# HG changeset patch # User chaieb # Date 1242145969 -3600 # Node ID 2532bb2d65c7cddbd03d2fdfd4fbe9bdd61fac8b # Parent 541d43bee6782e4ce7e515609c19197ea86bc03f A decision method for universal multivariate real arithmetic with add ition, multiplication and ordering using semidefinite programming diff -r 541d43bee678 -r 2532bb2d65c7 src/HOL/Library/Sum_Of_Squares.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Sum_Of_Squares.thy Tue May 12 17:32:49 2009 +0100 @@ -0,0 +1,114 @@ +(* Title: Library/Sum_Of_Squares + Author: Amine Chaieb, University of Cambridge +*) + +header {* A decision method for universal multivariate real arithmetic with addition, + multiplication and ordering using semidefinite programming*} +theory Sum_Of_Squares + imports Complex_Main (* "~~/src/HOL/Decision_Procs/Dense_Linear_Order" *) + uses "positivstellensatz.ML" "sum_of_squares.ML" + begin + +method_setup sos = {* +let + fun strip_all ct = + case term_of ct of + Const("all",_) $ Abs (xn,xT,p) => + let val (a,(v,t')) = (apsnd (Thm.dest_abs (SOME xn)) o Thm.dest_comb) ct + in apfst (cons v) (strip_all t') + end + | _ => ([],ct) + + fun core_sos_conv ctxt t = Drule.arg_cong_rule @{cterm Trueprop} (Sos.real_sos ctxt (Thm.dest_arg t) RS @{thm Eq_TrueI}) + fun core_sos_tac ctxt = CSUBGOAL (fn (ct, i) => + let val (avs, p) = strip_all ct + val th = standard (fold_rev forall_intr avs (Sos.real_sos ctxt (Thm.dest_arg p))) + in rtac th i end) (* CONVERSION o core_sos_conv *) +in Scan.succeed (SIMPLE_METHOD' o core_sos_tac) +end + +*} "Prove universal problems over the reals using sums of squares" + +text{* Tests -- commented since they work only when csdp is installed *} + +(* +lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x --> a < 0" by sos + +lemma "a1 >= 0 & a2 >= 0 \ (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \ (a1 * b1 + a2 * b2 = 0) --> a1 * a2 - b1 * b2 >= (0::real)" by sos + +lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x --> a < 0" by sos + +lemma "(0::real) <= x & x <= 1 & 0 <= y & y <= 1 --> x^2 + y^2 < 1 |(x - 1)^2 + y^2 < 1 | x^2 + (y - 1)^2 < 1 | (x - 1)^2 + (y - 1)^2 < 1" by sos + +lemma "(0::real) <= x & 0 <= y & 0 <= z & x + y + z <= 3 --> x * y + x * z + y * z >= 3 * x * y * z" by sos + +lemma "((x::real)^2 + y^2 + z^2 = 1) --> (x + y + z)^2 <= 3" by sos + +lemma "(w^2 + x^2 + y^2 + z^2 = 1) --> (w + x + y + z)^2 <= (4::real)" by sos + +lemma "(x::real) >= 1 & y >= 1 --> x * y >= x + y - 1" by sos + +lemma "(x::real) > 1 & y > 1 --> x * y > x + y - 1" by sos; + +lemma "abs(x) <= 1 --> abs(64 * x^7 - 112 * x^5 + 56 * x^3 - 7 * x) <= (1::real)" by sos +*) +(* ------------------------------------------------------------------------- *) +(* One component of denominator in dodecahedral example. *) +(* ------------------------------------------------------------------------- *) +(* +lemma "2 <= x & x <= 125841 / 50000 & 2 <= y & y <= 125841 / 50000 & 2 <= z & z <= 125841 / 50000 --> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= (0::real)" by sos; +*) +(* ------------------------------------------------------------------------- *) +(* Over a larger but simpler interval. *) +(* ------------------------------------------------------------------------- *) +(* +lemma "(2::real) <= x & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 0 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" by sos +*) +(* ------------------------------------------------------------------------- *) +(* We can do 12. I think 12 is a sharp bound; see PP's certificate. *) +(* ------------------------------------------------------------------------- *) +(* +lemma "2 <= (x::real) & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 12 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" by sos +*) + +(* ------------------------------------------------------------------------- *) +(* Inequality from sci.math (see "Leon-Sotelo, por favor"). *) +(* ------------------------------------------------------------------------- *) +(* +lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x + y <= x^2 + y^2" by sos + +lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x * y * (x + y) <= x^2 + y^2" by sos + +lemma "0 <= (x::real) & 0 <= y --> x * y * (x + y)^2 <= (x^2 + y^2)^2" by sos + +lemma "(0::real) <= a & 0 <= b & 0 <= c & c * (2 * a + b)^3/ 27 <= x \ c * a^2 * b <= x" by sos + +lemma "(0::real) < x --> 0 < 1 + x + x^2" by sos + +lemma "(0::real) <= x --> 0 < 1 + x + x^2" by sos + +lemma "(0::real) < 1 + x^2" by sos + +lemma "(0::real) <= 1 + 2 * x + x^2" by sos + +lemma "(0::real) < 1 + abs x" by sos + +lemma "(0::real) < 1 + (1 + x)^2 * (abs x)" by sos + + + +lemma "abs ((1::real) + x^2) = (1::real) + x^2" by sos +lemma "(3::real) * x + 7 * a < 4 \ 3 < 2 * x \ a < 0" by sos + +lemma "(0::real) < x --> 1 < y --> y * x <= z --> x < z" by sos +lemma "(1::real) < x --> x^2 < y --> 1 < y" by sos +lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)" by sos +lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)" by sos +lemma "((a::real) * x^2 + b * x + c = 0) --> b^2 >= 4 * a * c" by sos +lemma "(0::real) <= b & 0 <= c & 0 <= x & 0 <= y & (x^2 = c) & (y^2 = a^2 * c + b) --> a * c <= y * x" by sos +lemma "abs(x - z) <= e & abs(y - z) <= e & 0 <= u & 0 <= v & (u + v = 1) --> abs((u * x + v * y) - z) <= (e::real)" by sos +*) +(* +lemma "((x::real) - y - 2 * x^4 = 0) & 0 <= x & x <= 2 & 0 <= y & y <= 3 --> y^2 - 7 * y - 12 * x + 17 >= 0" by sos *) (* Too hard?*) + +end diff -r 541d43bee678 -r 2532bb2d65c7 src/HOL/Library/sum_of_squares.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/sum_of_squares.ML Tue May 12 17:32:49 2009 +0100 @@ -0,0 +1,1612 @@ +structure Sos = +struct + +val rat_0 = Rat.zero; +val rat_1 = Rat.one; +val rat_2 = Rat.two; +val rat_10 = Rat.rat_of_int 10; +val rat_1_2 = rat_1 // rat_2; +val max = curry IntInf.max; +val min = curry IntInf.min; + +val denominator_rat = Rat.quotient_of_rat #> snd #> Rat.rat_of_int; +val numerator_rat = Rat.quotient_of_rat #> fst #> Rat.rat_of_int; +fun int_of_rat a = + case Rat.quotient_of_rat a of (i,1) => i | _ => error "int_of_rat: not an int"; +fun lcm_rat x y = Rat.rat_of_int (Integer.lcm (int_of_rat x) (int_of_rat y)); + +fun rat_pow r i = + let fun pow r i = + if i = 0 then rat_1 else + let val d = pow r (i div 2) + in d */ d */ (if i mod 2 = 0 then rat_1 else r) + end + in if i < 0 then pow (Rat.inv r) (~ i) else pow r i end; + +fun round_rat r = + let val (a,b) = Rat.quotient_of_rat (Rat.abs r) + val d = a div b + val s = if r = b then d + 1 else d) end + +val abs_rat = Rat.abs; +val pow2 = rat_pow rat_2; +val pow10 = rat_pow rat_10; + +val debugging = ref false; + +exception Sanity; + +exception Unsolvable; + +(* Turn a rational into a decimal string with d sig digits. *) + +local +fun normalize y = + if abs_rat y =/ rat_1 then normalize (y // rat_10) + 1 + else 0 + in +fun decimalize d x = + if x =/ rat_0 then "0.0" else + let + val y = Rat.abs x + val e = normalize y + val z = pow10(~ e) */ y +/ rat_1 + val k = int_of_rat (round_rat(pow10 d */ z)) + in (if x a + | h::t => itern (k + 1) t f (f h k a); + +fun iter (m,n) f a = + if n < m then a + else iter (m+1,n) f (f m a); + +(* The main types. *) + +fun strict_ord ord (x,y) = case ord (x,y) of LESS => LESS | _ => GREATER + +structure Intpairfunc = FuncFun(type key = int*int val ord = prod_ord int_ord int_ord); + +type vector = int* Rat.rat Intfunc.T; + +type matrix = (int*int)*(Rat.rat Intpairfunc.T); + +type monomial = int Ctermfunc.T; + +val cterm_ord = (fn (s,t) => TermOrd.fast_term_ord(term_of s, term_of t)) + fun monomial_ord (m1,m2) = list_ord (prod_ord cterm_ord int_ord) (Ctermfunc.graph m1, Ctermfunc.graph m2) +structure Monomialfunc = FuncFun(type key = monomial val ord = monomial_ord) + +type poly = Rat.rat Monomialfunc.T; + + fun iszero (k,r) = r =/ rat_0; + +fun fold_rev2 f l1 l2 b = + case (l1,l2) of + ([],[]) => b + | (h1::t1,h2::t2) => f h1 h2 (fold_rev2 f t1 t2 b) + | _ => error "fold_rev2"; + +(* Vectors. Conventionally indexed 1..n. *) + +fun vector_0 n = (n,Intfunc.undefined):vector; + +fun dim (v:vector) = fst v; + +fun vector_const c n = + if c =/ rat_0 then vector_0 n + else (n,fold_rev (fn k => Intfunc.update (k,c)) (1 upto n) Intfunc.undefined) :vector; + +val vector_1 = vector_const rat_1; + +fun vector_cmul c (v:vector) = + let val n = dim v + in if c =/ rat_0 then vector_0 n + else (n,Intfunc.mapf (fn x => c */ x) (snd v)) + end; + +fun vector_neg (v:vector) = (fst v,Intfunc.mapf Rat.neg (snd v)) :vector; + +fun vector_add (v1:vector) (v2:vector) = + let val m = dim v1 + val n = dim v2 + in if m <> n then error "vector_add: incompatible dimensions" + else (n,Intfunc.combine (curry op +/) (fn x => x =/ rat_0) (snd v1) (snd v2)) :vector + end; + +fun vector_sub v1 v2 = vector_add v1 (vector_neg v2); + +fun vector_dot (v1:vector) (v2:vector) = + let val m = dim v1 + val n = dim v2 + in if m <> n then error "vector_dot: incompatible dimensions" + else Intfunc.fold (fn (i,x) => fn a => x +/ a) + (Intfunc.combine (curry op */) (fn x => x =/ rat_0) (snd v1) (snd v2)) rat_0 + end; + +fun vector_of_list l = + let val n = length l + in (n,fold_rev2 (curry Intfunc.update) (1 upto n) l Intfunc.undefined) :vector + end; + +(* Matrices; again rows and columns indexed from 1. *) + +fun matrix_0 (m,n) = ((m,n),Intpairfunc.undefined):matrix; + +fun dimensions (m:matrix) = fst m; + +fun matrix_const c (mn as (m,n)) = + if m <> n then error "matrix_const: needs to be square" + else if c =/ rat_0 then matrix_0 mn + else (mn,fold_rev (fn k => Intpairfunc.update ((k,k), c)) (1 upto n) Intpairfunc.undefined) :matrix;; + +val matrix_1 = matrix_const rat_1; + +fun matrix_cmul c (m:matrix) = + let val (i,j) = dimensions m + in if c =/ rat_0 then matrix_0 (i,j) + else ((i,j),Intpairfunc.mapf (fn x => c */ x) (snd m)) + end; + +fun matrix_neg (m:matrix) = + (dimensions m, Intpairfunc.mapf Rat.neg (snd m)) :matrix; + +fun matrix_add (m1:matrix) (m2:matrix) = + let val d1 = dimensions m1 + val d2 = dimensions m2 + in if d1 <> d2 + then error "matrix_add: incompatible dimensions" + else (d1,Intpairfunc.combine (curry op +/) (fn x => x =/ rat_0) (snd m1) (snd m2)) :matrix + end;; + +fun matrix_sub m1 m2 = matrix_add m1 (matrix_neg m2); + +fun row k (m:matrix) = + let val (i,j) = dimensions m + in (j, + Intpairfunc.fold (fn ((i,j), c) => fn a => if i = k then Intfunc.update (j,c) a else a) (snd m) Intfunc.undefined ) : vector + end; + +fun column k (m:matrix) = + let val (i,j) = dimensions m + in (i, + Intpairfunc.fold (fn ((i,j), c) => fn a => if j = k then Intfunc.update (i,c) a else a) (snd m) Intfunc.undefined) + : vector + end; + +fun transp (m:matrix) = + let val (i,j) = dimensions m + in + ((j,i),Intpairfunc.fold (fn ((i,j), c) => fn a => Intpairfunc.update ((j,i), c) a) (snd m) Intpairfunc.undefined) :matrix + end; + +fun diagonal (v:vector) = + let val n = dim v + in ((n,n),Intfunc.fold (fn (i, c) => fn a => Intpairfunc.update ((i,i), c) a) (snd v) Intpairfunc.undefined) : matrix + end; + +fun matrix_of_list l = + let val m = length l + in if m = 0 then matrix_0 (0,0) else + let val n = length (hd l) + in ((m,n),itern 1 l (fn v => fn i => itern 1 v (fn c => fn j => Intpairfunc.update ((i,j), c))) Intpairfunc.undefined) + end + end; + +(* Monomials. *) + +fun monomial_eval assig (m:monomial) = + Ctermfunc.fold (fn (x, k) => fn a => a */ rat_pow (Ctermfunc.apply assig x) k) + m rat_1; +val monomial_1 = (Ctermfunc.undefined:monomial); + +fun monomial_var x = Ctermfunc.onefunc (x, 1) :monomial; + +val (monomial_mul:monomial->monomial->monomial) = + Ctermfunc.combine (curry op +) (K false); + +fun monomial_pow (m:monomial) k = + if k = 0 then monomial_1 + else Ctermfunc.mapf (fn x => k * x) m; + +fun monomial_divides (m1:monomial) (m2:monomial) = + Ctermfunc.fold (fn (x, k) => fn a => Ctermfunc.tryapplyd m2 x 0 >= k andalso a) m1 true;; + +fun monomial_div (m1:monomial) (m2:monomial) = + let val m = Ctermfunc.combine (curry op +) + (fn x => x = 0) m1 (Ctermfunc.mapf (fn x => ~ x) m2) + in if Ctermfunc.fold (fn (x, k) => fn a => k >= 0 andalso a) m true then m + else error "monomial_div: non-divisible" + end; + +fun monomial_degree x (m:monomial) = + Ctermfunc.tryapplyd m x 0;; + +fun monomial_lcm (m1:monomial) (m2:monomial) = + fold_rev (fn x => Ctermfunc.update (x, max (monomial_degree x m1) (monomial_degree x m2))) + (gen_union (is_equal o cterm_ord) (Ctermfunc.dom m1, Ctermfunc.dom m2)) (Ctermfunc.undefined :monomial); + +fun monomial_multidegree (m:monomial) = + Ctermfunc.fold (fn (x, k) => fn a => k + a) m 0;; + +fun monomial_variables m = Ctermfunc.dom m;; + +(* Polynomials. *) + +fun eval assig (p:poly) = + Monomialfunc.fold (fn (m, c) => fn a => a +/ c */ monomial_eval assig m) p rat_0; + +val poly_0 = (Monomialfunc.undefined:poly); + +fun poly_isconst (p:poly) = + Monomialfunc.fold (fn (m, c) => fn a => Ctermfunc.is_undefined m andalso a) p true; + +fun poly_var x = Monomialfunc.onefunc (monomial_var x,rat_1) :poly; + +fun poly_const c = + if c =/ rat_0 then poly_0 else Monomialfunc.onefunc(monomial_1, c); + +fun poly_cmul c (p:poly) = + if c =/ rat_0 then poly_0 + else Monomialfunc.mapf (fn x => c */ x) p; + +fun poly_neg (p:poly) = (Monomialfunc.mapf Rat.neg p :poly);; + +fun poly_add (p1:poly) (p2:poly) = + (Monomialfunc.combine (curry op +/) (fn x => x =/ rat_0) p1 p2 :poly); + +fun poly_sub p1 p2 = poly_add p1 (poly_neg p2); + +fun poly_cmmul (c,m) (p:poly) = + if c =/ rat_0 then poly_0 + else if Ctermfunc.is_undefined m + then Monomialfunc.mapf (fn d => c */ d) p + else Monomialfunc.fold (fn (m', d) => fn a => (Monomialfunc.update (monomial_mul m m', c */ d) a)) p poly_0; + +fun poly_mul (p1:poly) (p2:poly) = + Monomialfunc.fold (fn (m, c) => fn a => poly_add (poly_cmmul (c,m) p2) a) p1 poly_0; + +fun poly_div (p1:poly) (p2:poly) = + if not(poly_isconst p2) + then error "poly_div: non-constant" else + let val c = eval Ctermfunc.undefined p2 + in if c =/ rat_0 then error "poly_div: division by zero" + else poly_cmul (Rat.inv c) p1 + end; + +fun poly_square p = poly_mul p p; + +fun poly_pow p k = + if k = 0 then poly_const rat_1 + else if k = 1 then p + else let val q = poly_square(poly_pow p (k div 2)) in + if k mod 2 = 1 then poly_mul p q else q end; + +fun poly_exp p1 p2 = + if not(poly_isconst p2) + then error "poly_exp: not a constant" + else poly_pow p1 (int_of_rat (eval Ctermfunc.undefined p2)); + +fun degree x (p:poly) = + Monomialfunc.fold (fn (m,c) => fn a => max (monomial_degree x m) a) p 0; + +fun multidegree (p:poly) = + Monomialfunc.fold (fn (m, c) => fn a => max (monomial_multidegree m) a) p 0; + +fun poly_variables (p:poly) = + sort cterm_ord (Monomialfunc.fold_rev (fn (m, c) => curry (gen_union (is_equal o cterm_ord)) (monomial_variables m)) p []);; + +(* Order monomials for human presentation. *) + +fun cterm_ord (t,t') = TermOrd.fast_term_ord (term_of t, term_of t'); + +val humanorder_varpow = prod_ord cterm_ord (rev_order o int_ord); + +local + fun ord (l1,l2) = case (l1,l2) of + (_,[]) => LESS + | ([],_) => GREATER + | (h1::t1,h2::t2) => + (case humanorder_varpow (h1, h2) of + LESS => LESS + | EQUAL => ord (t1,t2) + | GREATER => GREATER) +in fun humanorder_monomial m1 m2 = + ord (sort humanorder_varpow (Ctermfunc.graph m1), + sort humanorder_varpow (Ctermfunc.graph m2)) +end; + +fun fold1 f l = case l of + [] => error "fold1" + | [x] => x + | (h::t) => f h (fold1 f t); + +(* Conversions to strings. *) + +fun string_of_vector min_size max_size (v:vector) = + let val n_raw = dim v + in if n_raw = 0 then "[]" else + let + val n = max min_size (min n_raw max_size) + val xs = map (Rat.string_of_rat o (fn i => Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) + in "[" ^ fold1 (fn s => fn t => s ^ ", " ^ t) xs ^ + (if n_raw > max_size then ", ...]" else "]") + end + end; + +fun string_of_matrix max_size (m:matrix) = + let + val (i_raw,j_raw) = dimensions m + val i = min max_size i_raw + val j = min max_size j_raw + val rstr = map (fn k => string_of_vector j j (row k m)) (1 upto i) + in "["^ fold1 (fn s => fn t => s^";\n "^t) rstr ^ + (if j > max_size then "\n ...]" else "]") + end; + +fun string_of_term t = + case t of + a$b => "("^(string_of_term a)^" "^(string_of_term b)^")" + | Abs x => + let val (xn, b) = Term.dest_abs x + in "(\\"^xn^"."^(string_of_term b)^")" + end + | Const(s,_) => s + | Free (s,_) => s + | Var((s,_),_) => s + | _ => error "string_of_term"; + +val string_of_cterm = string_of_term o term_of; + +fun string_of_varpow x k = + if k = 1 then string_of_cterm x + else string_of_cterm x^"^"^string_of_int k; + +fun string_of_monomial m = + if Ctermfunc.is_undefined m then "1" else + let val vps = fold_rev (fn (x,k) => fn a => string_of_varpow x k :: a) + (sort humanorder_varpow (Ctermfunc.graph m)) [] + in fold1 (fn s => fn t => s^"*"^t) vps + end; + +fun string_of_cmonomial (c,m) = + if Ctermfunc.is_undefined m then Rat.string_of_rat c + else if c =/ rat_1 then string_of_monomial m + else Rat.string_of_rat c ^ "*" ^ string_of_monomial m;; + +fun string_of_poly (p:poly) = + if Monomialfunc.is_undefined p then "<<0>>" else + let + val cms = sort (fn ((m1,_),(m2,_)) => humanorder_monomial m1 m2) (Monomialfunc.graph p) + val s = fold (fn (m,c) => fn a => + if c >" + end; + +(* Conversion from HOL term. *) + +local + val neg_tm = @{cterm "uminus :: real => _"} + val add_tm = @{cterm "op + :: real => _"} + val sub_tm = @{cterm "op - :: real => _"} + val mul_tm = @{cterm "op * :: real => _"} + val inv_tm = @{cterm "inverse :: real => _"} + val div_tm = @{cterm "op / :: real => _"} + val pow_tm = @{cterm "op ^ :: real => _"} + val zero_tm = @{cterm "0:: real"} + val is_numeral = can (HOLogic.dest_number o term_of) + fun is_comb t = case t of _$_ => true | _ => false + fun poly_of_term tm = + if tm aconvc zero_tm then poly_0 + else if RealArith.is_ratconst tm + then poly_const(RealArith.dest_ratconst tm) + else + (let val (lop,r) = Thm.dest_comb tm + in if lop aconvc neg_tm then poly_neg(poly_of_term r) + else if lop aconvc inv_tm then + let val p = poly_of_term r + in if poly_isconst p + then poly_const(Rat.inv (eval Ctermfunc.undefined p)) + else error "poly_of_term: inverse of non-constant polyomial" + end + else (let val (opr,l) = Thm.dest_comb lop + in + if opr aconvc pow_tm andalso is_numeral r + then poly_pow (poly_of_term l) ((snd o HOLogic.dest_number o term_of) r) + else if opr aconvc add_tm + then poly_add (poly_of_term l) (poly_of_term r) + else if opr aconvc sub_tm + then poly_sub (poly_of_term l) (poly_of_term r) + else if opr aconvc mul_tm + then poly_mul (poly_of_term l) (poly_of_term r) + else if opr aconvc div_tm + then let + val p = poly_of_term l + val q = poly_of_term r + in if poly_isconst q then poly_cmul (Rat.inv (eval Ctermfunc.undefined q)) p + else error "poly_of_term: division by non-constant polynomial" + end + else poly_var tm + + end + handle CTERM ("dest_comb",_) => poly_var tm) + end + handle CTERM ("dest_comb",_) => poly_var tm) +in +val poly_of_term = fn tm => + if type_of (term_of tm) = @{typ real} then poly_of_term tm + else error "poly_of_term: term does not have real type" +end; + +(* String of vector (just a list of space-separated numbers). *) + +fun sdpa_of_vector (v:vector) = + let + val n = dim v + val strs = map (decimalize 20 o (fn i => Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) + in fold1 (fn x => fn y => x ^ " " ^ y) strs ^ "\n" + end; + +fun increasing f ord (x,y) = ord (f x, f y); +fun triple_int_ord ((a,b,c),(a',b',c')) = + prod_ord int_ord (prod_ord int_ord int_ord) + ((a,(b,c)),(a',(b',c'))); +structure Inttriplefunc = FuncFun(type key = int*int*int val ord = triple_int_ord); + +(* String for block diagonal matrix numbered k. *) + +fun sdpa_of_blockdiagonal k m = + let + val pfx = string_of_int k ^" " + val ents = + Inttriplefunc.fold (fn ((b,i,j), c) => fn a => if i > j then a else ((b,i,j),c)::a) m [] + val entss = sort (increasing fst triple_int_ord ) ents + in fold_rev (fn ((b,i,j),c) => fn a => + pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^ + " " ^ decimalize 20 c ^ "\n" ^ a) entss "" + end; + +(* String for a matrix numbered k, in SDPA sparse format. *) + +fun sdpa_of_matrix k (m:matrix) = + let + val pfx = string_of_int k ^ " 1 " + val ms = Intpairfunc.fold (fn ((i,j), c) => fn a => if i > j then a else ((i,j),c)::a) (snd m) [] + val mss = sort (increasing fst (prod_ord int_ord int_ord)) ms + in fold_rev (fn ((i,j),c) => fn a => + pfx ^ string_of_int i ^ " " ^ string_of_int j ^ + " " ^ decimalize 20 c ^ "\n" ^ a) mss "" + end;; + +(* ------------------------------------------------------------------------- *) +(* String in SDPA sparse format for standard SDP problem: *) +(* *) +(* X = v_1 * [M_1] + ... + v_m * [M_m] - [M_0] must be PSD *) +(* Minimize obj_1 * v_1 + ... obj_m * v_m *) +(* ------------------------------------------------------------------------- *) + +fun sdpa_of_problem comment obj mats = + let + val m = length mats - 1 + val (n,_) = dimensions (hd mats) + in "\"" ^ comment ^ "\"\n" ^ + string_of_int m ^ "\n" ^ + "1\n" ^ + string_of_int n ^ "\n" ^ + sdpa_of_vector obj ^ + fold_rev2 (fn k => fn m => fn a => sdpa_of_matrix (k - 1) m ^ a) (1 upto length mats) mats "" + end; + +fun index_char str chr pos = + if pos >= String.size str then ~1 + else if String.sub(str,pos) = chr then pos + else index_char str chr (pos + 1); +fun rat_of_quotient (a,b) = if b = 0 then rat_0 else Rat.rat_of_quotient (a,b); +fun rat_of_string s = + let val n = index_char s #"/" 0 in + if n = ~1 then s |> IntInf.fromString |> valOf |> Rat.rat_of_int + else + let val SOME numer = IntInf.fromString(String.substring(s,0,n)) + val SOME den = IntInf.fromString (String.substring(s,n+1,String.size s - n - 1)) + in rat_of_quotient(numer, den) + end + end; + +fun isspace x = x = " " ; +fun isnum x = x mem_string ["0","1","2","3","4","5","6","7","8","9"] + +(* More parser basics. *) + +local + open Scan +in + val word = this_string + fun token s = + repeat ($$ " ") |-- word s --| repeat ($$ " ") + val numeral = one isnum + val decimalint = bulk numeral >> (rat_of_string o implode) + val decimalfrac = bulk numeral + >> (fn s => rat_of_string(implode s) // pow10 (length s)) + val decimalsig = + decimalint -- option (Scan.$$ "." |-- decimalfrac) + >> (fn (h,NONE) => h | (h,SOME x) => h +/ x) + fun signed prs = + $$ "-" |-- prs >> Rat.neg + || $$ "+" |-- prs + || prs; + +fun emptyin def xs = if null xs then (def,xs) else Scan.fail xs + + val exponent = ($$ "e" || $$ "E") |-- signed decimalint; + + val decimal = signed decimalsig -- (emptyin rat_0|| exponent) + >> (fn (h, x) => h */ pow10 (int_of_rat x)); +end; + + fun mkparser p s = + let val (x,rst) = p (explode s) + in if null rst then x + else error "mkparser: unparsed input" + end;; +val parse_decimal = mkparser decimal; + +fun fix err prs = + prs || (fn x=> error err); + +fun listof prs sep err = + prs -- Scan.bulk (sep |-- fix err prs) >> uncurry cons; + +(* Parse back a vector. *) + + val vector = + token "{" |-- listof decimal (token ",") "decimal" --| token "}" + >> vector_of_list + val parse_vector = mkparser vector + fun skipupto dscr prs inp = + (dscr |-- prs + || Scan.one (K true) |-- skipupto dscr prs) inp + fun ignore inp = ((),[]) + fun sdpaoutput inp = skipupto (word "xVec" -- token "=") + (vector --| ignore) inp + fun csdpoutput inp = ((decimal -- Scan.bulk (Scan.$$ " " |-- Scan.option decimal) >> (fn (h,to) => map_filter I ((SOME h)::to))) --| ignore >> vector_of_list) inp + val parse_sdpaoutput = mkparser sdpaoutput + val parse_csdpoutput = mkparser csdpoutput + +(* Also parse the SDPA output to test success (CSDP yields a return code). *) + +local + val prs = + skipupto (word "phase.value" -- token "=") + (Scan.option (Scan.$$ "p") -- Scan.option (Scan.$$ "d") + -- (word "OPT" || word "FEAS")) +in + fun sdpa_run_succeeded s = + (prs (explode s); true) handle _ => false +end; + +(* The default parameters. Unfortunately this goes to a fixed file. *) + +val sdpa_default_parameters = +"100 unsigned int maxIteration; \n1.0E-7 double 0.0 < epsilonStar;\n1.0E2 double 0.0 < lambdaStar;\n2.0 double 1.0 < omegaStar;\n-1.0E5 double lowerBound;\n1.0E5 double upperBound;\n0.1 double 0.0 <= betaStar < 1.0;\n0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;\n0.9 double 0.0 < gammaStar < 1.0;\n1.0E-7 double 0.0 < epsilonDash;\n";; + +(* These were suggested by Makoto Yamashita for problems where we are *) +(* right at the edge of the semidefinite cone, as sometimes happens. *) + +val sdpa_alt_parameters = +"1000 unsigned int maxIteration;\n1.0E-7 double 0.0 < epsilonStar;\n1.0E4 double 0.0 < lambdaStar;\n2.0 double 1.0 < omegaStar;\n-1.0E5 double lowerBound;\n1.0E5 double upperBound;\n0.1 double 0.0 <= betaStar < 1.0;\n0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;\n0.9 double 0.0 < gammaStar < 1.0;\n1.0E-7 double 0.0 < epsilonDash;\n";; + +val sdpa_params = sdpa_alt_parameters;; + +(* CSDP parameters; so far I'm sticking with the defaults. *) + +val csdp_default_parameters = +"axtol=1.0e-8\natytol=1.0e-8\nobjtol=1.0e-8\npinftol=1.0e8\ndinftol=1.0e8\nmaxiter=100\nminstepfrac=0.9\nmaxstepfrac=0.97\nminstepp=1.0e-8\nminstepd=1.0e-8\nusexzgap=1\ntweakgap=0\naffine=0\nprintlevel=1\n";; + +val csdp_params = csdp_default_parameters;; + +fun tmp_file pre suf = + let val i = string_of_int (round (random())) + val name = Path.append (Path.variable "ISABELLE_TMP") (Path.explode (pre ^ i ^ suf)) + in + if File.exists name then tmp_file pre suf + else name + end; + +(* Now call SDPA on a problem and parse back the output. *) + +fun run_sdpa dbg obj mats = + let + val input_file = tmp_file "sos" ".dat-s" + val output_file = tmp_file "sos" ".out" + val params_file = tmp_file "param" ".sdpa" + val current_dir = File.pwd() + val _ = File.write input_file + (sdpa_of_problem "" obj mats) + val _ = File.write params_file sdpa_params + val _ = File.cd (Path.variable "ISABELLE_TMP") + val _ = File.system_command ("sdpa "^ (Path.implode input_file) ^ " " ^ + (Path.implode output_file) ^ + (if dbg then "" else "> /dev/null")) + val opr = File.read output_file + in if not(sdpa_run_succeeded opr) then error "sdpa: call failed" + else + let val res = parse_sdpaoutput opr + in ((if dbg then () + else (File.rm input_file; File.rm output_file ; File.cd current_dir)); + res) + end + end; + +fun sdpa obj mats = run_sdpa (!debugging) obj mats; + +(* The same thing with CSDP. *) + +fun run_csdp dbg obj mats = + let + val input_file = tmp_file "sos" ".dat-s" + val output_file = tmp_file "sos" ".out" + val params_file = tmp_file "param" ".csdp" + val current_dir = File.pwd() + val _ = File.write input_file (sdpa_of_problem "" obj mats) + val _ = File.write params_file csdp_params + val _ = File.cd (Path.variable "ISABELLE_TMP") + val rv = system ("csdp "^(Path.implode input_file) ^ " " + ^ (Path.implode output_file) ^ + (if dbg then "" else "> /dev/null")) + val opr = File.read output_file + val res = parse_csdpoutput opr + in + ((if dbg then () + else (File.rm input_file; File.rm output_file ; File.cd current_dir)); + (rv,res)) + end; + +fun csdp obj mats = + let + val (rv,res) = run_csdp (!debugging) obj mats + in + ((if rv = 1 orelse rv = 2 then error "csdp: Problem is infeasible" + else if rv = 3 then writeln "csdp warning: Reduced accuracy" + else if rv <> 0 then error ("csdp: error "^string_of_int rv) + else ()); + res) + end; + +(* Try some apparently sensible scaling first. Note that this is purely to *) +(* get a cleaner translation to floating-point, and doesn't affect any of *) +(* the results, in principle. In practice it seems a lot better when there *) +(* are extreme numbers in the original problem. *) + + (* Version for (int*int) keys *) +local + fun max_rat x y = if x fn a => lcm_rat (denominator_rat c) a) amat acc + fun maximal_element fld amat acc = + fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc +fun float_of_rat x = let val (a,b) = Rat.quotient_of_rat x + in Real.fromLargeInt a / Real.fromLargeInt b end; +in + +fun pi_scale_then solver (obj:vector) mats = + let + val cd1 = fold_rev (common_denominator Intpairfunc.fold) mats (rat_1) + val cd2 = common_denominator Intfunc.fold (snd obj) (rat_1) + val mats' = map (Intpairfunc.mapf (fn x => cd1 */ x)) mats + val obj' = vector_cmul cd2 obj + val max1 = fold_rev (maximal_element Intpairfunc.fold) mats' (rat_0) + val max2 = maximal_element Intfunc.fold (snd obj') (rat_0) + val scal1 = pow2 (20 - trunc(Math.ln (float_of_rat max1) / Math.ln 2.0)) + val scal2 = pow2 (20 - trunc(Math.ln (float_of_rat max2) / Math.ln 2.0)) + val mats'' = map (Intpairfunc.mapf (fn x => x */ scal1)) mats' + val obj'' = vector_cmul scal2 obj' + in solver obj'' mats'' + end +end; + +(* Try some apparently sensible scaling first. Note that this is purely to *) +(* get a cleaner translation to floating-point, and doesn't affect any of *) +(* the results, in principle. In practice it seems a lot better when there *) +(* are extreme numbers in the original problem. *) + + (* Version for (int*int*int) keys *) +local + fun max_rat x y = if x fn a => lcm_rat (denominator_rat c) a) amat acc + fun maximal_element fld amat acc = + fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc +fun float_of_rat x = let val (a,b) = Rat.quotient_of_rat x + in Real.fromLargeInt a / Real.fromLargeInt b end; +fun int_of_float x = (trunc x handle Overflow => 0 | Domain => 0) +in + +fun tri_scale_then solver (obj:vector) mats = + let + val cd1 = fold_rev (common_denominator Inttriplefunc.fold) mats (rat_1) + val cd2 = common_denominator Intfunc.fold (snd obj) (rat_1) + val mats' = map (Inttriplefunc.mapf (fn x => cd1 */ x)) mats + val obj' = vector_cmul cd2 obj + val max1 = fold_rev (maximal_element Inttriplefunc.fold) mats' (rat_0) + val max2 = maximal_element Intfunc.fold (snd obj') (rat_0) + val scal1 = pow2 (20 - int_of_float(Math.ln (float_of_rat max1) / Math.ln 2.0)) + val scal2 = pow2 (20 - int_of_float(Math.ln (float_of_rat max2) / Math.ln 2.0)) + val mats'' = map (Inttriplefunc.mapf (fn x => x */ scal1)) mats' + val obj'' = vector_cmul scal2 obj' + in solver obj'' mats'' + end +end; + +(* Round a vector to "nice" rationals. *) + +fun nice_rational n x = round_rat (n */ x) // n;; +fun nice_vector n ((d,v) : vector) = + (d, Intfunc.fold (fn (i,c) => fn a => + let val y = nice_rational n c + in if c =/ rat_0 then a + else Intfunc.update (i,y) a end) v Intfunc.undefined):vector + + +(* Reduce linear program to SDP (diagonal matrices) and test with CSDP. This *) +(* one tests A [-1;x1;..;xn] >= 0 (i.e. left column is negated constants). *) + +fun linear_program_basic a = + let + val (m,n) = dimensions a + val mats = map (fn j => diagonal (column j a)) (1 upto n) + val obj = vector_const rat_1 m + val (rv,res) = run_csdp false obj mats + in if rv = 1 orelse rv = 2 then false + else if rv = 0 then true + else error "linear_program: An error occurred in the SDP solver" + end; + +(* Alternative interface testing A x >= b for matrix A, vector b. *) + +fun linear_program a b = + let val (m,n) = dimensions a + in if dim b <> m then error "linear_program: incompatible dimensions" + else + let + val mats = diagonal b :: map (fn j => diagonal (column j a)) (1 upto n) + val obj = vector_const rat_1 m + val (rv,res) = run_csdp false obj mats + in if rv = 1 orelse rv = 2 then false + else if rv = 0 then true + else error "linear_program: An error occurred in the SDP solver" + end + end; + +(* Test whether a point is in the convex hull of others. Rather than use *) +(* computational geometry, express as linear inequalities and call CSDP. *) +(* This is a bit lazy of me, but it's easy and not such a bottleneck so far. *) + +fun in_convex_hull pts pt = + let + val pts1 = (1::pt) :: map (fn x => 1::x) pts + val pts2 = map (fn p => map (fn x => ~x) p @ p) pts1 + val n = length pts + 1 + val v = 2 * (length pt + 1) + val m = v + n - 1 + val mat = ((m,n), + itern 1 pts2 (fn pts => fn j => itern 1 pts + (fn x => fn i => Intpairfunc.update ((i,j), Rat.rat_of_int x))) + (iter (1,n) (fn i => Intpairfunc.update((v + i,i+1), rat_1)) + Intpairfunc.undefined)) + in linear_program_basic mat + end; + +(* Filter down a set of points to a minimal set with the same convex hull. *) + +local + fun augment1 (m::ms) = if in_convex_hull ms m then ms else ms@[m] + fun augment m ms = funpow 3 augment1 (m::ms) +in +fun minimal_convex_hull mons = + let val mons' = fold_rev augment (tl mons) [hd mons] + in funpow (length mons') augment1 mons' + end +end; + +fun dest_ord f x = is_equal (f x); + +(* Stuff for "equations" ((int*int*int)->num functions). *) + +fun tri_equation_cmul c eq = + if c =/ rat_0 then Inttriplefunc.undefined else Inttriplefunc.mapf (fn d => c */ d) eq; + +fun tri_equation_add eq1 eq2 = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0) eq1 eq2; + +fun tri_equation_eval assig eq = + let fun value v = Inttriplefunc.apply assig v + in Inttriplefunc.fold (fn (v, c) => fn a => a +/ value v */ c) eq rat_0 + end; + +(* Eliminate among linear equations: return unconstrained variables and *) +(* assignments for the others in terms of them. We give one pseudo-variable *) +(* "one" that's used for a constant term. *) + +local + fun extract_first p l = case l of (* FIXME : use find_first instead *) + [] => error "extract_first" + | h::t => if p h then (h,t) else + let val (k,s) = extract_first p t in (k,h::s) end +fun eliminate vars dun eqs = case vars of + [] => if forall Inttriplefunc.is_undefined eqs then dun + else raise Unsolvable + | v::vs => + ((let + val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs + val a = Inttriplefunc.apply eq v + val eq' = tri_equation_cmul ((Rat.neg rat_1) // a) (Inttriplefunc.undefine v eq) + fun elim e = + let val b = Inttriplefunc.tryapplyd e v rat_0 + in if b =/ rat_0 then e else + tri_equation_add e (tri_equation_cmul (Rat.neg b // a) eq) + end + in eliminate vs (Inttriplefunc.update (v,eq') (Inttriplefunc.mapf elim dun)) (map elim oeqs) + end) + handle ERROR _ => eliminate vs dun eqs) +in +fun tri_eliminate_equations one vars eqs = + let + val assig = eliminate vars Inttriplefunc.undefined eqs + val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig [] + in (distinct (dest_ord triple_int_ord) vs, assig) + end +end; + +(* Eliminate all variables, in an essentially arbitrary order. *) + +fun tri_eliminate_all_equations one = + let + fun choose_variable eq = + let val (v,_) = Inttriplefunc.choose eq + in if is_equal (triple_int_ord(v,one)) then + let val eq' = Inttriplefunc.undefine v eq + in if Inttriplefunc.is_undefined eq' then error "choose_variable" + else fst (Inttriplefunc.choose eq') + end + else v + end + fun eliminate dun eqs = case eqs of + [] => dun + | eq::oeqs => + if Inttriplefunc.is_undefined eq then eliminate dun oeqs else + let val v = choose_variable eq + val a = Inttriplefunc.apply eq v + val eq' = tri_equation_cmul ((Rat.rat_of_int ~1) // a) + (Inttriplefunc.undefine v eq) + fun elim e = + let val b = Inttriplefunc.tryapplyd e v rat_0 + in if b =/ rat_0 then e + else tri_equation_add e (tri_equation_cmul (Rat.neg b // a) eq) + end + in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.mapf elim dun)) + (map elim oeqs) + end +in fn eqs => + let + val assig = eliminate Inttriplefunc.undefined eqs + val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig [] + in (distinct (dest_ord triple_int_ord) vs,assig) + end +end; + +(* Solve equations by assigning arbitrary numbers. *) + +fun tri_solve_equations one eqs = + let + val (vars,assigs) = tri_eliminate_all_equations one eqs + val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars + (Inttriplefunc.onefunc(one, Rat.rat_of_int ~1)) + val ass = + Inttriplefunc.combine (curry op +/) (K false) + (Inttriplefunc.mapf (tri_equation_eval vfn) assigs) vfn + in if forall (fn e => tri_equation_eval ass e =/ rat_0) eqs + then Inttriplefunc.undefine one ass else raise Sanity + end; + +(* Multiply equation-parametrized poly by regular poly and add accumulator. *) + +fun tri_epoly_pmul p q acc = + Monomialfunc.fold (fn (m1, c) => fn a => + Monomialfunc.fold (fn (m2,e) => fn b => + let val m = monomial_mul m1 m2 + val es = Monomialfunc.tryapplyd b m Inttriplefunc.undefined + in Monomialfunc.update (m,tri_equation_add (tri_equation_cmul c e) es) b + end) q a) p acc ; + +(* Usual operations on equation-parametrized poly. *) + +fun tri_epoly_cmul c l = + if c =/ rat_0 then Inttriplefunc.undefined else Inttriplefunc.mapf (tri_equation_cmul c) l;; + +val tri_epoly_neg = tri_epoly_cmul (Rat.rat_of_int ~1); + +val tri_epoly_add = Inttriplefunc.combine tri_equation_add Inttriplefunc.is_undefined; + +fun tri_epoly_sub p q = tri_epoly_add p (tri_epoly_neg q);; + +(* Stuff for "equations" ((int*int)->num functions). *) + +fun pi_equation_cmul c eq = + if c =/ rat_0 then Inttriplefunc.undefined else Inttriplefunc.mapf (fn d => c */ d) eq; + +fun pi_equation_add eq1 eq2 = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0) eq1 eq2; + +fun pi_equation_eval assig eq = + let fun value v = Inttriplefunc.apply assig v + in Inttriplefunc.fold (fn (v, c) => fn a => a +/ value v */ c) eq rat_0 + end; + +(* Eliminate among linear equations: return unconstrained variables and *) +(* assignments for the others in terms of them. We give one pseudo-variable *) +(* "one" that's used for a constant term. *) + +local +fun extract_first p l = case l of + [] => error "extract_first" + | h::t => if p h then (h,t) else + let val (k,s) = extract_first p t in (k,h::s) end +fun eliminate vars dun eqs = case vars of + [] => if forall Inttriplefunc.is_undefined eqs then dun + else raise Unsolvable + | v::vs => + let + val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs + val a = Inttriplefunc.apply eq v + val eq' = pi_equation_cmul ((Rat.neg rat_1) // a) (Inttriplefunc.undefine v eq) + fun elim e = + let val b = Inttriplefunc.tryapplyd e v rat_0 + in if b =/ rat_0 then e else + pi_equation_add e (pi_equation_cmul (Rat.neg b // a) eq) + end + in eliminate vs (Inttriplefunc.update (v,eq') (Inttriplefunc.mapf elim dun)) (map elim oeqs) + end + handle ERROR _ => eliminate vs dun eqs +in +fun pi_eliminate_equations one vars eqs = + let + val assig = eliminate vars Inttriplefunc.undefined eqs + val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig [] + in (distinct (dest_ord triple_int_ord) vs, assig) + end +end; + +(* Eliminate all variables, in an essentially arbitrary order. *) + +fun pi_eliminate_all_equations one = + let + fun choose_variable eq = + let val (v,_) = Inttriplefunc.choose eq + in if is_equal (triple_int_ord(v,one)) then + let val eq' = Inttriplefunc.undefine v eq + in if Inttriplefunc.is_undefined eq' then error "choose_variable" + else fst (Inttriplefunc.choose eq') + end + else v + end + fun eliminate dun eqs = case eqs of + [] => dun + | eq::oeqs => + if Inttriplefunc.is_undefined eq then eliminate dun oeqs else + let val v = choose_variable eq + val a = Inttriplefunc.apply eq v + val eq' = pi_equation_cmul ((Rat.rat_of_int ~1) // a) + (Inttriplefunc.undefine v eq) + fun elim e = + let val b = Inttriplefunc.tryapplyd e v rat_0 + in if b =/ rat_0 then e + else pi_equation_add e (pi_equation_cmul (Rat.neg b // a) eq) + end + in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.mapf elim dun)) + (map elim oeqs) + end +in fn eqs => + let + val assig = eliminate Inttriplefunc.undefined eqs + val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig [] + in (distinct (dest_ord triple_int_ord) vs,assig) + end +end; + +(* Solve equations by assigning arbitrary numbers. *) + +fun pi_solve_equations one eqs = + let + val (vars,assigs) = pi_eliminate_all_equations one eqs + val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars + (Inttriplefunc.onefunc(one, Rat.rat_of_int ~1)) + val ass = + Inttriplefunc.combine (curry op +/) (K false) + (Inttriplefunc.mapf (pi_equation_eval vfn) assigs) vfn + in if forall (fn e => pi_equation_eval ass e =/ rat_0) eqs + then Inttriplefunc.undefine one ass else raise Sanity + end; + +(* Multiply equation-parametrized poly by regular poly and add accumulator. *) + +fun pi_epoly_pmul p q acc = + Monomialfunc.fold (fn (m1, c) => fn a => + Monomialfunc.fold (fn (m2,e) => fn b => + let val m = monomial_mul m1 m2 + val es = Monomialfunc.tryapplyd b m Inttriplefunc.undefined + in Monomialfunc.update (m,pi_equation_add (pi_equation_cmul c e) es) b + end) q a) p acc ; + +(* Usual operations on equation-parametrized poly. *) + +fun pi_epoly_cmul c l = + if c =/ rat_0 then Inttriplefunc.undefined else Inttriplefunc.mapf (pi_equation_cmul c) l;; + +val pi_epoly_neg = pi_epoly_cmul (Rat.rat_of_int ~1); + +val pi_epoly_add = Inttriplefunc.combine pi_equation_add Inttriplefunc.is_undefined; + +fun pi_epoly_sub p q = pi_epoly_add p (pi_epoly_neg q);; + +fun allpairs f l1 l2 = fold_rev (fn x => (curry (op @)) (map (f x) l2)) l1 []; + +(* Hence produce the "relevant" monomials: those whose squares lie in the *) +(* Newton polytope of the monomials in the input. (This is enough according *) +(* to Reznik: "Extremal PSD forms with few terms", Duke Math. Journal, *) +(* vol 45, pp. 363--374, 1978. *) +(* *) +(* These are ordered in sort of decreasing degree. In particular the *) +(* constant monomial is last; this gives an order in diagonalization of the *) +(* quadratic form that will tend to display constants. *) + +fun newton_polytope pol = + let + val vars = poly_variables pol + val mons = map (fn m => map (fn x => monomial_degree x m) vars) + (Monomialfunc.dom pol) + val ds = map (fn x => (degree x pol + 1) div 2) vars + val all = fold_rev (fn n => allpairs cons (0 upto n)) ds [[]] + val mons' = minimal_convex_hull mons + val all' = + filter (fn m => in_convex_hull mons' (map (fn x => 2 * x) m)) all + in map (fn m => fold_rev2 (fn v => fn i => fn a => if i = 0 then a else Ctermfunc.update (v,i) a) + vars m monomial_1) (rev all') + end; + +(* Diagonalize (Cholesky/LDU) the matrix corresponding to a quadratic form. *) + +local +fun diagonalize n i m = + if Intpairfunc.is_undefined (snd m) then [] + else + let val a11 = Intpairfunc.tryapplyd (snd m) (i,i) rat_0 + in if a11 fn a => + let val y = c // a11 + in if y = rat_0 then a else Intfunc.update (i,y) a + end) (snd v) Intfunc.undefined) + fun upt0 x y a = if y = rat_0 then a else Intpairfunc.update (x,y) a + val m' = + ((n,n), + iter (i+1,n) (fn j => + iter (i+1,n) (fn k => + (upt0 (j,k) (Intpairfunc.tryapplyd (snd m) (j,k) rat_0 -/ Intfunc.tryapplyd (snd v) j rat_0 */ Intfunc.tryapplyd (snd v') k rat_0)))) + Intpairfunc.undefined) + in (a11,v')::diagonalize n (i + 1) m' + end + end +in +fun diag m = + let + val nn = dimensions m + val n = fst nn + in if snd nn <> n then error "diagonalize: non-square matrix" + else diagonalize n 1 m + end +end; + +fun gcd_rat a b = Rat.rat_of_int (Integer.gcd (int_of_rat a) (int_of_rat b)); + +(* Adjust a diagonalization to collect rationals at the start. *) + (* FIXME : Potentially polymorphic keys, but here only: integers!! *) +local + fun upd0 x y a = if y =/ rat_0 then a else Intfunc.update(x,y) a; + fun mapa f (d,v) = + (d, Intfunc.fold (fn (i,c) => fn a => upd0 i (f c) a) v Intfunc.undefined) + fun adj (c,l) = + let val a = + Intfunc.fold (fn (i,c) => fn a => lcm_rat a (denominator_rat c)) + (snd l) rat_1 // + Intfunc.fold (fn (i,c) => fn a => gcd_rat a (numerator_rat c)) + (snd l) rat_0 + in ((c // (a */ a)),mapa (fn x => a */ x) l) + end +in +fun deration d = if null d then (rat_0,d) else + let val d' = map adj d + val a = fold (lcm_rat o denominator_rat o fst) d' rat_1 // + fold (gcd_rat o numerator_rat o fst) d' rat_0 + in ((rat_1 // a),map (fn (c,l) => (a */ c,l)) d') + end +end; + +(* Enumeration of monomials with given multidegree bound. *) + +fun enumerate_monomials d vars = + if d < 0 then [] + else if d = 0 then [Ctermfunc.undefined] + else if null vars then [monomial_1] else + let val alts = + map (fn k => let val oths = enumerate_monomials (d - k) (tl vars) + in map (fn ks => if k = 0 then ks else Ctermfunc.update (hd vars, k) ks) oths end) (0 upto d) + in fold1 (curry op @) alts + end; + +(* Enumerate products of distinct input polys with degree <= d. *) +(* We ignore any constant input polynomials. *) +(* Give the output polynomial and a record of how it was derived. *) + +local + open RealArith +in +fun enumerate_products d pols = +if d = 0 then [(poly_const rat_1,Rational_lt rat_1)] +else if d < 0 then [] else +case pols of + [] => [(poly_const rat_1,Rational_lt rat_1)] + | (p,b)::ps => + let val e = multidegree p + in if e = 0 then enumerate_products d ps else + enumerate_products d ps @ + map (fn (q,c) => (poly_mul p q,Product(b,c))) + (enumerate_products (d - e) ps) + end +end; + +(* Convert regular polynomial. Note that we treat (0,0,0) as -1. *) + +fun epoly_of_poly p = + Monomialfunc.fold (fn (m,c) => fn a => Monomialfunc.update (m, Inttriplefunc.onefunc ((0,0,0), Rat.neg c)) a) p Monomialfunc.undefined; + +(* String for block diagonal matrix numbered k. *) + +fun sdpa_of_blockdiagonal k m = + let + val pfx = string_of_int k ^" " + val ents = + Inttriplefunc.fold + (fn ((b,i,j),c) => fn a => if i > j then a else ((b,i,j),c)::a) + m [] + val entss = sort (increasing fst triple_int_ord) ents + in fold_rev (fn ((b,i,j),c) => fn a => + pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^ + " " ^ decimalize 20 c ^ "\n" ^ a) entss "" + end; + +(* SDPA for problem using block diagonal (i.e. multiple SDPs) *) + +fun sdpa_of_blockproblem comment nblocks blocksizes obj mats = + let val m = length mats - 1 + in "\"" ^ comment ^ "\"\n" ^ + string_of_int m ^ "\n" ^ + string_of_int nblocks ^ "\n" ^ + (fold1 (fn s => fn t => s^" "^t) (map string_of_int blocksizes)) ^ + "\n" ^ + sdpa_of_vector obj ^ + fold_rev2 (fn k => fn m => fn a => sdpa_of_blockdiagonal (k - 1) m ^ a) + (1 upto length mats) mats "" + end; + +(* Hence run CSDP on a problem in block diagonal form. *) + +fun run_csdp dbg nblocks blocksizes obj mats = + let + val input_file = tmp_file "sos" ".dat-s" + val output_file = tmp_file "sos" ".out" + val params_file = tmp_file "param" ".csdp" + val _ = File.write input_file + (sdpa_of_blockproblem "" nblocks blocksizes obj mats) + val _ = File.write params_file csdp_params + val current_dir = File.pwd() + val _ = File.cd (Path.variable "ISABELLE_TMP") + val rv = system ("csdp "^(Path.implode input_file) ^ " " + ^ (Path.implode output_file) ^ + (if dbg then "" else "> /dev/null")) + val opr = File.read output_file + val res = parse_csdpoutput opr + in + ((if dbg then () + else (File.rm input_file ; File.rm output_file ; File.cd current_dir)); + (rv,res)) + end; + +fun csdp nblocks blocksizes obj mats = + let + val (rv,res) = run_csdp (!debugging) nblocks blocksizes obj mats + in ((if rv = 1 orelse rv = 2 then error "csdp: Problem is infeasible" + else if rv = 3 then writeln "csdp warning: Reduced accuracy" + else if rv <> 0 then error ("csdp: error "^string_of_int rv) + else ()); + res) + end; + +(* 3D versions of matrix operations to consider blocks separately. *) + +val bmatrix_add = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0); +fun bmatrix_cmul c bm = + if c =/ rat_0 then Inttriplefunc.undefined + else Inttriplefunc.mapf (fn x => c */ x) bm; + +val bmatrix_neg = bmatrix_cmul (Rat.rat_of_int ~1); +fun bmatrix_sub m1 m2 = bmatrix_add m1 (bmatrix_neg m2);; + +(* Smash a block matrix into components. *) + +fun blocks blocksizes bm = + map (fn (bs,b0) => + let val m = Inttriplefunc.fold + (fn ((b,i,j),c) => fn a => if b = b0 then Intpairfunc.update ((i,j),c) a else a) bm Intpairfunc.undefined + val d = Intpairfunc.fold (fn ((i,j),c) => fn a => max a (max i j)) m 0 + in (((bs,bs),m):matrix) end) + (blocksizes ~~ (1 upto length blocksizes));; + +(* FIXME : Get rid of this !!!*) +fun tryfind f [] = error "tryfind" + | tryfind f (x::xs) = (f x handle ERROR _ => tryfind f xs); + + +(* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *) + + +local + open RealArith +in +fun real_positivnullstellensatz_general linf d eqs leqs pol = +let + val vars = fold_rev (curry (gen_union (op aconvc)) o poly_variables) + (pol::eqs @ map fst leqs) [] + val monoid = if linf then + (poly_const rat_1,Rational_lt rat_1):: + (filter (fn (p,c) => multidegree p <= d) leqs) + else enumerate_products d leqs + val nblocks = length monoid + fun mk_idmultiplier k p = + let + val e = d - multidegree p + val mons = enumerate_monomials e vars + val nons = mons ~~ (1 upto length mons) + in (mons, + fold_rev (fn (m,n) => Monomialfunc.update(m,Inttriplefunc.onefunc((~k,~n,n),rat_1))) nons Monomialfunc.undefined) + end + + fun mk_sqmultiplier k (p,c) = + let + val e = (d - multidegree p) div 2 + val mons = enumerate_monomials e vars + val nons = mons ~~ (1 upto length mons) + in (mons, + fold_rev (fn (m1,n1) => + fold_rev (fn (m2,n2) => fn a => + let val m = monomial_mul m1 m2 + in if n1 > n2 then a else + let val c = if n1 = n2 then rat_1 else rat_2 + val e = Monomialfunc.tryapplyd a m Inttriplefunc.undefined + in Monomialfunc.update(m, tri_equation_add (Inttriplefunc.onefunc((k,n1,n2), c)) e) a + end + end) nons) + nons Monomialfunc.undefined) + end + + val (sqmonlist,sqs) = split_list (map2 mk_sqmultiplier (1 upto length monoid) monoid) + val (idmonlist,ids) = split_list(map2 mk_idmultiplier (1 upto length eqs) eqs) + val blocksizes = map length sqmonlist + val bigsum = + fold_rev2 (fn p => fn q => fn a => tri_epoly_pmul p q a) eqs ids + (fold_rev2 (fn (p,c) => fn s => fn a => tri_epoly_pmul p s a) monoid sqs + (epoly_of_poly(poly_neg pol))) + val eqns = Monomialfunc.fold (fn (m,e) => fn a => e::a) bigsum [] + val (pvs,assig) = tri_eliminate_all_equations (0,0,0) eqns + val qvars = (0,0,0)::pvs + val allassig = fold_rev (fn v => Inttriplefunc.update(v,(Inttriplefunc.onefunc(v,rat_1)))) pvs assig + fun mk_matrix v = + Inttriplefunc.fold (fn ((b,i,j), ass) => fn m => + if b < 0 then m else + let val c = Inttriplefunc.tryapplyd ass v rat_0 + in if c = rat_0 then m else + Inttriplefunc.update ((b,j,i), c) (Inttriplefunc.update ((b,i,j), c) m) + end) + allassig Inttriplefunc.undefined + val diagents = Inttriplefunc.fold + (fn ((b,i,j), e) => fn a => if b > 0 andalso i = j then tri_equation_add e a else a) + allassig Inttriplefunc.undefined + + val mats = map mk_matrix qvars + val obj = (length pvs, + itern 1 pvs (fn v => fn i => Intfunc.updatep iszero (i,Inttriplefunc.tryapplyd diagents v rat_0)) + Intfunc.undefined) + val raw_vec = if null pvs then vector_0 0 + else tri_scale_then (csdp nblocks blocksizes) obj mats + fun int_element (d,v) i = Intfunc.tryapplyd v i rat_0 + fun cterm_element (d,v) i = Ctermfunc.tryapplyd v i rat_0 + + fun find_rounding d = + let + val _ = if !debugging + then writeln ("Trying rounding with limit "^Rat.string_of_rat d ^ "\n") + else () + val vec = nice_vector d raw_vec + val blockmat = iter (1,dim vec) + (fn i => fn a => bmatrix_add (bmatrix_cmul (int_element vec i) (nth mats i)) a) + (bmatrix_neg (nth mats 0)) + val allmats = blocks blocksizes blockmat + in (vec,map diag allmats) + end + val (vec,ratdias) = + if null pvs then find_rounding rat_1 + else tryfind find_rounding (map Rat.rat_of_int (1 upto 31) @ + map pow2 (5 upto 66)) + val newassigs = + fold_rev (fn k => Inttriplefunc.update (nth pvs (k - 1), int_element vec k)) + (1 upto dim vec) (Inttriplefunc.onefunc ((0,0,0), Rat.rat_of_int ~1)) + val finalassigs = + Inttriplefunc.fold (fn (v,e) => fn a => Inttriplefunc.update(v, tri_equation_eval newassigs e) a) allassig newassigs + fun poly_of_epoly p = + Monomialfunc.fold (fn (v,e) => fn a => Monomialfunc.updatep iszero (v,tri_equation_eval finalassigs e) a) + p Monomialfunc.undefined + fun mk_sos mons = + let fun mk_sq (c,m) = + (c,fold_rev (fn k=> fn a => Monomialfunc.updatep iszero (nth mons (k - 1), int_element m k) a) + (1 upto length mons) Monomialfunc.undefined) + in map mk_sq + end + val sqs = map2 mk_sos sqmonlist ratdias + val cfs = map poly_of_epoly ids + val msq = filter (fn (a,b) => not (null b)) (map2 pair monoid sqs) + fun eval_sq sqs = fold_rev (fn (c,q) => poly_add (poly_cmul c (poly_mul q q))) sqs poly_0 + val sanity = + fold_rev (fn ((p,c),s) => poly_add (poly_mul p (eval_sq s))) msq + (fold_rev2 (fn p => fn q => poly_add (poly_mul p q)) cfs eqs + (poly_neg pol)) + +in if not(Monomialfunc.is_undefined sanity) then raise Sanity else + (cfs,map (fn (a,b) => (snd a,b)) msq) + end + + +end; + +(* Iterative deepening. *) + +fun deepen f n = + (writeln ("Searching with depth limit " ^ string_of_int n) ; (f n handle ERROR s => (writeln ("failed with message: " ^ s) ; deepen f (n+1)))) + +(* The ordering so we can create canonical HOL polynomials. *) + +fun dest_monomial mon = sort (increasing fst cterm_ord) (Ctermfunc.graph mon); + +fun monomial_order (m1,m2) = + if Ctermfunc.is_undefined m2 then LESS + else if Ctermfunc.is_undefined m1 then GREATER + else + let val mon1 = dest_monomial m1 + val mon2 = dest_monomial m2 + val deg1 = fold (curry op + o snd) mon1 0 + val deg2 = fold (curry op + o snd) mon2 0 + in if deg1 < deg2 then GREATER else if deg1 > deg2 then LESS + else list_ord (prod_ord cterm_ord int_ord) (mon1,mon2) + end; + +fun dest_poly p = + map (fn (m,c) => (c,dest_monomial m)) + (sort (prod_ord monomial_order (K EQUAL)) (Monomialfunc.graph p)); + +(* Map back polynomials and their composites to HOL. *) + +local + open Thm Numeral RealArith +in + +fun cterm_of_varpow x k = if k = 1 then x else capply (capply @{cterm "op ^ :: real => _"} x) + (mk_cnumber @{ctyp nat} k) + +fun cterm_of_monomial m = + if Ctermfunc.is_undefined m then @{cterm "1::real"} + else + let + val m' = dest_monomial m + val vps = fold_rev (fn (x,k) => cons (cterm_of_varpow x k)) m' [] + in fold1 (fn s => fn t => capply (capply @{cterm "op * :: real => _"} s) t) vps + end + +fun cterm_of_cmonomial (m,c) = if Ctermfunc.is_undefined m then cterm_of_rat c + else if c = Rat.one then cterm_of_monomial m + else capply (capply @{cterm "op *::real => _"} (cterm_of_rat c)) (cterm_of_monomial m); + +fun cterm_of_poly p = + if Monomialfunc.is_undefined p then @{cterm "0::real"} + else + let + val cms = map cterm_of_cmonomial + (sort (prod_ord monomial_order (K EQUAL)) (Monomialfunc.graph p)) + in fold1 (fn t1 => fn t2 => capply(capply @{cterm "op + :: real => _"} t1) t2) cms + end; + +fun cterm_of_sqterm (c,p) = Product(Rational_lt c,Square(cterm_of_poly p)); + +fun cterm_of_sos (pr,sqs) = if null sqs then pr + else Product(pr,fold1 (fn a => fn b => Sum(a,b)) (map cterm_of_sqterm sqs)); + +end + +(* Interface to HOL. *) +local + open Thm Conv RealArith + val concl = dest_arg o cprop_of + fun simple_cterm_ord t u = TermOrd.fast_term_ord (term_of t, term_of u) = LESS +in + (* FIXME: Replace tryfind by get_first !! *) +fun real_nonlinear_prover ctxt = + let + val {add,mul,neg,pow,sub,main} = Normalizer.semiring_normalizers_ord_wrapper ctxt + (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) + simple_cterm_ord + val (real_poly_add_conv,real_poly_mul_conv,real_poly_neg_conv, + real_poly_pow_conv,real_poly_sub_conv,real_poly_conv) = (add,mul,neg,pow,sub,main) + fun mainf translator (eqs,les,lts) = + let + val eq0 = map (poly_of_term o dest_arg1 o concl) eqs + val le0 = map (poly_of_term o dest_arg o concl) les + val lt0 = map (poly_of_term o dest_arg o concl) lts + val eqp0 = map (fn (t,i) => (t,Axiom_eq i)) (eq0 ~~ (0 upto (length eq0 - 1))) + val lep0 = map (fn (t,i) => (t,Axiom_le i)) (le0 ~~ (0 upto (length le0 - 1))) + val ltp0 = map (fn (t,i) => (t,Axiom_lt i)) (lt0 ~~ (0 upto (length lt0 - 1))) + val (keq,eq) = List.partition (fn (p,_) => multidegree p = 0) eqp0 + val (klep,lep) = List.partition (fn (p,_) => multidegree p = 0) lep0 + val (kltp,ltp) = List.partition (fn (p,_) => multidegree p = 0) ltp0 + fun trivial_axiom (p,ax) = + case ax of + Axiom_eq n => if eval Ctermfunc.undefined p <>/ Rat.zero then nth eqs n + else error "trivial_axiom: Not a trivial axiom" + | Axiom_le n => if eval Ctermfunc.undefined p if eval Ctermfunc.undefined p <=/ Rat.zero then nth lts n + else error "trivial_axiom: Not a trivial axiom" + | _ => error "trivial_axiom: Not a trivial axiom" + in + ((let val th = tryfind trivial_axiom (keq @ klep @ kltp) + in fconv_rule (arg_conv (arg1_conv real_poly_conv) then_conv field_comp_conv) th end) + handle ERROR _ => ( + let + val pol = fold_rev poly_mul (map fst ltp) (poly_const Rat.one) + val leq = lep @ ltp + fun tryall d = + let val e = multidegree pol + val k = if e = 0 then 0 else d div e + val eq' = map fst eq + in tryfind (fn i => (d,i,real_positivnullstellensatz_general false d eq' leq + (poly_neg(poly_pow pol i)))) + (0 upto k) + end + val (d,i,(cert_ideal,cert_cone)) = deepen tryall 0 + val proofs_ideal = + map2 (fn q => fn (p,ax) => Eqmul(cterm_of_poly q,ax)) cert_ideal eq + val proofs_cone = map cterm_of_sos cert_cone + val proof_ne = if null ltp then Rational_lt Rat.one else + let val p = fold1 (fn s => fn t => Product(s,t)) (map snd ltp) + in funpow i (fn q => Product(p,q)) (Rational_lt Rat.one) + end + val proof = fold1 (fn s => fn t => Sum(s,t)) + (proof_ne :: proofs_ideal @ proofs_cone) + in writeln "Translating proof certificate to HOL"; + translator (eqs,les,lts) proof + end)) + end + in mainf end +end + +fun C f x y = f y x; + (* FIXME : This is very bad!!!*) +fun subst_conv eqs t = + let + val t' = fold (Thm.cabs o Thm.lhs_of) eqs t + in Conv.fconv_rule (Thm.beta_conversion true) (fold (C combination) eqs (reflexive t')) + end + +(* A wrapper that tries to substitute away variables first. *) + +local + open Thm Conv RealArith + fun simple_cterm_ord t u = TermOrd.fast_term_ord (term_of t, term_of u) = LESS + val concl = dest_arg o cprop_of + val shuffle1 = + fconv_rule (rewr_conv @{lemma "(a + x == y) == (x == y - (a::real))" by (atomize (full)) (simp add: ring_simps) }) + val shuffle2 = + fconv_rule (rewr_conv @{lemma "(x + a == y) == (x == y - (a::real))" by (atomize (full)) (simp add: ring_simps)}) + fun substitutable_monomial fvs tm = case term_of tm of + Free(_,@{typ real}) => if not (member (op aconvc) fvs tm) then (Rat.one,tm) + else error "substitutable_monomial" + | @{term "op * :: real => _"}$c$(t as Free _ ) => + if is_ratconst (dest_arg1 tm) andalso not (member (op aconvc) fvs (dest_arg tm)) + then (dest_ratconst (dest_arg1 tm),dest_arg tm) else error "substitutable_monomial" + | @{term "op + :: real => _"}$s$t => + (substitutable_monomial (add_cterm_frees (dest_arg tm) fvs) (dest_arg1 tm) + handle ERROR _ => substitutable_monomial (add_cterm_frees (dest_arg1 tm) fvs) (dest_arg tm)) + | _ => error "substitutable_monomial" + + fun isolate_variable v th = + let val w = dest_arg1 (cprop_of th) + in if v aconvc w then th + else case term_of w of + @{term "op + :: real => _"}$s$t => + if dest_arg1 w aconvc v then shuffle2 th + else isolate_variable v (shuffle1 th) + | _ => error "isolate variable : This should not happen?" + end +in + +fun real_nonlinear_subst_prover ctxt = + let + val {add,mul,neg,pow,sub,main} = Normalizer.semiring_normalizers_ord_wrapper ctxt + (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) + simple_cterm_ord + + val (real_poly_add_conv,real_poly_mul_conv,real_poly_neg_conv, + real_poly_pow_conv,real_poly_sub_conv,real_poly_conv) = (add,mul,neg,pow,sub,main) + + fun make_substitution th = + let + val (c,v) = substitutable_monomial [] (dest_arg1(concl th)) + val th1 = Drule.arg_cong_rule (capply @{cterm "op * :: real => _"} (cterm_of_rat (Rat.inv c))) (mk_meta_eq th) + val th2 = fconv_rule (binop_conv real_poly_mul_conv) th1 + in fconv_rule (arg_conv real_poly_conv) (isolate_variable v th2) + end + fun oprconv cv ct = + let val g = Thm.dest_fun2 ct + in if g aconvc @{cterm "op <= :: real => _"} + orelse g aconvc @{cterm "op < :: real => _"} + then arg_conv cv ct else arg1_conv cv ct + end + fun mainf translator = + let + fun substfirst(eqs,les,lts) = + ((let + val eth = tryfind make_substitution eqs + val modify = fconv_rule (arg_conv (oprconv(subst_conv [eth] then_conv real_poly_conv))) + in substfirst + (filter_out (fn t => (Thm.dest_arg1 o Thm.dest_arg o cprop_of) t + aconvc @{cterm "0::real"}) (map modify eqs), + map modify les,map modify lts) + end) + handle ERROR _ => real_nonlinear_prover ctxt translator (rev eqs, rev les, rev lts)) + in substfirst + end + + + in mainf + end + +(* Overall function. *) + +fun real_sos ctxt t = gen_prover_real_arith ctxt (real_nonlinear_subst_prover ctxt) t; +end; + +end; \ No newline at end of file