# HG changeset patch # User nipkow # Date 1283935555 -7200 # Node ID 297cd703f1f0738f63d3a06678f522d584d33675 # Parent 3989b2b44dbaf0e38cbee3a08d6e26d2936a6542 put expand_(fun/set)_eq back in as synonyms, for compatibility diff -r 3989b2b44dba -r 297cd703f1f0 src/HOL/Fun.thy --- a/src/HOL/Fun.thy Tue Sep 07 15:56:33 2010 -0700 +++ b/src/HOL/Fun.thy Wed Sep 08 10:45:55 2010 +0200 @@ -18,6 +18,8 @@ apply (simp (no_asm_simp)) done +lemmas expand_fun_eq = ext_iff + lemma apply_inverse: "f x = u \ (\x. P x \ g (f x) = x) \ P x \ x = g u" by auto diff -r 3989b2b44dba -r 297cd703f1f0 src/HOL/Set.thy --- a/src/HOL/Set.thy Tue Sep 07 15:56:33 2010 -0700 +++ b/src/HOL/Set.thy Wed Sep 08 10:45:55 2010 +0200 @@ -498,6 +498,8 @@ lemma set_ext_iff [no_atp]: "(A = B) = (ALL x. (x:A) = (x:B))" by(auto intro:set_ext) +lemmas expand_set_eq [no_atp] = set_ext_iff + lemma subset_antisym [intro!]: "A \ B ==> B \ A ==> A = B" -- {* Anti-symmetry of the subset relation. *} by (iprover intro: set_ext subsetD)