 245b64afefe2e24fb22c2f23e6986fee265332a7 # Parent 2f831a45d5712efa698c5c8282fe2c09b87d0a22 tuned; diff -r 2f831a45d571 -r 245b64afefe2 doc-src/Ref/goals.tex --- a/doc-src/Ref/goals.tex Fri Dec 05 17:31:01 1997 +0100 +++ b/doc-src/Ref/goals.tex Fri Dec 05 18:44:56 1997 +0100 @@ -157,7 +157,7 @@ \ttindex{assume_ax} has been used. \item[\ttindexbold{bind_thm} ($name$, $thm$);]\index{theorems!storing} - stores {\tt standard($thm$)} (see \S\ref{MiscellaneousForwardRules}) + stores {\tt standard $thm$} (see \S\ref{MiscellaneousForwardRules}) in the theorem database associated with its theory and in the {\ML} variable $name$. The theorem can be retrieved from the database using {\tt get_thm} (see \S\ref{BasicOperationsOnTheories}). diff -r 2f831a45d571 -r 245b64afefe2 doc-src/Ref/substitution.tex --- a/doc-src/Ref/substitution.tex Fri Dec 05 17:31:01 1997 +0100 +++ b/doc-src/Ref/substitution.tex Fri Dec 05 18:44:56 1997 +0100 @@ -78,7 +78,7 @@ assumption~$c=a$, since $c$ does not occur in~$a=b$. Of course, we can work out a solution. First apply {\tt eresolve_tac\ts[subst]\ts\(i\)}, replacing~$a$ by~$c$: -\[ \List{c=b} \Imp c=b \] +\[ c=b \Imp c=b \] Equality reasoning can be difficult, but this trivial proof requires nothing more sophisticated than substitution in the assumptions. Object-logics that include the rule~$(subst)$ provide tactics for this diff -r 2f831a45d571 -r 245b64afefe2 doc-src/Ref/theories.tex --- a/doc-src/Ref/theories.tex Fri Dec 05 17:31:01 1997 +0100 +++ b/doc-src/Ref/theories.tex Fri Dec 05 18:44:56 1997 +0100 @@ -588,7 +588,7 @@ incr_boundvars : int -> term -> term abstract_over : term*term -> term variant_abs : string * typ * term -> string * term -aconv : term*term -> bool\hfill{\bf infix} +aconv : term * term -> bool\hfill{\bf infix} \end{ttbox} These functions are all concerned with the de Bruijn representation of bound variables.