# HG changeset patch # User huffman # Date 1244161711 25200 # Node ID 29090e3111bd5cd3bb599a2f934f77d37a37020b # Parent 97bab1ac463efb6e31ee252a5486676c46eb265f define netlimit in terms of eventually diff -r 97bab1ac463e -r 29090e3111bd src/HOL/Library/Topology_Euclidean_Space.thy --- a/src/HOL/Library/Topology_Euclidean_Space.thy Thu Jun 04 17:24:09 2009 -0700 +++ b/src/HOL/Library/Topology_Euclidean_Space.thy Thu Jun 04 17:28:31 2009 -0700 @@ -1619,7 +1619,7 @@ definition netlimit :: "'a::metric_space net \ 'a" where - "netlimit net = (SOME a. \r>0. \A\Rep_net net. \x\A. dist x a < r)" + "netlimit net = (SOME a. \r>0. eventually (\x. dist x a < r) net)" lemma dist_triangle3: fixes x y :: "'a::metric_space" @@ -1632,8 +1632,7 @@ shows "netlimit (at a within S) = a" using assms apply (simp add: trivial_limit_within) -apply (simp add: netlimit_def eventually_def [symmetric]) -apply (simp add: eventually_within zero_less_dist_iff) +apply (simp add: netlimit_def eventually_within zero_less_dist_iff) apply (rule some_equality, fast) apply (rename_tac b) apply (rule ccontr)