# HG changeset patch # User paulson # Date 933678936 -7200 # Node ID 295882e50b7a90f6bca54d47999d8114dafdc1f0 # Parent 3a2f8fdf4dabe79e02167fa275ddd4ce49a3b042 biconditionals and the natural numbers diff -r 3a2f8fdf4dab -r 295882e50b7a src/HOL/Tools/svc_funcs.ML --- a/src/HOL/Tools/svc_funcs.ML Tue Aug 03 13:15:20 1999 +0200 +++ b/src/HOL/Tools/svc_funcs.ML Tue Aug 03 13:15:36 1999 +0200 @@ -6,15 +6,16 @@ Translation and abstraction functions for the interface to SVC Based upon the work of Søren T. Heilmann -*) -(**TODO - change Path.pack to File.sysify_path - move realT to hologic.ML**) +Integers and naturals are translated as follows: + In a positive context, replace x /dev/null 2>&1")) val svc_output = File.read svc_output_file handle _ => error "SVC returned no output" @@ -97,160 +98,229 @@ (*New exception constructor for passing arguments to the oracle*) exception OracleExn of term; + fun apply c args = + let val (ts, bs) = ListPair.unzip args + in (list_comb(c,ts), exists I bs) end; + + fun is_intnat T = T = HOLogic.intT orelse T = HOLogic.natT; + + (*Determining whether the biconditionals must be unfoled: if there are + int or nat comparisons below*) + val iff_tag = + let fun tag t = + let val (c,ts) = strip_comb t + in case c of + Const("op &", _) => apply c (map tag ts) + | Const("op |", _) => apply c (map tag ts) + | Const("op -->", _) => apply c (map tag ts) + | Const("Not", _) => apply c (map tag ts) + | Const("True", _) => (c, false) + | Const("False", _) => (c, false) + | Const("op =", Type ("fun", [T,_])) => + if T = HOLogic.boolT then + (*biconditional: with int/nat comparisons below?*) + let val [t1,t2] = ts + val (u1,b1) = tag t1 + and (u2,b2) = tag t2 + val cname = if b1 orelse b2 then "unfold" else "keep" + in + (Const ("SVC_Oracle.iff_" ^ cname, dummyT) $ u1 $ u2, + b1 orelse b2) + end + else (*numeric equality*) (t, is_intnat T) + | Const("op <", Type ("fun", [T,_])) => (t, is_intnat T) + | Const("op <=", Type ("fun", [T,_])) => (t, is_intnat T) + | _ => (t, false) + end + in #1 o tag end; + + + (*Map expression e to 0<=a --> e, where "a" is the name of a nat variable*) + fun add_nat_var (a, e) = + buildin_expr("=>", [buildin_expr("<=", [int_expr 0, + uninterp_expr (a, [])]), + e]); + (*Translate an Isabelle formula into an SVC expression pos ["positive"]: true if an assumption, false if a goal*) fun expr_of pos t = let - val params = rename_wrt_term t (Term.strip_all_vars t) - and body = Term.strip_all_body t - val parNames = rev (map #1 params) - (*translation of a variable*) - fun var (Free(a, _)) = uninterp_expr("F_" ^ a, []) - | var (Var((a, 0), _)) = uninterp_expr(a, []) - | var (Bound i) = uninterp_expr("B_" ^ List.nth (parNames,i), []) - | var (t $ Bound _) = var t (*removing a parameter from a Var*) - | var t = raise OracleExn t; - (*translation of a literal*) - fun lit (Const("Numeral.number_of", _) $ w) = NumeralSyntax.dest_bin w - | lit (Const("0", _)) = 0 - | lit (Const("0r", _)) = 0 - | lit (Const("1r", _)) = 1 - (*translation of a literal expression [no variables]*) - fun litExp (Const("op +", T) $ x $ y) = (litExp x) + (litExp y) - | litExp (Const("op -", T) $ x $ y) = (litExp x) - (litExp y) - | litExp (Const("op *", T) $ x $ y) = (litExp x) * (litExp y) - | litExp (Const("uminus", _) $ x) = ~(litExp x) - | litExp t = lit t - handle Match => raise OracleExn t - (*translation of a real/rational expression*) - fun suc t = interp_expr("+", [int_expr 1, t]) - fun tm (Const("Suc", T) $ x) = suc (tm x) - | tm (Const("op +", T) $ x $ y) = interp_expr("+", [tm x, tm y]) - | tm (Const("op -", _) $ x $ y) = - interp_expr("+", [tm x, interp_expr("*", [int_expr ~1, tm y])]) - | tm (Const("op *", _) $ x $ y) = interp_expr("*", [tm x, tm y]) - | tm (Const("op /", _) $ x $ y) = - interp_expr("*", [tm x, rat_expr(1, litExp y)]) - | tm (Const("uminus", _) $ x) = interp_expr("*", [int_expr ~1, tm x]) - | tm t = int_expr (lit t) - handle Match => var t - (*translation of a formula*) - and fm pos (Const("op &", _) $ p $ q) = - buildin_expr("AND", [fm pos p, fm pos q]) - | fm pos (Const("op |", _) $ p $ q) = - buildin_expr("OR", [fm pos p, fm pos q]) - | fm pos (Const("op -->", _) $ p $ q) = - buildin_expr("=>", [fm (not pos) p, fm pos q]) - | fm pos (Const("Not", _) $ p) = - buildin_expr("NOT", [fm (not pos) p]) - | fm pos (Const("True", _)) = true_expr - | fm pos (Const("False", _)) = false_expr - | fm pos (Const("op =", Type ("fun", [T,_])) $ x $ y) = - if T = HOLogic.boolT then buildin_expr("=", [fm pos x, fm pos y]) - else - let val tx = tm x and ty = tm y - in if pos orelse T = realT then - buildin_expr("=", [tx, ty]) - else - buildin_expr("AND", - [buildin_expr("<", [tx, suc ty]), - buildin_expr("<", [ty, suc tx])]) - end - (*inequalities: possible types are nat, int, real*) - | fm pos (Const("op <", Type ("fun", [T,_])) $ x $ y) = - if not pos orelse T = realT then - buildin_expr("<", [tm x, tm y]) - else buildin_expr("<=", [suc (tm x), tm y]) - | fm pos (Const("op <=", Type ("fun", [T,_])) $ x $ y) = - if pos orelse T = realT then - buildin_expr("<=", [tm x, tm y]) - else buildin_expr("<", [tm x, suc (tm y)]) - | fm pos t = var t; - (*entry point, and translation of a meta-formula*) - fun mt pos ((c as Const("Trueprop", _)) $ p) = fm pos p - | mt pos ((c as Const("==>", _)) $ p $ q) = - buildin_expr("=>", [mt (not pos) p, mt pos q]) - | mt pos t = fm pos t (*it might be a formula*) + val params = rev (rename_wrt_term t (Term.strip_all_vars t)) + and body = Term.strip_all_body t + val nat_vars = ref ([] : string list) + (*translation of a variable: record all natural numbers*) + fun trans_var (a,T) = + (if T = HOLogic.natT then nat_vars := (a ins_string (!nat_vars)) + else (); + uninterp_expr (a, [])) + fun var (Free(a,T)) = trans_var ("F_" ^ a, T) + | var (Var((a, 0), T)) = trans_var (a, T) + | var (Bound i) = + let val (a,T) = List.nth (params, i) + in trans_var ("B_" ^ a, T) end + | var (t $ Bound _) = var t (*removing a parameter from a Var*) + | var t = raise OracleExn t; + (*translation of a literal*) + fun lit (Const("Numeral.number_of", _) $ w) = NumeralSyntax.dest_bin w + | lit (Const("0", _)) = 0 + | lit (Const("RealDef.0r", _)) = 0 + | lit (Const("RealDef.1r", _)) = 1 + (*translation of a literal expression [no variables]*) + fun litExp (Const("op +", T) $ x $ y) = (litExp x) + (litExp y) + | litExp (Const("op -", T) $ x $ y) = (litExp x) - (litExp y) + | litExp (Const("op *", T) $ x $ y) = (litExp x) * (litExp y) + | litExp (Const("uminus", _) $ x) = ~(litExp x) + | litExp t = lit t + handle Match => raise OracleExn t + (*translation of a real/rational expression*) + fun suc t = interp_expr("+", [int_expr 1, t]) + fun tm (Const("Suc", T) $ x) = suc (tm x) + | tm (Const("op +", T) $ x $ y) = interp_expr("+", [tm x, tm y]) + | tm (Const("op -", _) $ x $ y) = + interp_expr("+", [tm x, interp_expr("*", [int_expr ~1, tm y])]) + | tm (Const("op *", _) $ x $ y) = interp_expr("*", [tm x, tm y]) + | tm (Const("op /", _) $ x $ y) = + interp_expr("*", [tm x, rat_expr(1, litExp y)]) + | tm (Const("uminus", _) $ x) = interp_expr("*", [int_expr ~1, tm x]) + | tm t = int_expr (lit t) + handle Match => var t + (*translation of a formula*) + and fm pos (Const("op &", _) $ p $ q) = + buildin_expr("AND", [fm pos p, fm pos q]) + | fm pos (Const("op |", _) $ p $ q) = + buildin_expr("OR", [fm pos p, fm pos q]) + | fm pos (Const("op -->", _) $ p $ q) = + buildin_expr("=>", [fm (not pos) p, fm pos q]) + | fm pos (Const("Not", _) $ p) = + buildin_expr("NOT", [fm (not pos) p]) + | fm pos (Const("True", _)) = true_expr + | fm pos (Const("False", _)) = false_expr + | fm pos (Const("SVC_Oracle.iff_keep", _) $ p $ q) = + (*polarity doesn't matter*) + buildin_expr("=", [fm pos p, fm pos q]) + | fm pos (Const("SVC_Oracle.iff_unfold", _) $ p $ q) = + buildin_expr("AND", (*unfolding uses both polarities*) + [buildin_expr("=>", [fm (not pos) p, fm pos q]), + buildin_expr("=>", [fm (not pos) q, fm pos p])]) + | fm pos (t as Const("op =", Type ("fun", [T,_])) $ x $ y) = + let val tx = tm x and ty = tm y + in if pos orelse T = HOLogic.realT then + buildin_expr("=", [tx, ty]) + else if is_intnat T then + buildin_expr("AND", + [buildin_expr("<", [tx, suc ty]), + buildin_expr("<", [ty, suc tx])]) + else raise OracleExn t + end + (*inequalities: possible types are nat, int, real*) + | fm pos (t as Const("op <", Type ("fun", [T,_])) $ x $ y) = + if not pos orelse T = HOLogic.realT then + buildin_expr("<", [tm x, tm y]) + else if is_intnat T then + buildin_expr("<=", [suc (tm x), tm y]) + else raise OracleExn t + | fm pos (t as Const("op <=", Type ("fun", [T,_])) $ x $ y) = + if pos orelse T = HOLogic.realT then + buildin_expr("<=", [tm x, tm y]) + else if is_intnat T then + buildin_expr("<", [tm x, suc (tm y)]) + else raise OracleExn t + | fm pos t = var t; + (*entry point, and translation of a meta-formula*) + fun mt pos ((c as Const("Trueprop", _)) $ p) = fm pos (iff_tag p) + | mt pos ((c as Const("==>", _)) $ p $ q) = + buildin_expr("=>", [mt (not pos) p, mt pos q]) + | mt pos t = fm pos (iff_tag t) (*it might be a formula*) + + val body_e = mt pos body (*evaluate now to assign into !nat_vars*) in - mt pos body + foldr add_nat_var (!nat_vars, body_e) end; (*Generalize an Isabelle formula, replacing by Vars - all subterms not intelligible to SVC. *) + all subterms not intelligible to SVC. + Do not present "raw" terms to expr_of; the translation could be unsound!*) fun abstract t = let - val params = Term.strip_all_vars t - and body = Term.strip_all_body t - val Us = map #2 params - val nPar = length params - val vname = ref "V_a" - val pairs = ref ([] : (term*term) list) - fun insert t = - let val T = fastype_of t - val v = Unify.combound (Var ((!vname,0), Us--->T), - 0, nPar) - in vname := bump_string (!vname); - pairs := (t, v) :: !pairs; - v - end; - fun replace t = - case t of - Free _ => t (*but not existing Vars, lest the names clash*) - | Bound _ => t - | _ => (case gen_assoc (op aconv) (!pairs, t) of - Some v => v - | None => insert t) - (*abstraction of a real/rational expression*) - fun rat ((c as Const("op +", _)) $ x $ y) = c $ (rat x) $ (rat y) - | rat ((c as Const("op -", _)) $ x $ y) = c $ (rat x) $ (rat y) - | rat ((c as Const("op /", _)) $ x $ y) = c $ (rat x) $ (rat y) - | rat ((c as Const("op *", _)) $ x $ y) = c $ (rat x) $ (rat y) - | rat ((c as Const("uminus", _)) $ x) = c $ (rat x) - | rat ((c as Const("0r", _))) = c - | rat ((c as Const("1r", _))) = c - | rat (t as Const("Numeral.number_of", _) $ w) = t - | rat t = replace t - (*abstraction of an integer expression: no div, mod*) - fun int ((c as Const("op +", _)) $ x $ y) = c $ (int x) $ (int y) - | int ((c as Const("op -", _)) $ x $ y) = c $ (int x) $ (int y) - | int ((c as Const("op *", _)) $ x $ y) = c $ (int x) $ (int y) - | int ((c as Const("uminus", _)) $ x) = c $ (int x) - | int (t as Const("Numeral.number_of", _) $ w) = t - | int t = replace t - (*abstraction of a natural number expression: no minus*) - fun nat ((c as Const("op +", _)) $ x $ y) = c $ (nat x) $ (nat y) - | nat ((c as Const("op *", _)) $ x $ y) = c $ (nat x) $ (nat y) - | nat ((c as Const("Suc", _)) $ x) = c $ (nat x) - | nat (t as Const("0", _)) = t - | nat (t as Const("Numeral.number_of", _) $ w) = t - | nat t = replace t - (*abstraction of a relation: =, <, <=*) - fun rel (T, c $ x $ y) = - if T = realT then c $ (rat x) $ (rat y) - else if T = HOLogic.intT then c $ (int x) $ (int y) - else if T = HOLogic.natT then c $ (nat x) $ (nat y) - else if T = HOLogic.boolT then c $ (fm x) $ (fm y) - else replace (c $ x $ y) (*non-numeric comparison*) - (*abstraction of a formula*) - and fm ((c as Const("op &", _)) $ p $ q) = c $ (fm p) $ (fm q) - | fm ((c as Const("op |", _)) $ p $ q) = c $ (fm p) $ (fm q) - | fm ((c as Const("op -->", _)) $ p $ q) = c $ (fm p) $ (fm q) - | fm ((c as Const("Not", _)) $ p) = c $ (fm p) - | fm ((c as Const("True", _))) = c - | fm ((c as Const("False", _))) = c - | fm (t as Const("op =", Type ("fun", [T,_])) $ x $ y) = rel (T, t) - | fm (t as Const("op <", Type ("fun", [T,_])) $ x $ y) = rel (T, t) - | fm (t as Const("op <=", Type ("fun", [T,_])) $ x $ y) = rel (T, t) - | fm t = replace t - (*entry point, and abstraction of a meta-formula*) - fun mt ((c as Const("Trueprop", _)) $ p) = c $ (fm p) - | mt ((c as Const("==>", _)) $ p $ q) = c $ (mt p) $ (mt q) - | mt t = fm t (*it might be a formula*) + val params = Term.strip_all_vars t + and body = Term.strip_all_body t + val Us = map #2 params + val nPar = length params + val vname = ref "V_a" + val pairs = ref ([] : (term*term) list) + fun insert t = + let val T = fastype_of t + val v = Unify.combound (Var ((!vname,0), Us--->T), + 0, nPar) + in vname := bump_string (!vname); + pairs := (t, v) :: !pairs; + v + end; + fun replace t = + case t of + Free _ => t (*but not existing Vars, lest the names clash*) + | Bound _ => t + | _ => (case gen_assoc (op aconv) (!pairs, t) of + Some v => v + | None => insert t) + (*abstraction of a real/rational expression*) + fun rat ((c as Const("op +", _)) $ x $ y) = c $ (rat x) $ (rat y) + | rat ((c as Const("op -", _)) $ x $ y) = c $ (rat x) $ (rat y) + | rat ((c as Const("op /", _)) $ x $ y) = c $ (rat x) $ (rat y) + | rat ((c as Const("op *", _)) $ x $ y) = c $ (rat x) $ (rat y) + | rat ((c as Const("uminus", _)) $ x) = c $ (rat x) + | rat ((c as Const("RealDef.0r", _))) = c + | rat ((c as Const("RealDef.1r", _))) = c + | rat (t as Const("Numeral.number_of", _) $ w) = t + | rat t = replace t + (*abstraction of an integer expression: no div, mod*) + fun int ((c as Const("op +", _)) $ x $ y) = c $ (int x) $ (int y) + | int ((c as Const("op -", _)) $ x $ y) = c $ (int x) $ (int y) + | int ((c as Const("op *", _)) $ x $ y) = c $ (int x) $ (int y) + | int ((c as Const("uminus", _)) $ x) = c $ (int x) + | int (t as Const("Numeral.number_of", _) $ w) = t + | int t = replace t + (*abstraction of a natural number expression: no minus*) + fun nat ((c as Const("op +", _)) $ x $ y) = c $ (nat x) $ (nat y) + | nat ((c as Const("op *", _)) $ x $ y) = c $ (nat x) $ (nat y) + | nat ((c as Const("Suc", _)) $ x) = c $ (nat x) + | nat (t as Const("0", _)) = t + | nat (t as Const("Numeral.number_of", _) $ w) = t + | nat t = replace t + (*abstraction of a relation: =, <, <=*) + fun rel (T, c $ x $ y) = + if T = HOLogic.realT then c $ (rat x) $ (rat y) + else if T = HOLogic.intT then c $ (int x) $ (int y) + else if T = HOLogic.natT then c $ (nat x) $ (nat y) + else if T = HOLogic.boolT then c $ (fm x) $ (fm y) + else replace (c $ x $ y) (*non-numeric comparison*) + (*abstraction of a formula*) + and fm ((c as Const("op &", _)) $ p $ q) = c $ (fm p) $ (fm q) + | fm ((c as Const("op |", _)) $ p $ q) = c $ (fm p) $ (fm q) + | fm ((c as Const("op -->", _)) $ p $ q) = c $ (fm p) $ (fm q) + | fm ((c as Const("Not", _)) $ p) = c $ (fm p) + | fm ((c as Const("True", _))) = c + | fm ((c as Const("False", _))) = c + | fm (t as Const("op =", Type ("fun", [T,_])) $ x $ y) = rel (T, t) + | fm (t as Const("op <", Type ("fun", [T,_])) $ x $ y) = rel (T, t) + | fm (t as Const("op <=", Type ("fun", [T,_])) $ x $ y) = rel (T, t) + | fm t = replace t + (*entry point, and abstraction of a meta-formula*) + fun mt ((c as Const("Trueprop", _)) $ p) = c $ (fm p) + | mt ((c as Const("==>", _)) $ p $ q) = c $ (mt p) $ (mt q) + | mt t = fm t (*it might be a formula*) in (list_all (params, mt body), !pairs) end; - fun oracle (sign, OracleExn svc_form) = - if valid (expr_of false svc_form) then svc_form - else raise OracleExn svc_form; + (*The oracle proves not the original formula but the abstracted version*) + fun oracle (sign, OracleExn P) = + let val (absP, _) = abstract P + val dummy = if !trace then writeln ("Subgoal abstracted to\n" ^ + Sign.string_of_term sign absP) + else () + in + if valid (expr_of false absP) then absP + else raise OracleExn P + end; end;