# HG changeset patch # User wenzelm # Date 1208202293 -7200 # Node ID 25c07f3878b0ea184adb3d2a9e6d16a55da73450 # Parent 147c920ed5f784f331f3d7d4f7bda73161625495 removed duplicate lemmas; diff -r 147c920ed5f7 -r 25c07f3878b0 src/HOL/Nominal/Examples/Class.thy --- a/src/HOL/Nominal/Examples/Class.thy Mon Apr 14 21:44:53 2008 +0200 +++ b/src/HOL/Nominal/Examples/Class.thy Mon Apr 14 21:44:53 2008 +0200 @@ -5244,10 +5244,6 @@ shows "M \\<^isub>a* M'" using a by blast -lemma a_star_refl: - shows "M \\<^isub>a* M" - by blast - lemma a_starE: assumes a: "M \\<^isub>a* M'" shows "M = M' \ (\N. M \\<^isub>a N \ N \\<^isub>a* M')" diff -r 147c920ed5f7 -r 25c07f3878b0 src/HOL/Nominal/Examples/Height.thy --- a/src/HOL/Nominal/Examples/Height.thy Mon Apr 14 21:44:53 2008 +0200 +++ b/src/HOL/Nominal/Examples/Height.thy Mon Apr 14 21:44:53 2008 +0200 @@ -75,24 +75,4 @@ then show "height ((App e1 e2)[x::=e']) \ height (App e1 e2) - 1 + height e'" by simp qed -theorem height_subst: - shows "height (e[x::=e']) \ ((height e) - 1) + (height e')" -proof (nominal_induct e avoiding: x e' rule: lam.induct) - case (Var y) - have "1 \ height e'" by (rule height_ge_one) - then show "height (Var y[x::=e']) \ height (Var y) - 1 + height e'" by simp -next - case (Lam y e1) - hence ih: "height (e1[x::=e']) \ ((height e1) - 1) + (height e')" by simp - moreover - have vc: "y\x" "y\e'" by fact+ (* usual variable convention *) - ultimately show "height ((Lam [y].e1)[x::=e']) \ height (Lam [y].e1) - 1 + height e'" by simp -next - case (App e1 e2) - hence ih1: "height (e1[x::=e']) \ ((height e1) - 1) + (height e')" - and ih2: "height (e2[x::=e']) \ ((height e2) - 1) + (height e')" by simp_all - then show "height ((App e1 e2)[x::=e']) \ height (App e1 e2) - 1 + height e'" by simp -qed - - end