# HG changeset patch # User huffman # Date 1315491407 25200 # Node ID 282eef2c0f7704cfcc385316ee0c0d291dadca05 # Parent e555032000619adb1f11d3aaf9904a0e39bc460a remove obsolete intermediate lemma complex_inverse_complex_split diff -r e55503200061 -r 282eef2c0f77 src/HOL/Complex.thy --- a/src/HOL/Complex.thy Thu Sep 08 07:06:59 2011 -0700 +++ b/src/HOL/Complex.thy Thu Sep 08 07:16:47 2011 -0700 @@ -549,12 +549,6 @@ lemma Im_sgn [simp]: "Im(sgn z) = Im(z)/cmod z" by (simp add: complex_sgn_def divide_inverse) -lemma complex_inverse_complex_split: - "inverse(complex_of_real x + ii * complex_of_real y) = - complex_of_real(x/(x ^ 2 + y ^ 2)) - - ii * complex_of_real(y/(x ^ 2 + y ^ 2))" - by (simp add: complex_of_real_def i_def diff_minus divide_inverse) - (*----------------------------------------------------------------------------*) (* Many of the theorems below need to be moved elsewhere e.g. Transc. Also *) (* many of the theorems are not used - so should they be kept? *) diff -r e55503200061 -r 282eef2c0f77 src/HOL/NSA/NSComplex.thy --- a/src/HOL/NSA/NSComplex.thy Thu Sep 08 07:06:59 2011 -0700 +++ b/src/HOL/NSA/NSComplex.thy Thu Sep 08 07:16:47 2011 -0700 @@ -434,12 +434,6 @@ lemma hIm_hsgn [simp]: "!!z. hIm(hsgn z) = hIm(z)/hcmod z" by transfer (rule Im_sgn) -lemma hcomplex_inverse_complex_split: - "!!x y. inverse(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y) = - hcomplex_of_hypreal(x/(x ^ 2 + y ^ 2)) - - iii * hcomplex_of_hypreal(y/(x ^ 2 + y ^ 2))" -by transfer (rule complex_inverse_complex_split) - lemma HComplex_inverse: "!!x y. inverse (HComplex x y) = HComplex (x/(x ^ 2 + y ^ 2)) (-y/(x ^ 2 + y ^ 2))"