# HG changeset patch # User paulson # Date 1072187123 -3600 # Node ID 255190be18c01085a1c44d8579e3b9c087368303 # Parent 7dbd3988b15b68d971904baee9525441305c1b01 renaming some theorems diff -r 7dbd3988b15b -r 255190be18c0 src/HOL/Hyperreal/NthRoot.ML --- a/src/HOL/Hyperreal/NthRoot.ML Tue Dec 23 12:54:45 2003 +0100 +++ b/src/HOL/Hyperreal/NthRoot.ML Tue Dec 23 14:45:23 2003 +0100 @@ -85,7 +85,7 @@ \ isLub (UNIV::real set) \ \ {x. x ^ n <= a & 0 < x} u |] ==> a <= u ^ n"; by (ftac lemma_nth_realpow_isLub_ge 1 THEN Step_tac 1); -by (rtac (LIMSEQ_inverse_real_of_posnat_add RS LIMSEQ_pow +by (rtac (LIMSEQ_inverse_real_of_nat_add RS LIMSEQ_pow RS LIMSEQ_le_const) 1); by (auto_tac (claset(),simpset() addsimps [real_of_nat_def, real_of_posnat_Suc])); @@ -133,7 +133,7 @@ \ isLub (UNIV::real set) \ \ {x. x ^ n <= a & 0 < x} u |] ==> u ^ n <= a"; by (ftac lemma_nth_realpow_isLub_le 1 THEN Step_tac 1); -by (rtac (LIMSEQ_inverse_real_of_posnat_add_minus_mult RS LIMSEQ_pow +by (rtac (LIMSEQ_inverse_real_of_nat_add_minus_mult RS LIMSEQ_pow RS LIMSEQ_le_const2) 1); by (auto_tac (claset(),simpset() addsimps [real_of_nat_def,real_of_posnat_Suc])); qed "realpow_nth_le"; diff -r 7dbd3988b15b -r 255190be18c0 src/HOL/Hyperreal/SEQ.ML --- a/src/HOL/Hyperreal/SEQ.ML Tue Dec 23 12:54:45 2003 +0100 +++ b/src/HOL/Hyperreal/SEQ.ML Tue Dec 23 14:45:23 2003 +0100 @@ -1168,12 +1168,12 @@ by (cut_facts_tac [ [LIMSEQ_const,LIMSEQ_inverse_real_of_nat] MRS LIMSEQ_add ] 1); by Auto_tac; -qed "LIMSEQ_inverse_real_of_posnat_add"; +qed "LIMSEQ_inverse_real_of_nat_add"; Goal "(%n. r + inverse(real(Suc n))) ----NS> r"; by (simp_tac (simpset() addsimps [LIMSEQ_NSLIMSEQ_iff RS sym, - LIMSEQ_inverse_real_of_posnat_add]) 1); -qed "NSLIMSEQ_inverse_real_of_posnat_add"; + LIMSEQ_inverse_real_of_nat_add]) 1); +qed "NSLIMSEQ_inverse_real_of_nat_add"; (*-------------- Also... @@ -1183,23 +1183,23 @@ by (cut_facts_tac [[LIMSEQ_const,LIMSEQ_inverse_real_of_nat] MRS LIMSEQ_add_minus] 1); by (Auto_tac); -qed "LIMSEQ_inverse_real_of_posnat_add_minus"; +qed "LIMSEQ_inverse_real_of_nat_add_minus"; Goal "(%n. r + -inverse(real(Suc n))) ----NS> r"; by (simp_tac (simpset() addsimps [LIMSEQ_NSLIMSEQ_iff RS sym, - LIMSEQ_inverse_real_of_posnat_add_minus]) 1); -qed "NSLIMSEQ_inverse_real_of_posnat_add_minus"; + LIMSEQ_inverse_real_of_nat_add_minus]) 1); +qed "NSLIMSEQ_inverse_real_of_nat_add_minus"; Goal "(%n. r*( 1 + -inverse(real(Suc n)))) ----> r"; by (cut_inst_tac [("b","1")] ([LIMSEQ_const, - LIMSEQ_inverse_real_of_posnat_add_minus] MRS LIMSEQ_mult) 1); + LIMSEQ_inverse_real_of_nat_add_minus] MRS LIMSEQ_mult) 1); by (Auto_tac); -qed "LIMSEQ_inverse_real_of_posnat_add_minus_mult"; +qed "LIMSEQ_inverse_real_of_nat_add_minus_mult"; Goal "(%n. r*( 1 + -inverse(real(Suc n)))) ----NS> r"; by (simp_tac (simpset() addsimps [LIMSEQ_NSLIMSEQ_iff RS sym, - LIMSEQ_inverse_real_of_posnat_add_minus_mult]) 1); -qed "NSLIMSEQ_inverse_real_of_posnat_add_minus_mult"; + LIMSEQ_inverse_real_of_nat_add_minus_mult]) 1); +qed "NSLIMSEQ_inverse_real_of_nat_add_minus_mult"; (*--------------------------------------------------------------- Real Powers