# HG changeset patch # User haftmann # Date 1260194041 -3600 # Node ID 2573c794034c32c4dcf9b9ebe763069d7d2f66b3 # Parent 7dd37f4c755b258a94de712ee8249642d9ee2e8f merged Crude_Executable_Set into Executable_Set diff -r 7dd37f4c755b -r 2573c794034c src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Mon Dec 07 09:21:14 2009 +0100 +++ b/src/HOL/IsaMakefile Mon Dec 07 14:54:01 2009 +0100 @@ -369,7 +369,6 @@ Library/Sum_Of_Squares/sos_wrapper.ML \ Library/Sum_Of_Squares/sum_of_squares.ML Library/Fset.thy \ Library/Glbs.thy Library/normarith.ML Library/Executable_Set.thy \ - Library/Crude_Executable_Set.thy \ Library/Infinite_Set.thy Library/FuncSet.thy \ Library/Permutations.thy Library/Bit.thy Library/FrechetDeriv.thy \ Library/Fraction_Field.thy Library/Fundamental_Theorem_Algebra.thy \ diff -r 7dd37f4c755b -r 2573c794034c src/HOL/Library/Crude_Executable_Set.thy --- a/src/HOL/Library/Crude_Executable_Set.thy Mon Dec 07 09:21:14 2009 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,259 +0,0 @@ -(* Title: HOL/Library/Crude_Executable_Set.thy - Author: Florian Haftmann, TU Muenchen -*) - -header {* A crude implementation of finite sets by lists -- avoid using this at any cost! *} - -theory Crude_Executable_Set -imports List_Set -begin - -declare mem_def [code del] -declare Collect_def [code del] -declare insert_code [code del] -declare vimage_code [code del] - -subsection {* Set representation *} - -setup {* - Code.add_type_cmd "set" -*} - -definition Set :: "'a list \ 'a set" where - [simp]: "Set = set" - -definition Coset :: "'a list \ 'a set" where - [simp]: "Coset xs = - set xs" - -setup {* - Code.add_signature_cmd ("Set", "'a list \ 'a set") - #> Code.add_signature_cmd ("Coset", "'a list \ 'a set") - #> Code.add_signature_cmd ("set", "'a list \ 'a set") - #> Code.add_signature_cmd ("op \", "'a \ 'a set \ bool") -*} - -code_datatype Set Coset - - -subsection {* Basic operations *} - -lemma [code]: - "set xs = Set (remdups xs)" - by simp - -lemma [code]: - "x \ Set xs \ member x xs" - "x \ Coset xs \ \ member x xs" - by (simp_all add: mem_iff) - -definition is_empty :: "'a set \ bool" where - [simp]: "is_empty A \ A = {}" - -lemma [code_inline]: - "A = {} \ is_empty A" - by simp - -definition empty :: "'a set" where - [simp]: "empty = {}" - -lemma [code_inline]: - "{} = empty" - by simp - -setup {* - Code.add_signature_cmd ("is_empty", "'a set \ bool") - #> Code.add_signature_cmd ("empty", "'a set") - #> Code.add_signature_cmd ("insert", "'a \ 'a set \ 'a set") - #> Code.add_signature_cmd ("List_Set.remove", "'a \ 'a set \ 'a set") - #> Code.add_signature_cmd ("image", "('a \ 'b) \ 'a set \ 'b set") - #> Code.add_signature_cmd ("List_Set.project", "('a \ bool) \ 'a set \ 'a set") - #> Code.add_signature_cmd ("Ball", "'a set \ ('a \ bool) \ bool") - #> Code.add_signature_cmd ("Bex", "'a set \ ('a \ bool) \ bool") - #> Code.add_signature_cmd ("card", "'a set \ nat") -*} - -lemma is_empty_Set [code]: - "is_empty (Set xs) \ null xs" - by (simp add: empty_null) - -lemma empty_Set [code]: - "empty = Set []" - by simp - -lemma insert_Set [code]: - "insert x (Set xs) = Set (List_Set.insert x xs)" - "insert x (Coset xs) = Coset (remove_all x xs)" - by (simp_all add: insert_set insert_set_compl) - -lemma remove_Set [code]: - "remove x (Set xs) = Set (remove_all x xs)" - "remove x (Coset xs) = Coset (List_Set.insert x xs)" - by (simp_all add:remove_set remove_set_compl) - -lemma image_Set [code]: - "image f (Set xs) = Set (remdups (map f xs))" - by simp - -lemma project_Set [code]: - "project P (Set xs) = Set (filter P xs)" - by (simp add: project_set) - -lemma Ball_Set [code]: - "Ball (Set xs) P \ list_all P xs" - by (simp add: ball_set) - -lemma Bex_Set [code]: - "Bex (Set xs) P \ list_ex P xs" - by (simp add: bex_set) - -lemma card_Set [code]: - "card (Set xs) = length (remdups xs)" -proof - - have "card (set (remdups xs)) = length (remdups xs)" - by (rule distinct_card) simp - then show ?thesis by simp -qed - - -subsection {* Derived operations *} - -definition set_eq :: "'a set \ 'a set \ bool" where - [simp]: "set_eq = op =" - -lemma [code_inline]: - "op = = set_eq" - by simp - -definition subset_eq :: "'a set \ 'a set \ bool" where - [simp]: "subset_eq = op \" - -lemma [code_inline]: - "op \ = subset_eq" - by simp - -definition subset :: "'a set \ 'a set \ bool" where - [simp]: "subset = op \" - -lemma [code_inline]: - "op \ = subset" - by simp - -setup {* - Code.add_signature_cmd ("set_eq", "'a set \ 'a set \ bool") - #> Code.add_signature_cmd ("subset_eq", "'a set \ 'a set \ bool") - #> Code.add_signature_cmd ("subset", "'a set \ 'a set \ bool") -*} - -lemma set_eq_subset_eq [code]: - "set_eq A B \ subset_eq A B \ subset_eq B A" - by auto - -lemma subset_eq_forall [code]: - "subset_eq A B \ (\x\A. x \ B)" - by (simp add: subset_eq) - -lemma subset_subset_eq [code]: - "subset A B \ subset_eq A B \ \ subset_eq B A" - by (simp add: subset) - - -subsection {* Functorial operations *} - -definition inter :: "'a set \ 'a set \ 'a set" where - [simp]: "inter = op \" - -lemma [code_inline]: - "op \ = inter" - by simp - -definition subtract :: "'a set \ 'a set \ 'a set" where - [simp]: "subtract A B = B - A" - -lemma [code_inline]: - "B - A = subtract A B" - by simp - -definition union :: "'a set \ 'a set \ 'a set" where - [simp]: "union = op \" - -lemma [code_inline]: - "op \ = union" - by simp - -definition Inf :: "'a::complete_lattice set \ 'a" where - [simp]: "Inf = Complete_Lattice.Inf" - -lemma [code_inline]: - "Complete_Lattice.Inf = Inf" - by simp - -definition Sup :: "'a::complete_lattice set \ 'a" where - [simp]: "Sup = Complete_Lattice.Sup" - -lemma [code_inline]: - "Complete_Lattice.Sup = Sup" - by simp - -definition Inter :: "'a set set \ 'a set" where - [simp]: "Inter = Inf" - -lemma [code_inline]: - "Inf = Inter" - by simp - -definition Union :: "'a set set \ 'a set" where - [simp]: "Union = Sup" - -lemma [code_inline]: - "Sup = Union" - by simp - -setup {* - Code.add_signature_cmd ("inter", "'a set \ 'a set \ 'a set") - #> Code.add_signature_cmd ("subtract", "'a set \ 'a set \ 'a set") - #> Code.add_signature_cmd ("union", "'a set \ 'a set \ 'a set") - #> Code.add_signature_cmd ("Inf", "'a set \ 'a") - #> Code.add_signature_cmd ("Sup", "'a set \ 'a") - #> Code.add_signature_cmd ("Inter", "'a set set \ 'a set") - #> Code.add_signature_cmd ("Union", "'a set set \ 'a set") -*} - -lemma inter_project [code]: - "inter A (Set xs) = Set (List.filter (\x. x \ A) xs)" - "inter A (Coset xs) = foldl (\A x. remove x A) A xs" - by (simp add: inter project_def, simp add: Diff_eq [symmetric] minus_set) - -lemma subtract_remove [code]: - "subtract (Set xs) A = foldl (\A x. remove x A) A xs" - "subtract (Coset xs) A = Set (List.filter (\x. x \ A) xs)" - by (auto simp add: minus_set) - -lemma union_insert [code]: - "union (Set xs) A = foldl (\A x. insert x A) A xs" - "union (Coset xs) A = Coset (List.filter (\x. x \ A) xs)" - by (auto simp add: union_set) - -lemma Inf_inf [code]: - "Inf (Set xs) = foldl inf (top :: 'a::complete_lattice) xs" - "Inf (Coset []) = (bot :: 'a::complete_lattice)" - by (simp_all add: Inf_UNIV Inf_set_fold) - -lemma Sup_sup [code]: - "Sup (Set xs) = foldl sup (bot :: 'a::complete_lattice) xs" - "Sup (Coset []) = (top :: 'a::complete_lattice)" - by (simp_all add: Sup_UNIV Sup_set_fold) - -lemma Inter_inter [code]: - "Inter (Set xs) = foldl inter (Coset []) xs" - "Inter (Coset []) = empty" - unfolding Inter_def Inf_inf by simp_all - -lemma Union_union [code]: - "Union (Set xs) = foldl union empty xs" - "Union (Coset []) = Coset []" - unfolding Union_def Sup_sup by simp_all - -hide (open) const is_empty empty remove - set_eq subset_eq subset inter union subtract Inf Sup Inter Union - -end diff -r 7dd37f4c755b -r 2573c794034c src/HOL/Library/Executable_Set.thy --- a/src/HOL/Library/Executable_Set.thy Mon Dec 07 09:21:14 2009 +0100 +++ b/src/HOL/Library/Executable_Set.thy Mon Dec 07 14:54:01 2009 +0100 @@ -1,103 +1,271 @@ (* Title: HOL/Library/Executable_Set.thy Author: Stefan Berghofer, TU Muenchen + Author: Florian Haftmann, TU Muenchen *) -header {* Implementation of finite sets by lists *} +header {* A crude implementation of finite sets by lists -- avoid using this at any cost! *} theory Executable_Set -imports Main Fset SML_Quickcheck +imports List_Set begin -subsection {* Preprocessor setup *} +declare mem_def [code del] +declare Collect_def [code del] +declare insert_code [code del] +declare vimage_code [code del] + +subsection {* Set representation *} + +setup {* + Code.add_type_cmd "set" +*} + +definition Set :: "'a list \ 'a set" where + [simp]: "Set = set" + +definition Coset :: "'a list \ 'a set" where + [simp]: "Coset xs = - set xs" + +setup {* + Code.add_signature_cmd ("Set", "'a list \ 'a set") + #> Code.add_signature_cmd ("Coset", "'a list \ 'a set") + #> Code.add_signature_cmd ("set", "'a list \ 'a set") + #> Code.add_signature_cmd ("op \", "'a \ 'a set \ bool") +*} + +code_datatype Set Coset -declare member [code] +consts_code + Coset ("\Coset") + Set ("\Set") +attach {* + datatype 'a set = Set of 'a list | Coset of 'a list; +*} -- {* This assumes that there won't be a @{text Coset} without a @{text Set} *} + + +subsection {* Basic operations *} + +lemma [code]: + "set xs = Set (remdups xs)" + by simp + +lemma [code]: + "x \ Set xs \ member x xs" + "x \ Coset xs \ \ member x xs" + by (simp_all add: mem_iff) + +definition is_empty :: "'a set \ bool" where + [simp]: "is_empty A \ A = {}" + +lemma [code_unfold]: + "A = {} \ is_empty A" + by simp definition empty :: "'a set" where - "empty = {}" + [simp]: "empty = {}" + +lemma [code_unfold]: + "{} = empty" + by simp + +lemma [code_unfold, code_inline del]: + "empty = Set []" + by simp -- {* Otherwise @{text \}-expansion produces funny things. *} + +setup {* + Code.add_signature_cmd ("is_empty", "'a set \ bool") + #> Code.add_signature_cmd ("empty", "'a set") + #> Code.add_signature_cmd ("insert", "'a \ 'a set \ 'a set") + #> Code.add_signature_cmd ("List_Set.remove", "'a \ 'a set \ 'a set") + #> Code.add_signature_cmd ("image", "('a \ 'b) \ 'a set \ 'b set") + #> Code.add_signature_cmd ("List_Set.project", "('a \ bool) \ 'a set \ 'a set") + #> Code.add_signature_cmd ("Ball", "'a set \ ('a \ bool) \ bool") + #> Code.add_signature_cmd ("Bex", "'a set \ ('a \ bool) \ bool") + #> Code.add_signature_cmd ("card", "'a set \ nat") +*} + +lemma is_empty_Set [code]: + "is_empty (Set xs) \ null xs" + by (simp add: empty_null) + +lemma empty_Set [code]: + "empty = Set []" + by simp + +lemma insert_Set [code]: + "insert x (Set xs) = Set (List_Set.insert x xs)" + "insert x (Coset xs) = Coset (remove_all x xs)" + by (simp_all add: insert_set insert_set_compl) + +lemma remove_Set [code]: + "remove x (Set xs) = Set (remove_all x xs)" + "remove x (Coset xs) = Coset (List_Set.insert x xs)" + by (simp_all add:remove_set remove_set_compl) + +lemma image_Set [code]: + "image f (Set xs) = Set (remdups (map f xs))" + by simp + +lemma project_Set [code]: + "project P (Set xs) = Set (filter P xs)" + by (simp add: project_set) + +lemma Ball_Set [code]: + "Ball (Set xs) P \ list_all P xs" + by (simp add: ball_set) -declare empty_def [symmetric, code_unfold] +lemma Bex_Set [code]: + "Bex (Set xs) P \ list_ex P xs" + by (simp add: bex_set) + +lemma card_Set [code]: + "card (Set xs) = length (remdups xs)" +proof - + have "card (set (remdups xs)) = length (remdups xs)" + by (rule distinct_card) simp + then show ?thesis by simp +qed + + +subsection {* Derived operations *} + +definition set_eq :: "'a set \ 'a set \ bool" where + [simp]: "set_eq = op =" + +lemma [code_unfold]: + "op = = set_eq" + by simp + +definition subset_eq :: "'a set \ 'a set \ bool" where + [simp]: "subset_eq = op \" + +lemma [code_unfold]: + "op \ = subset_eq" + by simp + +definition subset :: "'a set \ 'a set \ bool" where + [simp]: "subset = op \" + +lemma [code_unfold]: + "op \ = subset" + by simp + +setup {* + Code.add_signature_cmd ("set_eq", "'a set \ 'a set \ bool") + #> Code.add_signature_cmd ("subset_eq", "'a set \ 'a set \ bool") + #> Code.add_signature_cmd ("subset", "'a set \ 'a set \ bool") +*} + +lemma set_eq_subset_eq [code]: + "set_eq A B \ subset_eq A B \ subset_eq B A" + by auto + +lemma subset_eq_forall [code]: + "subset_eq A B \ (\x\A. x \ B)" + by (simp add: subset_eq) + +lemma subset_subset_eq [code]: + "subset A B \ subset_eq A B \ \ subset_eq B A" + by (simp add: subset) + + +subsection {* Functorial operations *} definition inter :: "'a set \ 'a set \ 'a set" where - "inter = op \" + [simp]: "inter = op \" + +lemma [code_unfold]: + "op \ = inter" + by simp -declare inter_def [symmetric, code_unfold] +definition subtract :: "'a set \ 'a set \ 'a set" where + [simp]: "subtract A B = B - A" + +lemma [code_unfold]: + "B - A = subtract A B" + by simp definition union :: "'a set \ 'a set \ 'a set" where - "union = op \" - -declare union_def [symmetric, code_unfold] + [simp]: "union = op \" -definition subset :: "'a set \ 'a set \ bool" where - "subset = op \" +lemma [code_unfold]: + "op \ = union" + by simp -declare subset_def [symmetric, code_unfold] - -lemma [code]: - "subset A B \ (\x\A. x \ B)" - by (simp add: subset_def subset_eq) +definition Inf :: "'a::complete_lattice set \ 'a" where + [simp]: "Inf = Complete_Lattice.Inf" -definition eq_set :: "'a set \ 'a set \ bool" where - [code del]: "eq_set = op =" - -(*declare eq_set_def [symmetric, code_unfold]*) +lemma [code_unfold]: + "Complete_Lattice.Inf = Inf" + by simp -lemma [code]: - "eq_set A B \ A \ B \ B \ A" - by (simp add: eq_set_def set_eq) +definition Sup :: "'a::complete_lattice set \ 'a" where + [simp]: "Sup = Complete_Lattice.Sup" -declare inter [code] - -declare List_Set.project_def [symmetric, code_unfold] +lemma [code_unfold]: + "Complete_Lattice.Sup = Sup" + by simp definition Inter :: "'a set set \ 'a set" where - "Inter = Complete_Lattice.Inter" + [simp]: "Inter = Inf" -declare Inter_def [symmetric, code_unfold] +lemma [code_unfold]: + "Inf = Inter" + by simp definition Union :: "'a set set \ 'a set" where - "Union = Complete_Lattice.Union" + [simp]: "Union = Sup" -declare Union_def [symmetric, code_unfold] - +lemma [code_unfold]: + "Sup = Union" + by simp -subsection {* Code generator setup *} - -ML {* -nonfix inter; -nonfix union; -nonfix subset; +setup {* + Code.add_signature_cmd ("inter", "'a set \ 'a set \ 'a set") + #> Code.add_signature_cmd ("subtract", "'a set \ 'a set \ 'a set") + #> Code.add_signature_cmd ("union", "'a set \ 'a set \ 'a set") + #> Code.add_signature_cmd ("Inf", "'a set \ 'a") + #> Code.add_signature_cmd ("Sup", "'a set \ 'a") + #> Code.add_signature_cmd ("Inter", "'a set set \ 'a set") + #> Code.add_signature_cmd ("Union", "'a set set \ 'a set") *} -definition flip :: "('a \ 'b \ 'c) \ 'b \ 'a \ 'c" where - "flip f a b = f b a" +lemma inter_project [code]: + "inter A (Set xs) = Set (List.filter (\x. x \ A) xs)" + "inter A (Coset xs) = foldl (\A x. remove x A) A xs" + by (simp add: inter project_def, simp add: Diff_eq [symmetric] minus_set) + +lemma subtract_remove [code]: + "subtract (Set xs) A = foldl (\A x. remove x A) A xs" + "subtract (Coset xs) A = Set (List.filter (\x. x \ A) xs)" + by (auto simp add: minus_set) -types_code - fset ("(_/ \fset)") -attach {* -datatype 'a fset = Set of 'a list | Coset of 'a list; -*} +lemma union_insert [code]: + "union (Set xs) A = foldl (\A x. insert x A) A xs" + "union (Coset xs) A = Coset (List.filter (\x. x \ A) xs)" + by (auto simp add: union_set) -consts_code - Set ("\Set") - Coset ("\Coset") +lemma Inf_inf [code]: + "Inf (Set xs) = foldl inf (top :: 'a::complete_lattice) xs" + "Inf (Coset []) = (bot :: 'a::complete_lattice)" + by (simp_all add: Inf_UNIV Inf_set_fold) -consts_code - "empty" ("{*Fset.empty*}") - "List_Set.is_empty" ("{*Fset.is_empty*}") - "Set.insert" ("{*Fset.insert*}") - "List_Set.remove" ("{*Fset.remove*}") - "Set.image" ("{*Fset.map*}") - "List_Set.project" ("{*Fset.filter*}") - "Ball" ("{*flip Fset.forall*}") - "Bex" ("{*flip Fset.exists*}") - "union" ("{*Fset.union*}") - "inter" ("{*Fset.inter*}") - "op - \ 'a set \ 'a set \ 'a set" ("{*flip Fset.subtract*}") - "Union" ("{*Fset.Union*}") - "Inter" ("{*Fset.Inter*}") - card ("{*Fset.card*}") - fold ("{*foldl o flip*}") +lemma Sup_sup [code]: + "Sup (Set xs) = foldl sup (bot :: 'a::complete_lattice) xs" + "Sup (Coset []) = (top :: 'a::complete_lattice)" + by (simp_all add: Sup_UNIV Sup_set_fold) + +lemma Inter_inter [code]: + "Inter (Set xs) = foldl inter (Coset []) xs" + "Inter (Coset []) = empty" + unfolding Inter_def Inf_inf by simp_all -hide (open) const empty inter union subset eq_set Inter Union flip +lemma Union_union [code]: + "Union (Set xs) = foldl union empty xs" + "Union (Coset []) = Coset []" + unfolding Union_def Sup_sup by simp_all -end \ No newline at end of file +hide (open) const is_empty empty remove + set_eq subset_eq subset inter union subtract Inf Sup Inter Union + +end diff -r 7dd37f4c755b -r 2573c794034c src/HOL/Library/Library.thy --- a/src/HOL/Library/Library.thy Mon Dec 07 09:21:14 2009 +0100 +++ b/src/HOL/Library/Library.thy Mon Dec 07 14:54:01 2009 +0100 @@ -14,7 +14,6 @@ Continuity ContNotDenum Countable - Crude_Executable_Set Diagonalize Efficient_Nat Enum