# HG changeset patch # User nipkow # Date 985019142 -3600 # Node ID 279004936bb0c31301f4a54ad5c1e2623198bf0f # Parent b44ad7e4c4d26c9b208ff376d91e3c9e8bd3ca6c *** empty log message *** diff -r b44ad7e4c4d2 -r 279004936bb0 doc-src/TutorialI/Advanced/advanced.tex --- a/doc-src/TutorialI/Advanced/advanced.tex Mon Mar 19 13:28:06 2001 +0100 +++ b/doc-src/TutorialI/Advanced/advanced.tex Mon Mar 19 17:25:42 2001 +0100 @@ -9,7 +9,7 @@ \input{Advanced/document/simp.tex} -\section{Advanced forms of recursion} +\section{Advanced Forms of Recursion} \index{*recdef|(} The purpose of this section is to introduce advanced forms of @@ -27,23 +27,23 @@ proof time. In HOL you may have to work hard to define a function, but proofs can then proceed unencumbered by worries about undefinedness. -\subsection{Beyond measure} +\subsection{Beyond Measure} \label{sec:beyond-measure} \input{Advanced/document/WFrec.tex} -\subsection{Recursion over nested datatypes} +\subsection{Recursion Over Nested Datatypes} \label{sec:nested-recdef} \input{Recdef/document/Nested0.tex} \input{Recdef/document/Nested1.tex} \input{Recdef/document/Nested2.tex} -\subsection{Partial functions} +\subsection{Partial Functions} \index{partial function} \input{Advanced/document/Partial.tex} \index{*recdef|)} -\section{Advanced induction techniques} +\section{Advanced Induction Techniques} \label{sec:advanced-ind} \index{induction|(} \input{Misc/document/AdvancedInd.tex} diff -r b44ad7e4c4d2 -r 279004936bb0 doc-src/TutorialI/Advanced/document/simp.tex --- a/doc-src/TutorialI/Advanced/document/simp.tex Mon Mar 19 13:28:06 2001 +0100 +++ b/doc-src/TutorialI/Advanced/document/simp.tex Mon Mar 19 17:25:42 2001 +0100 @@ -125,7 +125,7 @@ such tricks.% \end{isamarkuptext}% % -\isamarkupsubsection{How It Works% +\isamarkupsubsection{How it Works% } % \begin{isamarkuptext}% diff -r b44ad7e4c4d2 -r 279004936bb0 doc-src/TutorialI/Advanced/simp.thy --- a/doc-src/TutorialI/Advanced/simp.thy Mon Mar 19 13:28:06 2001 +0100 +++ b/doc-src/TutorialI/Advanced/simp.thy Mon Mar 19 17:25:42 2001 +0100 @@ -110,7 +110,7 @@ such tricks. *} -subsection{*How It Works*} +subsection{*How it Works*} text{*\label{sec:SimpHow} Roughly speaking, the simplifier proceeds bottom-up (subterms are simplified diff -r b44ad7e4c4d2 -r 279004936bb0 doc-src/TutorialI/Inductive/advanced-examples.tex --- a/doc-src/TutorialI/Inductive/advanced-examples.tex Mon Mar 19 13:28:06 2001 +0100 +++ b/doc-src/TutorialI/Inductive/advanced-examples.tex Mon Mar 19 17:25:42 2001 +0100 @@ -114,7 +114,7 @@ \isa{set} of arguments expresses that all of them are well-formed. -\subsection{Alternative Definition Using a monotone Function} +\subsection{Alternative Definition Using a Monotone Function} An inductive definition may refer to the inductively defined set through an arbitrary monotone function. To demonstrate this diff -r b44ad7e4c4d2 -r 279004936bb0 doc-src/TutorialI/Inductive/inductive.tex --- a/doc-src/TutorialI/Inductive/inductive.tex Mon Mar 19 13:28:06 2001 +0100 +++ b/doc-src/TutorialI/Inductive/inductive.tex Mon Mar 19 17:25:42 2001 +0100 @@ -18,7 +18,7 @@ \input{Inductive/document/Mutual} \input{Inductive/document/Star} -\section{Advanced inductive definitions} +\section{Advanced Inductive Definitions} \label{sec:adv-ind-def} \input{Inductive/advanced-examples} diff -r b44ad7e4c4d2 -r 279004936bb0 doc-src/TutorialI/Misc/document/natsum.tex --- a/doc-src/TutorialI/Misc/document/natsum.tex Mon Mar 19 13:28:06 2001 +0100 +++ b/doc-src/TutorialI/Misc/document/natsum.tex Mon Mar 19 17:25:42 2001 +0100 @@ -61,7 +61,7 @@ \end{warn} Simple arithmetic goals are proved automatically by both \isa{auto} and the -simplification methods introduced in \S\ref{sec:Simplification}. For +simplification method introduced in \S\ref{sec:Simplification}. For example,% \end{isamarkuptext}% \isacommand{lemma}\ {\isachardoublequote}{\isasymlbrakk}\ {\isasymnot}\ m\ {\isacharless}\ n{\isacharsemicolon}\ m\ {\isacharless}\ n{\isacharplus}{\isadigit{1}}\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ m\ {\isacharequal}\ n{\isachardoublequote}% diff -r b44ad7e4c4d2 -r 279004936bb0 doc-src/TutorialI/ToyList/ToyList.thy --- a/doc-src/TutorialI/ToyList/ToyList.thy Mon Mar 19 13:28:06 2001 +0100 +++ b/doc-src/TutorialI/ToyList/ToyList.thy Mon Mar 19 17:25:42 2001 +0100 @@ -117,7 +117,7 @@ illustrate not just the basic proof commands but also the typical proof process. -\subsubsection*{Main goal: @{text"rev(rev xs) = xs"}.} +\subsubsection*{Main Goal: @{text"rev(rev xs) = xs"}.} Our goal is to show that reversing a list twice produces the original list. The input line diff -r b44ad7e4c4d2 -r 279004936bb0 doc-src/TutorialI/ToyList/document/ToyList.tex --- a/doc-src/TutorialI/ToyList/document/ToyList.tex Mon Mar 19 13:28:06 2001 +0100 +++ b/doc-src/TutorialI/ToyList/document/ToyList.tex Mon Mar 19 17:25:42 2001 +0100 @@ -114,7 +114,7 @@ illustrate not just the basic proof commands but also the typical proof process. -\subsubsection*{Main goal: \isa{rev{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ xs}.} +\subsubsection*{Main Goal: \isa{rev{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ xs}.} Our goal is to show that reversing a list twice produces the original list. The input line% diff -r b44ad7e4c4d2 -r 279004936bb0 doc-src/TutorialI/Types/numerics.tex --- a/doc-src/TutorialI/Types/numerics.tex Mon Mar 19 13:28:06 2001 +0100 +++ b/doc-src/TutorialI/Types/numerics.tex Mon Mar 19 17:25:42 2001 +0100 @@ -87,7 +87,7 @@ -\subsection{The type of natural numbers, {\tt\slshape nat}} +\subsection{The Type of Natural Numbers, {\tt\slshape nat}} This type requires no introduction: we have been using it from the beginning. Hundreds of theorems about the natural numbers are @@ -198,7 +198,7 @@ \rulename{dvd_add} \end{isabelle} -\subsubsection{Simplifier tricks} +\subsubsection{Simplifier Tricks} The rule \isa{diff_mult_distrib} shown above is one of the few facts about \isa{m\ -\ n} that is not subject to the condition \isa{n\ \isasymle \ m}. Natural number subtraction has few @@ -251,7 +251,7 @@ \end{isabelle} -\subsection{The type of integers, {\tt\slshape int}} +\subsection{The Type of Integers, {\tt\slshape int}} Reasoning methods resemble those for the natural numbers, but induction and the constant \isa{Suc} are not available. HOL provides many lemmas @@ -333,7 +333,7 @@ \isa{zdiv_zmult2_eq} is $-2$ while the right-hand side is~$-1$. -\subsection{The type of real numbers, {\tt\slshape real}} +\subsection{The Type of Real Numbers, {\tt\slshape real}} The real numbers enjoy two significant properties that the integers lack. They are diff -r b44ad7e4c4d2 -r 279004936bb0 doc-src/TutorialI/readers --- a/doc-src/TutorialI/readers Mon Mar 19 13:28:06 2001 +0100 +++ b/doc-src/TutorialI/readers Mon Mar 19 17:25:42 2001 +0100 @@ -1,4 +1,5 @@ By chapter: -Inductive definitions: Gerwin Klein chapters 1 and 2, maybe 3: Peter White +chapters 6, 7 and 8: David von Oheim +chapter 6, maybe 8: Gerwin Klein