# HG changeset patch # User wenzelm # Date 951252574 -3600 # Node ID 259073d16f84a2a7fe19302b78359857748c0ecc # Parent 3453f73fad71260febc68d70194e10c6b24643fe "cases" method; diff -r 3453f73fad71 -r 259073d16f84 src/HOL/Real/HahnBanach/FunctionNorm.thy --- a/src/HOL/Real/HahnBanach/FunctionNorm.thy Tue Feb 22 21:48:50 2000 +0100 +++ b/src/HOL/Real/HahnBanach/FunctionNorm.thy Tue Feb 22 21:49:34 2000 +0100 @@ -253,7 +253,7 @@ txt{* The proof is by case analysis on $x$. *}; show ?thesis; - proof (rule case_split); + proof cases; txt {* For the case $x = \zero$ the thesis follows from the linearity of $f$: for every linear function diff -r 3453f73fad71 -r 259073d16f84 src/HOL/Real/HahnBanach/Subspace.thy --- a/src/HOL/Real/HahnBanach/Subspace.thy Tue Feb 22 21:48:50 2000 +0100 +++ b/src/HOL/Real/HahnBanach/Subspace.thy Tue Feb 22 21:49:34 2000 +0100 @@ -378,7 +378,7 @@ proof (unfold lin_def, elim CollectE exE conjE); fix a; assume "x = a <*> x0"; show ?thesis; - proof (rule case_split); + proof cases; assume "a = 0r"; show ?thesis; by (simp!); next; assume "a ~= 0r"; @@ -435,27 +435,27 @@ $h_0 (y \plus a \mult x_0) = h y + a \cdot \xi$ is definite. *}; lemma h0_definite: - "[| h0 == (\x. let (y, a) = SOME (y, a). (x = y + a <*> x0 & y:H) + "[| h0 == (\\x. let (y, a) = SOME (y, a). (x = y + a <*> x0 & y:H) in (h y) + a * xi); x = y + a <*> x0; is_vectorspace E; is_subspace H E; y:H; x0 ~: H; x0:E; x0 ~= <0> |] ==> h0 x = h y + a * xi"; proof -; assume - "h0 == (\x. let (y, a) = SOME (y, a). (x = y + a <*> x0 & y:H) + "h0 == (\\x. let (y, a) = SOME (y, a). (x = y + a <*> x0 & y:H) in (h y) + a * xi)" "x = y + a <*> x0" "is_vectorspace E" "is_subspace H E" "y:H" "x0 ~: H" "x0:E" "x0 ~= <0>"; have "x : H + (lin x0)"; by (simp! add: vs_sum_def lin_def) force+; - have "EX! xa. ((\(y, a). x = y + a <*> x0 & y:H) xa)"; + have "EX! xa. ((\\(y, a). x = y + a <*> x0 & y:H) xa)"; proof; - show "EX xa. ((\(y, a). x = y + a <*> x0 & y:H) xa)"; + show "EX xa. ((\\(y, a). x = y + a <*> x0 & y:H) xa)"; by (force!); next; fix xa ya; - assume "(\(y,a). x = y + a <*> x0 & y : H) xa" - "(\(y,a). x = y + a <*> x0 & y : H) ya"; + assume "(\\(y,a). x = y + a <*> x0 & y : H) xa" + "(\\(y,a). x = y + a <*> x0 & y : H) ya"; show "xa = ya"; ; proof -; show "fst xa = fst ya & snd xa = snd ya ==> xa = ya"; diff -r 3453f73fad71 -r 259073d16f84 src/HOL/Real/HahnBanach/ZornLemma.thy --- a/src/HOL/Real/HahnBanach/ZornLemma.thy Tue Feb 22 21:48:50 2000 +0100 +++ b/src/HOL/Real/HahnBanach/ZornLemma.thy Tue Feb 22 21:49:34 2000 +0100 @@ -27,7 +27,7 @@ proof; fix c; assume "c:chain S"; show "EX y:S. ALL z:c. z <= y"; - proof (rule case_split); + proof cases; txt{* If $c$ is an empty chain, then every element in $S$ is an upper bound of $c$. *};