# HG changeset patch # User paulson # Date 978686239 -3600 # Node ID 2781ac7a46196326bd922f81b53cc061b9a674ae # Parent ddb433987557243b3a86d0fceff128007545435f fixed two proofs that were affected by the removal of obsolete rules diff -r ddb433987557 -r 2781ac7a4619 src/HOL/Real/HahnBanach/Aux.thy --- a/src/HOL/Real/HahnBanach/Aux.thy Fri Jan 05 10:15:48 2001 +0100 +++ b/src/HOL/Real/HahnBanach/Aux.thy Fri Jan 05 10:17:19 2001 +0100 @@ -17,53 +17,44 @@ text {* \medskip Lemmas about sets. *} -lemma Int_singletonD: "A \\ B = {v} \\ x \\ A \\ x \\ B \\ x = v" +lemma Int_singletonD: "A \ B = {v} \ x \ A \ x \ B \ x = v" by (fast elim: equalityE) -lemma set_less_imp_diff_not_empty: "H < E \\ \\x0 \\ E. x0 \\ H" +lemma set_less_imp_diff_not_empty: "H < E \ \x0 \ E. x0 \ H" by (auto simp add: psubset_eq) text{* \medskip Some lemmas about orders. *} -lemma lt_imp_not_eq: "x < (y::'a::order) \\ x \\ y" +lemma lt_imp_not_eq: "x < (y::'a::order) \ x \ y" by (simp add: order_less_le) lemma le_noteq_imp_less: - "x \\ (r::'a::order) \\ x \\ r \\ x < r" + "x \ (r::'a::order) \ x \ r \ x < r" proof - - assume "x \\ r" and ne:"x \\ r" - hence "x < r \\ x = r" by (simp add: order_le_less) + assume "x \ r" and ne:"x \ r" + hence "x < r \ x = r" by (simp add: order_le_less) with ne show ?thesis by simp qed text {* \medskip Some lemmas for the reals. *} -lemma real_add_minus_eq: "x - y = (#0::real) \\ x = y" +lemma real_add_minus_eq: "x - y = (#0::real) \ x = y" by simp lemma abs_minus_one: "abs (- (#1::real)) = #1" by simp lemma real_mult_le_le_mono1a: - "(#0::real) \\ z \\ x \\ y \\ z * x \\ z * y" -proof - - assume z: "(#0::real) \\ z" and "x \\ y" - hence "x < y \\ x = y" by (auto simp add: order_le_less) - thus ?thesis - proof - assume "x < y" show ?thesis by (rule real_mult_le_less_mono2) simp - next - assume "x = y" thus ?thesis by simp - qed -qed + "(#0::real) \ z \ x \ y \ z * x \ z * y" + by (simp add: real_mult_le_mono2) lemma real_mult_le_le_mono2: - "(#0::real) \\ z \\ x \\ y \\ x * z \\ y * z" + "(#0::real) \ z \ x \ y \ x * z \ y * z" proof - - assume "(#0::real) \\ z" "x \\ y" - hence "x < y \\ x = y" by (auto simp add: order_le_less) + assume "(#0::real) \ z" "x \ y" + hence "x < y \ x = y" by (auto simp add: order_le_less) thus ?thesis proof assume "x < y" @@ -75,29 +66,29 @@ qed lemma real_mult_less_le_anti: - "z < (#0::real) \\ x \\ y \\ z * y \\ z * x" + "z < (#0::real) \ x \ y \ z * y \ z * x" proof - - assume "z < #0" "x \\ y" + assume "z < #0" "x \ y" hence "#0 < - z" by simp - hence "#0 \\ - z" by (rule order_less_imp_le) - hence "x * (- z) \\ y * (- z)" + hence "#0 \ - z" by (rule order_less_imp_le) + hence "x * (- z) \ y * (- z)" by (rule real_mult_le_le_mono2) - hence "- (x * z) \\ - (y * z)" + hence "- (x * z) \ - (y * z)" by (simp only: real_minus_mult_eq2) thus ?thesis by (simp only: real_mult_commute) qed lemma real_mult_less_le_mono: - "(#0::real) < z \\ x \\ y \\ z * x \\ z * y" + "(#0::real) < z \ x \ y \ z * x \ z * y" proof - - assume "#0 < z" "x \\ y" - have "#0 \\ z" by (rule order_less_imp_le) - hence "x * z \\ y * z" + assume "#0 < z" "x \ y" + have "#0 \ z" by (rule order_less_imp_le) + hence "x * z \ y * z" by (rule real_mult_le_le_mono2) thus ?thesis by (simp only: real_mult_commute) qed -lemma real_inverse_gt_zero1: "#0 < (x::real) \\ #0 < inverse x" +lemma real_inverse_gt_zero1: "#0 < (x::real) \ #0 < inverse x" proof - assume "#0 < x" have "0 < x" by simp @@ -105,20 +96,15 @@ thus ?thesis by simp qed -lemma real_mult_inv_right1: "(x::real) \\ #0 \\ x * inverse x = #1" +lemma real_mult_inv_right1: "(x::real) \ #0 \ x * inverse x = #1" by simp -lemma real_mult_inv_left1: "(x::real) \\ #0 \\ inverse x * x = #1" +lemma real_mult_inv_left1: "(x::real) \ #0 \ inverse x * x = #1" by simp lemma real_le_mult_order1a: - "(#0::real) \\ x \\ #0 \\ y \\ #0 \\ x * y" -proof - - assume "#0 \\ x" "#0 \\ y" - have "0 \\ x \\ 0 \\ y \\ 0 \\ x * y" - by (rule real_le_mult_order) - thus ?thesis by (simp!) -qed + "(#0::real) \ x \ #0 \ y \ #0 \ x * y" + by (simp add: real_0_le_mult_iff) lemma real_mult_diff_distrib: "a * (- x - (y::real)) = - a * x - a * y" @@ -141,11 +127,11 @@ finally show ?thesis . qed -lemma real_minus_le: "- (x::real) \\ y \\ - y \\ x" +lemma real_minus_le: "- (x::real) \ y \ - y \ x" by simp lemma real_diff_ineq_swap: - "(d::real) - b \\ c + a \\ - a - b \\ c - d" + "(d::real) - b \ c + a \ - a - b \ c - d" by simp end