# HG changeset patch # User hoelzl # Date 1364296853 -3600 # Node ID 2831ce75ec49e20d010825c8cd330281efc7e0f2 # Parent 6a56b7088a6ab16b3bce2b00b33e32ba198666a7 remove posreal_complete diff -r 6a56b7088a6a -r 2831ce75ec49 src/HOL/RComplete.thy --- a/src/HOL/RComplete.thy Tue Mar 26 12:20:52 2013 +0100 +++ b/src/HOL/RComplete.thy Tue Mar 26 12:20:53 2013 +0100 @@ -21,39 +21,6 @@ subsection {* Completeness of Positive Reals *} text {* - Supremum property for the set of positive reals - - Let @{text "P"} be a non-empty set of positive reals, with an upper - bound @{text "y"}. Then @{text "P"} has a least upper bound - (written @{text "S"}). - - FIXME: Can the premise be weakened to @{text "\x \ P. x\ y"}? -*} - -text {* Only used in HOL/Import/HOL4Compat.thy; delete? *} - -lemma posreal_complete: - fixes P :: "real set" - assumes not_empty_P: "\x. x \ P" - and upper_bound_Ex: "\y. \x \ P. xS. \y. (\x \ P. y < x) = (y < S)" -proof - - from upper_bound_Ex have "\z. \x\P. x \ z" - by (auto intro: less_imp_le) - from complete_real [OF not_empty_P this] obtain S - where S1: "\x. x \ P \ x \ S" and S2: "\z. \x\P. x \ z \ S \ z" by fast - have "\y. (\x \ P. y < x) = (y < S)" - proof - fix y show "(\x\P. y < x) = (y < S)" - apply (cases "\x\P. y < x", simp_all) - apply (clarify, drule S1, simp) - apply (simp add: not_less S2) - done - qed - thus ?thesis .. -qed - -text {* \medskip Completeness properties using @{text "isUb"}, @{text "isLub"} etc. *} @@ -68,16 +35,8 @@ \medskip reals Completeness (again!) *} -lemma reals_complete: - assumes notempty_S: "\X. X \ S" - and exists_Ub: "\Y. isUb (UNIV::real set) S Y" - shows "\t. isLub (UNIV :: real set) S t" -proof - - from assms have "\X. X \ S" and "\Y. \x\S. x \ Y" - unfolding isUb_def setle_def by simp_all - from complete_real [OF this] show ?thesis - by (simp add: isLub_def leastP_def isUb_def setle_def setge_def) -qed +lemma reals_complete: "\X. X \ S \ \Y. isUb (UNIV::real set) S Y \ \t. isLub (UNIV :: real set) S t" + by (intro exI[of _ "Sup S"] isLub_cSup) (auto simp: setle_def isUb_def intro: cSup_upper) subsection {* The Archimedean Property of the Reals *}