# HG changeset patch # User paulson # Date 935068371 -7200 # Node ID 29105299799c413969dae1a2817a80ec788c7d21 # Parent 5cfe2944910a88a22cd44530e52babf0053315db now with abstraction code previously in HOL/Tools/svc_funcs.ML diff -r 5cfe2944910a -r 29105299799c src/HOL/SVC_Oracle.ML --- a/src/HOL/SVC_Oracle.ML Thu Aug 19 15:11:12 1999 +0200 +++ b/src/HOL/SVC_Oracle.ML Thu Aug 19 15:12:51 1999 +0200 @@ -8,6 +8,81 @@ Based upon the work of Søren T. Heilmann *) + +(*Generalize an Isabelle formula, replacing by Vars + all subterms not intelligible to SVC.*) +fun svc_abstract t = + let + val params = Term.strip_all_vars t + and body = Term.strip_all_body t + val Us = map #2 params + val nPar = length params + val vname = ref "V_a" + val pairs = ref ([] : (term*term) list) + fun insert t = + let val T = fastype_of t + val v = Unify.combound (Var ((!vname,0), Us--->T), + 0, nPar) + in vname := bump_string (!vname); + pairs := (t, v) :: !pairs; + v + end; + fun replace t = + case t of + Free _ => t (*but not existing Vars, lest the names clash*) + | Bound _ => t + | _ => (case gen_assoc (op aconv) (!pairs, t) of + Some v => v + | None => insert t) + (*abstraction of a real/rational expression*) + fun rat ((c as Const("op +", _)) $ x $ y) = c $ (rat x) $ (rat y) + | rat ((c as Const("op -", _)) $ x $ y) = c $ (rat x) $ (rat y) + | rat ((c as Const("op /", _)) $ x $ y) = c $ (rat x) $ (rat y) + | rat ((c as Const("op *", _)) $ x $ y) = c $ (rat x) $ (rat y) + | rat ((c as Const("uminus", _)) $ x) = c $ (rat x) + | rat ((c as Const("RealDef.0r", _))) = c + | rat ((c as Const("RealDef.1r", _))) = c + | rat (t as Const("Numeral.number_of", _) $ w) = t + | rat t = replace t + (*abstraction of an integer expression: no div, mod*) + fun int ((c as Const("op +", _)) $ x $ y) = c $ (int x) $ (int y) + | int ((c as Const("op -", _)) $ x $ y) = c $ (int x) $ (int y) + | int ((c as Const("op *", _)) $ x $ y) = c $ (int x) $ (int y) + | int ((c as Const("uminus", _)) $ x) = c $ (int x) + | int (t as Const("Numeral.number_of", _) $ w) = t + | int t = replace t + (*abstraction of a natural number expression: no minus*) + fun nat ((c as Const("op +", _)) $ x $ y) = c $ (nat x) $ (nat y) + | nat ((c as Const("op *", _)) $ x $ y) = c $ (nat x) $ (nat y) + | nat ((c as Const("Suc", _)) $ x) = c $ (nat x) + | nat (t as Const("0", _)) = t + | nat (t as Const("Numeral.number_of", _) $ w) = t + | nat t = replace t + (*abstraction of a relation: =, <, <=*) + fun rel (T, c $ x $ y) = + if T = HOLogic.realT then c $ (rat x) $ (rat y) + else if T = HOLogic.intT then c $ (int x) $ (int y) + else if T = HOLogic.natT then c $ (nat x) $ (nat y) + else if T = HOLogic.boolT then c $ (fm x) $ (fm y) + else replace (c $ x $ y) (*non-numeric comparison*) + (*abstraction of a formula*) + and fm ((c as Const("op &", _)) $ p $ q) = c $ (fm p) $ (fm q) + | fm ((c as Const("op |", _)) $ p $ q) = c $ (fm p) $ (fm q) + | fm ((c as Const("op -->", _)) $ p $ q) = c $ (fm p) $ (fm q) + | fm ((c as Const("Not", _)) $ p) = c $ (fm p) + | fm ((c as Const("True", _))) = c + | fm ((c as Const("False", _))) = c + | fm (t as Const("op =", Type ("fun", [T,_])) $ x $ y) = rel (T, t) + | fm (t as Const("op <", Type ("fun", [T,_])) $ x $ y) = rel (T, t) + | fm (t as Const("op <=", Type ("fun", [T,_])) $ x $ y) = rel (T, t) + | fm t = replace t + (*entry point, and abstraction of a meta-formula*) + fun mt ((c as Const("Trueprop", _)) $ p) = c $ (fm p) + | mt ((c as Const("==>", _)) $ p $ q) = c $ (mt p) $ (mt q) + | mt t = fm t (*it might be a formula*) + in (list_all (params, mt body), !pairs) end; + + (*Present the entire subgoal to the oracle, assumptions and all, but possibly abstracted. Use via compose_tac, which performs no lifting but will instantiate variables.*) @@ -15,8 +90,9 @@ fun svc_tac i st = let val prem = BasisLibrary.List.nth (prems_of st, i-1) + val (absPrem, _) = svc_abstract prem val th = invoke_oracle svc_thy "svc_oracle" - (#sign (rep_thm st), Svc.OracleExn prem) + (#sign (rep_thm st), Svc.OracleExn absPrem) in compose_tac (false, th, 0) i st end