# HG changeset patch # User huffman # Date 1159374866 -7200 # Node ID 275f9bd2ead91c759158f93480b2ae21dfb63f60 # Parent 2ef8b7332b4f00963cbd929109a4862847a2214c remove redundant lemmas diff -r 2ef8b7332b4f -r 275f9bd2ead9 src/HOL/Complex/CLim.thy --- a/src/HOL/Complex/CLim.thy Wed Sep 27 16:33:08 2006 +0200 +++ b/src/HOL/Complex/CLim.thy Wed Sep 27 18:34:26 2006 +0200 @@ -985,6 +985,6 @@ lemma CARAT_CDERIVD: "(\z. f z - f x = g z * (z - x)) & isNSContc g x & g x = l ==> NSCDERIV f x :> l" -by (auto simp add: NSCDERIV_iff2 isNSContc_def cstarfun_if_eq); +by (auto simp add: NSCDERIV_iff2 isNSContc_def starfun_if_eq); end diff -r 2ef8b7332b4f -r 275f9bd2ead9 src/HOL/Complex/CStar.thy --- a/src/HOL/Complex/CStar.thy Wed Sep 27 16:33:08 2006 +0200 +++ b/src/HOL/Complex/CStar.thy Wed Sep 27 18:34:26 2006 +0200 @@ -12,12 +12,9 @@ subsection{*Properties of the *-Transform Applied to Sets of Reals*} -lemma STARC_SComplex_subset: "SComplex \ *s* (UNIV:: complex set)" -by simp - lemma STARC_hcomplex_of_complex_Int: "*s* X Int SComplex = hcomplex_of_complex ` X" -by (auto simp add: SComplex_def STAR_mem_iff) +by (auto simp add: SComplex_def) lemma lemma_not_hcomplexA: "x \ hcomplex_of_complex ` A ==> \y \ A. x \ hcomplex_of_complex y" @@ -25,13 +22,6 @@ subsection{*Theorems about Nonstandard Extensions of Functions*} -lemma cstarfun_if_eq: - "w \ hcomplex_of_complex x - ==> ( *f* (\z. if z = x then a else g z)) w = ( *f* g) w" -apply (cases w) -apply (simp add: star_of_def starfun star_n_eq_iff, ultra) -done - lemma starfunC_hcpow: "( *f* (%z. z ^ n)) Z = Z hcpow hypnat_of_nat n" apply (cases Z) apply (simp add: hcpow starfun hypnat_of_nat_eq) @@ -69,8 +59,4 @@ apply (simp add: starfun hIm hRe approx_approx_iff) done -lemma starfunC_Idfun_approx: - "x @= hcomplex_of_complex a ==> ( *f* (%x. x)) x @= hcomplex_of_complex a" -by simp - end diff -r 2ef8b7332b4f -r 275f9bd2ead9 src/HOL/Hyperreal/NatStar.thy --- a/src/HOL/Hyperreal/NatStar.thy Wed Sep 27 16:33:08 2006 +0200 +++ b/src/HOL/Hyperreal/NatStar.thy Wed Sep 27 18:34:26 2006 +0200 @@ -58,7 +58,7 @@ lemma NatStar_hypreal_of_real_Int: "*s* X Int Nats = hypnat_of_nat ` X" -by (auto simp add: SHNat_eq STAR_mem_iff) +by (auto simp add: SHNat_eq) lemma starset_starset_n_eq: "*s* X = *sn* (%n. X)" by (simp add: starset_n_starset) diff -r 2ef8b7332b4f -r 275f9bd2ead9 src/HOL/Hyperreal/Star.thy --- a/src/HOL/Hyperreal/Star.thy Wed Sep 27 16:33:08 2006 +0200 +++ b/src/HOL/Hyperreal/Star.thy Wed Sep 27 18:34:26 2006 +0200 @@ -45,41 +45,11 @@ subsection{*Properties of the Star-transform Applied to Sets of Reals*} -lemma STAR_UNIV_set: "*s*(UNIV::'a set) = (UNIV::'a star set)" -by (transfer UNIV_def, rule refl) - -lemma STAR_empty_set: "*s* {} = {}" -by (transfer empty_def, rule refl) - -lemma STAR_Un: "*s* (A Un B) = *s* A Un *s* B" -by (transfer Un_def, rule refl) - -lemma STAR_Int: "*s* (A Int B) = *s* A Int *s* B" -by (transfer Int_def, rule refl) - -lemma STAR_Compl: "*s* -A = -( *s* A)" -by (transfer Compl_def, rule refl) - -lemma STAR_mem_Compl: "!!x. x \ *s* F ==> x : *s* (- F)" -by (transfer Compl_def, simp) - -lemma STAR_diff: "*s* (A - B) = *s* A - *s* B" -by (transfer set_diff_def, rule refl) - -lemma STAR_subset: "A <= B ==> *s* A <= *s* B" -by (transfer subset_def, simp) - -lemma STAR_mem: "a \ A ==> star_of a : *s* A" -by transfer - -lemma STAR_mem_iff: "(star_of x \ *s* A) = (x \ A)" -by (transfer, rule refl) - lemma STAR_star_of_image_subset: "star_of ` A <= *s* A" -by (auto simp add: STAR_mem) +by auto lemma STAR_hypreal_of_real_Int: "*s* X Int Reals = hypreal_of_real ` X" -by (auto simp add: SReal_def STAR_mem_iff) +by (auto simp add: SReal_def) lemma lemma_not_hyprealA: "x \ hypreal_of_real ` A ==> \y \ A. x \ hypreal_of_real y" by auto @@ -100,7 +70,7 @@ by transfer lemma STAR_subset_closed: "[| x : *s* A; A <= B |] ==> x : *s* B" -by (blast dest: STAR_subset) +by (erule rev_subsetD, simp) text{*Nonstandard extension of a set (defined using a constant sequence) as a special case of an internal set*} @@ -150,7 +120,7 @@ lemma starfun: "( *f* f) (star_n X) = star_n (%n. f (X n))" -by (simp add: starfun_def star_of_def Ifun_star_n) +by (rule starfun_star_n) lemma starfun_if_eq: "!!w. w \ star_of x